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Departamento de Informática, Universidad de Valladolid, Spain
{cesargf,cevp,descuder,valen}@infor.uva.es

Abstract
In this paper we present some experiments on multiclass ToBI
pitch accent classification. The system is based on the fusion of
pairwise classifiers, which are specialized in the distinction of
pairs of prosodic labels. Several machine learning techniques,
including neural networks, decision trees and support vector
machines, are combined in different ways in order to find the
best overall combination. Variations of pairwise classifiers are
introduced in order to take into account the influence of the sam-
ples of the remaining classes during the training of the binary
classifiers. The use of these techniques allowed us to improve
the results, both the overall classification accuracy and the bal-
ance across the different ToBI pitch accent classes.

Index Terms: automatic prosodic labeling, ToBI, classifier
combination, pairwise classifiers

1. Introduction
Automatic multiclass pitch accent classification remains a chal-
lenging problem in computational prosody. There is a high per-
ceptual similarity between some ToBI labels and some classes
are more difficult to identify than others. On the other hand,
some prosodic events are more frequent than others, which
causes the corpora used in experiments to be clearly imbal-
anced, and, therefore, the classification performance is nega-
tively affected.

In our previous work we reported a classification strategy
based on pairwise classifiers which provided good performance
[1]. Pairwise classifiers are specialized in the distinction of the
prosodic labels in pairs. Basically, the multiclass classification
problem is divided into a set of binary classification subprob-
lems. The distinction of classes in pairs is an easier problem
than the distinction between multiple classes and the combina-
tion of binary decisions provides improved classification results
[2, 3].

In this paper we evaluate two variations of the pairwise
strategy: training with remaining classes and correcting clas-
sifiers (to be described in sections 3.3.1 and 3.3.2 respectively).
These variations try to avoid the problem that a binary classifier
trained to distinguish between two particular classes l and m,
might provide unreliable estimations for instances which be-
long neither to class l nor to class m. We experimented with
the fusion of different configurations of the pairwise classifiers
based on these variations and on different types of classifiers:
neural networks, decision trees and support vector machines.
Different types of classifiers appear to behave differently when
they attempt to discriminate different classes and their outputs
can be complementary.

The use of these machine learning techniques for prosody

recognition allowed us to improve the results in multiclass pitch
accent classification. As a conclusion, it is difficult to improve
at the same time the total classification accuracy and the accu-
racy rate of each individual class. Thus, we selected two dif-
ferent configurations of the final system: one which improves
the total classification accuracy and one which provides more
balanced rates among all the prosodic classes.

The structure of the paper is as follows. First, we review the
state of the art on automatic prosodic labeling. Then, the clas-
sification procedure and the experimental setup are described.
Finally, we analyze the results and present some conclusions.

2. State of the art

Automatic detection and classification of ToBI events have been
performed using different machine learning techniques: deci-
sion trees [1, 4, 5, 6, 7, 8, 9], Markov models [4, 10, 11], max-
imum entropy models [12], neural networks [1, 7, 8, 13, 14],
GMM [13, 15, 16, 17], n-grams [10, 13, 18], Bayesian networks
[19], conditional random fields [7, 8] and support vector ma-
chines [7, 8, 9, 14]. In most of those works, a combination of
these techniques was used.

A common finding of previous work is that accuracy rates
are highly dependent on the task: the identification of boundary
tones and breaks is easier than the identification of pitch ac-
cents. Besides, the results were significantly better in prosodic
event detection than in classification. The most efficient classi-
fiers use morpho-syntactic features in conjunction with prosodic
acoustic features (F0, intensity and duration) and their temporal
evolution. Accuracy rates over 90% are reported in the detec-
tion of pitch accents [8]. Nevertheless, accuracy rates in clas-
sification are lower, 70.8% in [1], showing a high dependence
on the number of classes and speakers, as shown in table 1.
Although results can be improved by reducing the number of
classes, we decided to keep the original set of classes in this
work, since they convey linguistic meaning as defined in the
standard [20], which should be preserved.

