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Abstract—Speculative parallelization techniques allow to ex-
tract parallelism of fragments of code that can not be analyzed at
compile time. However, research on software-based, thread-level
speculation will greatly benefit from an appropriate compiler
framework for easy prototyping and further development of
new techniques. This paper presents an experimental XML-based
compilation framework to handle speculative parallelization of
C code. The framework extends Cetus, a source-to-source C
compiler, to build an XML tree based on the Cetus Internal
Representation of the source code. Other modules of our frame-
work rely on XPath and XSLT capabilities to process the XML
tree generated, to perform analysis on the use of variables and to
augment the original code for software-based, speculative parallel
execution. The use of the current version of our framework allows
a fast prototyping of new analysis and transformation solutions,
with a reduction of around 83% on the number of code lines
needed with respect to the direct use of Cetus for the same
purpose.

To show the possibilities of this framework, we present an
automatically-generated classification of loops for several SPEC
CPU2006 C benchmarks. This classification is useful to better
understand the potential benefits derived from the use of spec-
ulative parallelization techniques. The development framework
presented here is freely available under request.

Index Terms—speculative parallelization; compiler frame-
work; XML; XPath; XSLT;

I. BACKGROUND

Speculative parallelization (SP), also called Thread-Level
Speculation [1], [2], [3] or Optimistic Parallelization [4], [5]
aims to automatically extract loop- and task-level parallelism
when a compile-time dependence analysis can not guarantee
that a given sequential code can be safely executed in parallel.
Speculative parallelization optimistically assumes that the code
can be executed in parallel, and relies on a runtime hardware
or software monitor to ensure that no dependence violation
is produced. In the presence of such a violation, earlier
software-only speculative solutions [1], [6] interrupted the
speculative execution and re-executed the loop serially. More
recent approaches [2], [7], [8] rely on a monitor that stops
only the offender thread and its successors, re-starting them
with the correct data values. As long as not many dependence
violations arise, speculative parallelization may speed up these
non-analyzable fragments of code.

Speculative parallelization can be either implemented in
hardware or software. While hardware mechanisms do not
need changes in the code and do not add overheads to

speculative execution, they require changes in the processors
and/or the cache subsystems (see e.g. [9], [10], [11], [12],
[13]). Software-based speculation, on the other hand, requires
to augment the original code with instructions that drive
the runtime dependence analysis. Although these instructions
imply a performance overhead, software-based SP can be
effectively used in current shared-memory systems with no
hardware changes.

To better understand how SP works, we will briefly describe
the different situations that may arise when two threads
access the same variable concurrently. Informally speaking and
focusing on loop-based speculation, variables that are always
written before being read in the context of a given iteration
are called private. Variables that are only read and not written
in the whole loop are called read-only shared variables. If
a compiler detects that all variables inside a loop are either
private or read-only shared, then the loop can be parallelized
safely1. Unfortunately, most loops have variables whose values
might be written in a particular iteration and later be read in
a subsequent iteration. Sequential semantics impose a total
order for both operations, and if these two operations are
done out-of-order by different threads a dependence violation
occurs. In this case, the results generated by the thread that
consumed the outdated value of such speculative variable
should be discarded, together with all the results generated
by its successors. This is called a squash operation.

Despite the fact that SP effectively helps in the extraction
of parallelism for non-analyzable code, until now these tech-
niques have had a limited impact in the compiler community.
There are two basic reasons for this. First, depending on the
number of dependence violations that arise at runtime, the
speculative overhead may not compensate for the performance
gain obtained. Second, the lack of a SP compiler framework
makes difficult to measure the impact of SP on widely-
used sequential benchmarks, since both the classification of
variable usage and the source code modifications needed
should be done manually, a tedious and error-prone task.
The programmer should first classify the variable usage into
private, read-only shared and speculative categories, a daunting
task if the code has more than a few dozens of lines. After

1Further analysis may be required to ensure that, after parallel execution,
final values stored in private variables meet sequential semantics.
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Figure 1: IR Tree Structure Example.

that, the code should be modified to insert all the speculative
parallelization calls, requiring an in-depth knowledge of the
speculative parallelization scheme being used.

In this paper we address this second problem. We present
a source-to-source compiler framework designed to classify
variable usage for a given loop and to augment the code to
benefit from software-based speculative parallelization. Our
framework is partially based on the Cetus source-to-source
C compiler. Cetus has been modified to generate an XML tree
based on the Internal Representation (IR) of the source code.
A second tool, Loopest, relies on Xpath capabilities to perform
analysis on variables usage and loops. This information can
be used automatically to augment the XML tree with the code
needed for speculative execution. Finally, a third tool called
Sirius translates the resulting XML tree back to C code. In
this paper we describe the current state of our experimental
compiler framework in detail, together with a summary of
results obtained when using its analysis capabilities with
several C benchmarks of the SPEC2006 compiler suite.

II. UNDERSTANDING CETUS

Cetus [14] is a compiler infrastructure written in Java
for source-to-source transformation of C programs developed
by Purdue University. Cetus provides several functions, such
as auto-parallelization of loops through private- and shared-
variables analysis, and automatic insertion of OpenMP direc-
tives [15].

Cetus builds an Intermediate Representation (IR), an ab-
stract representation that holds the block structure of a C

program. The IR is implemented in the form of a class
hierarchy and accessed through their class member functions.

In Cetus, the concept of statements and expressions are
closely related to the syntax of the C language, making the
source-to-source translation process easy. However, there are
some disadvantages: an increasing complexity for pass writers
(since they should think in terms of C syntax) and limited
extensibility to process additional languages. Fortunately, this
problem is mitigated by the provision of several abstract
classes, which represent generic control constructs. Thus,
generic passes can be written using the abstract interface, while
more language-specific passes can use the derived classes