3. Classification method

In this section we describe the classification procedure used in
the experiments, which is an evolution of the system presented
in [1]. First we describe the strategy of multiple classifier com-
bination and the base classifiers used in the experiments. Then,
two variations of pairwise classification are explained. Finally,
we present the experimental setup.
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Table 1: Accuracy of pitch accent tone classification for different mappings of the ToBI labels, as reported in the state of the art. All
the experiments used the Boston University Radio News Corpus.

M
ap

p
in

g

H* H* H* H* high high high
L+H* L+H* L+H* L+H* high high high
!H* !H* H* !H* downstepped downstepped downstepped

H+!H* H+!H* H+!H* ignored high high high
L+!H* L+!H* L+H* ignored downstepped downstepped downstepped

L* L* L* L* low low low
L*+H L*+H L*+H ignored low low low

no label none ignored ignored unaccented unaccented unaccented
#Classes 8 5 4 4 4 4

Reference [1] [21] [18] [10] [22] [6]
Level word word word syllable syllable syllable

#Words/Syllables 27,767 29,578 28,300 14,599 14,599 14,377
#Speakers 6 6 6 1 1 1
Accuracy 70.8% 63.99% 56.4% 80.17% 81.3% 87.17%

3.1. Multiple classifier combination

The pairwise coupled approach basically divides a given mul-
ticlass classification problem into a number of binary classifi-
cation subproblems, whose results must be combined to obtain
the final classification result [2, 3]. According to this approach,

let us refer by P̂ (l|x, λk
l,m) to an estimation of the probability

P (y = l|x, y = l ∨ m), where l and m are two different
prosodic labels; x is the input of the classifier (in our case, the
prosodic features); y is the class label; and λk

l,m is a pairwise
classifier of type k that is trained to separate classes l and m
(neural network, k = 1; decision tree, k = 2; support vector
machine, k = 3).

From these estimators, we build P̂ (l|x, λk), which is ob-
tained with classifiers of type k by:

P̂ (l|x, λk) =
∏

m=1..C
l �=m

P̂ (l|x, λk
l,m) (1)

where C is the number of classes, or prosodic labels.

Then, the results of K different types of classifiers are com-

bined, so that the final estimation of P (l|x), P̂ (l|x), is com-
puted as follows:

P̂ (l|x) =
∏

k=1..K

P̂ (l|x, λk) (2)

For each classifier type, there are as many classifiers as

there are combinations of pairs of C classes:
C·(C−1)

2
. Each

classifier, λk
l,m, provides the posterior probability estimates

P̂ (l|x, λk
l,m) and P̂ (m|x, λk

l,m).

Since the labeling of a given word depends on the context in
which the word has been uttered, we introduce language model
dependence. Experiments reported in [4, 13, 23] showed an
improvement in results when a model of the sequence of labels
was used. A detailed description of the process can be found in
[1, 4, 13]. To search for the most likely prosodic label sequence,
we applied the Viterbi algorithm [24]. The SRILM toolkit was
used to build trigram prosodic language models [25], with Katz
backoff for smoothing. The training data was used to build these
models.

3.2. Base classifiers

We used three different types of classifiers in this work: deci-
sion trees (DT), neural networks (NN) and support vector ma-
chines (SVM). The reason for using different types of classifiers
is that different classifiers behave differently on the discrimina-
tion of prosodic labels [1, 26].

A multilayer perceptron (MLP) was used, trained by means
of the standard Error Backpropagation learning algorithm. Non-
linear sigmoid units were used in the hidden and output lay-
ers. A single hidden layer was used and a total of 100 training
epochs. In the output layer we used as many units as classes,
one per each class to classify. The POS feature was transformed
into quantitative values by using a binary coding of the 33 val-
ues, using 6 bits. Normalization techniques were applied, using
Z-Norm normalization across the same speaker.

The Weka toolkit [27] was used to build C4.5 decision trees
(J48 in Weka). Different values for the confidence threshold
for pruning have been tested, although the best results were ob-
tained with the default value (0.25). The minimum number of
instances per leaf was also set to the default value (2). This
classifier was trained with qualitative POS features and unnor-
malized data. To obtain better class probability estimates, we
turned off pruning, turned off collapsing and calculated class
probabilities with the Laplace correction, as described in [28].

We used the Weka machine learning toolkit [27] implemen-
tation of the support vector machines. We tested different ker-
nels and selected the polynomial kernel. To obtain probability
estimates, logistic regression models were used at the output
of the support vector machine. This classifier was trained with
qualitative POS features and unnormalized data.

3.3. Variations of pairwise classification

In the canonical pairwise classification scheme, each pairwise
classifier is trained to distinguish between two particular classes
l and m. Then, only samples of this two classes are used in
the learning stage. In the classification stage, each individual
pairwise classifier, λk

l,m, is coupled with the others in order to
get the final output for each test sample x. Given that x can
belong to any class, the input of a particular classifier can belong
to its target classes (l or m) or not. In this last case, the problem,
observed in our work and in the literature [2, 29], is that the
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Table 2: Accuracy of the base classifiers (DT: Decision Tree; NN: Neural Network; SVM: Support Vector Machine; RC: training with
Remaining Classes; CC: Correcting Classifiers).

DT DT-RC DT-CC NN NN-RC NN-CC SVM SVM-RC SVM-CC

H* 61.6% 74.0% 76.0% 64.0% 61.0% 72.2% 44.6% 61.2% 63.5%
L+H* 30.7% 21.2% 19.1% 31.8% 40.4% 34.1% 48.6% 41.9% 36.1%
!H* 35.1% 32.4% 32.7% 36.3% 45.4% 36.3% 44.2% 54.6% 52.0%
H+!H* 17.1% 13.1% 13.8% 18.1% 23.0% 10.1% 36.2% 11.8% 17.7%
L+!H* 7.4% 4.9% 3.9% 14.1% 14.3% 3.0% 29.6% 0.2% 1.3%
L* 18.6% 13.5% 10.3% 16.1% 29.6% 7.2% 45.5% 24.6% 30.2%
L*+H 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
none 86.4% 91.1% 91.6% 88.1% 85.9% 90.8% 82.9% 85.3% 86.5%

Total 66.2% 70.7% 71.2% 68.1% 67.9% 71.2% 63.5% 67.9% 68.6%

classifier might provide an unreliable output. Moreover, this
unreliable output could be a high value, which might cause the
instance to be incorrectly assigned to class l or to class m.

In order to cope with the described problem, we propose the
use of two techniques: training with remaining classes (RC) and
correcting classifiers (CC). Therefore, for each classifier type,
we have three different classifier configurations: original pair-
wise classifiers, training with remaining classes and correcting
classifiers.

3.3.1. Training with remaining classes

During the training phase, each classifier λk
l,m, is trained with

examples of three classes: l, m and ¬lm (this last is composed
by the training examples of the rest of classes).

In the case of NN, the output layer is composed by two
cells, {O1, O2}, assigning each cell at a certain target class,
e.g., O1 to l and O2 to m. In the standard training method, the
desired outputs are fixed to {1.0,0.0} for l class samples and
{0.0,1.0} for m class samples. In the test stage, the input, x,
is assigned to the class with the corresponding higher output,
i.e, if the higher is O1 x is assigned to l and if the higher is
O2 x is assigned to m. In the training with remaining classes
method, the desired outputs in the learning stage are fixed at:
{1.0,0.0} for the l class training examples, {0.0,1.0} for the m
class training examples and {0.5,0.5} for the ¬lm class training
examples. That is, the MLP is trained to provide high outputs
when the input belongs only to the l or m classes.

In the case of DT and SVM, a similar method is applied. We
extended the binary pairwise classifiers and built classifiers that
can distinguish between three classes: l, m and ¬lm. Thereby,

the probability estimates P̂ (l|x, λk
l,m) and P̂ (m|x, λk

l,m) pro-
vide high values only when the input belongs to classes l or m.

3.3.2. Correcting classifiers

For each pairwise classifier λk
l,m, separating class l from class

m, an additional classifier is trained, φk
l,m, separating classes l

and m from all the other classes [29]. This additional classifier
generates Q̂(lm|x, φk

l,m), an estimation that sample x belongs
to either class l or class m, and can be included in equation (1),
which becomes:

P̂ (l|x, λk) =
∏

m=1..C
l �=m

P̂ (l|x, λk
l,m)Q̂(lm|x, φk

l,m) (3)

The drawback of this technique is the cost of training

C·(C−1)
2

additional classifiers for each classifier type.

3.4. Experimental setup

We used the Boston University Radio News Corpus (BURNC)
[30]. The experiments were performed using the word as the
reference unit. All utterances in the corpus with ToBI labels
from all the speakers were used. Pitch accents considered in this
paper (and the number of samples of each) were: H* (7,587),
L+H* (2,383), !H* (2,144), H+!H* (586), L+!H* (638), L*
(517), L*+H (44) and none (13,868). We used oversampling in
order to reduce the negative impact of imbalanced data on the
final result [1, 9, 26]. Ten-fold cross-validation was applied in
all the experiments.

We used similar features to the ones used in other exper-
iments [13]. Frequency features: within-word F0 range, dif-
ference between maximum and average within-word F0, differ-
ence between average and minimum within-word F0, difference
between within-word F0 average and utterance average F0. En-
ergy features: within-word energy range, difference between
maximum and average within-word energy, difference between
average and minimum within-word energy. Vowel nucleus du-
ration: we used the maximum normalized vowel nucleus dura-
tion from all of the vowels of the word. Part of speech: we used
the POS tags that come with the BURNC corpus, which were
automatically obtained and were hand-corrected [31].

In order to model the temporal evolution of the pitch con-
tour along the unit of reference, we included additional features:
Tilt and Bézier parameters. Tilt is probably the most widely ap-
plied technique for parameterizing the pitch contours [32]. Tilt
has been explicitly used in the state of the art of prosodic event
detection [9, 18]. Bézier stylization is based on the approxi-
mation of the pitch contours with Bézier functions [33]. The
minimum square fitting approximation technique is used to rep-
resent the shape of the F0 contour along a given reference unit.
In this work, we use 4 control points of the spline as parameters.

The use of context features can improve the classification
results [1, 9, 21, 22, 34]. We decided to select the features to
model the context using the Correlation-based Feature Selec-
tion (CFS) algorithm [35]. Without the use of context, for each
word, we use 18 features. The CFS algorithm selected 8 fea-
tures to be used as context features. We used 2 previous words
and 2 following words as context [1].
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Table 3: Accuracy of the fusion of classifiers, with and without
applying the Viterbi algorithm.

without with
Viterbi Viterbi

DT + NN + SVM 70.85% 71.29%
DT + NN + SVM-RC 71.26% 71.49%
DT + NN + SVM-CC 71.46% 71.70%
DT + NN-RC + SVM 70.65% 71.47%
DT + NN-RC + SVM-RC 71.07% 71.61%
DT + NN-RC + SVM-CC 71.12% 71.74%
DT + NN-CC + SVM 71.91% 72.07%
DT + NN-CC + SVM-RC 72.02% 72.15%
DT + NN-CC + SVM-CC 72.08% 72.19%
DT-RC + NN + SVM 72.01% 72.23%
DT-RC + NN + SVM-RC 72.05% 72.22%
DT-RC + NN + SVM-CC 72.24% 72.40%
DT-RC + NN-RC + SVM 72.10% 72.46%
DT-RC + NN-RC + SVM-RC 72.17% 72.37%
DT-RC + NN-RC + SVM-CC 72.20% 72.55%
DT-RC + NN-CC + SVM 72.38% 72.51%
DT-RC + NN-CC + SVM-RC 72.46% 72.58%
DT-RC + NN-CC + SVM-CC 72.56% 72.61%
DT-CC + NN + SVM 72.28% 72.45%
DT-CC + NN + SVM-RC 72.33% 72.57%
DT-CC + NN + SVM-CC 72.43% 72.59%
DT-CC + NN-RC + SVM 72.43% 72.51%
DT-CC + NN-RC + SVM-RC 72.25% 72.41%
DT-CC + NN-RC + SVM-CC 72.37% 72.54%
DT-CC + NN-CC + SVM 72.60% 72.64%
DT-CC + NN-CC + SVM-RC 72.62% 72.62%
DT-CC + NN-CC + SVM-CC 72.62% 72.54%

4. Experimental results
Table 2 shows the classification results of the base classifiers,
before the fusion. The total accuracy of the different classifiers
ranges from 63.5% for the SVM classifier to 71.2% for the DT-
CC and NN-CC classifiers. The strategies RC and CC improve
the results of their baseline counterparts: for instance, DT im-
proves from 66.2% to 70.7% and 71.2% respectively.

Another important result in table 2 is that some classifiers
are more effective in the identification of a given class than oth-
ers. This justifies the improvements achieved with the classifier
fusion strategy. For example, the SVM classifier is the most
efficient in identifying class L*, with a rate of 45.5%. For this
class, DT classifiers only obtain 18.6% at most.

Table 3 shows the results of the fusion of classifiers, with
and without applying the Viterbi algorithm. A first conclu-
sion from these results is that the fusion improves the results
achieved with the base classifiers. The best global results are
achieved when the Viterbi algorithm is used, because it allows
to search for the most likely prosodic label sequence, instead of
considering the accents in isolation. However, this global im-
provement is mainly due to the improvement of classes H* and
none (the most frequent ones), as shown in table 4.

As we are interested in multiclass classification, higher
classification rates in each of the classes are also important. Ta-
ble 4 compares two alternative combinations with the baseline
of our previous work. In the third column, the classifier DT-
CC+NN-CC+SVM+Vit provides higher total accuracy rate, but
is clearly specialized in the H* and none classes, with accu-
racies of 78.0% and 91.8% respectively. In the second column,

Table 4: Rate of ToBI labels for different combinations of clas-
sifiers. We show the combination which provides more bal-
anced results among classes and the combination which pro-
vides higher accuracy rate (to select the most balanced config-
uration we calculated the geometric mean of the classification
rate of all classes except class L*+H. DT: Decision Tree; NN:
Neural Network; SVM: Support Vector Machine; RC: train-
ing with Remaining Classes; CC: Correcting Classifiers; Vit:
Viterbi).

Previous More Higher
work [1] Balanced rate

H* 72.5%

D
T

+
N

N
+

V
it

66.8%

D
T

+
N

N
-R

C
+

S
V

M

78.0%

D
T

-C
C

+
N

N
-C

C
+

S
V

M
+

V
it

L+H* 25.3% 37.3% 25.9%
!H* 35.2% 46.9% 36.5%
H+!H* 12.1% 25.3% 10.4%
L+!H* 6.0% 11.4% 2.2%
L* 11.4% 32.1% 9.1%
L*+H 0.0% 0.0% 0.0%
none 91.0% 88.4% 91.8%

Total 70.8% 70.7% 72.6%

the classifier DT+NN-RC+SVM provides a better balance in ac-
curacy across the different pitch accent classes. This classifier
obtains the highest rates of all configurations for classes L+H*,
!H*, H+!H*, L+!H* and L*. These classes proved to be very
difficult to recognize.

Table 4 also shows that with the experiments reported in this
paper we have outperformed the results of our previous work
[1].

5. Conclusions
We have presented a system for the multiclass classification of
ToBI pitch accents, which is based on classification by pair-
wise coupling and is an extension of our previous work [1]. A
classifier for each pair of classes is built and the final label is as-
signed combining all the pairwise predictions. Several machine
learning techniques are used to build the base classifiers: neural
networks, decision trees and support vector machines.

We have described two different techniques in order to in-
corporate the samples of the other classes during the training
of the pairwise classifiers: training with remaining classes and
correcting classifiers. The use of both techniques provided
us with various different configurations of the base classifiers,
which seemed to be complementary. The combination of these
configurations allowed us to improve our previous results [1].
Some combinations improve the overall classification accuracy:
the classifier DT-CC+NN-CC+SVM+Vit improves the total rate
from 70.8% to 72.6%. Other combinations provide more bal-
anced accuracies among the different pitch accent classes: the
classifier DT+NN-RC+SVM doubles the identification rate (or
close to double the rate) of the classes L*, L+!H* and H+!H*.
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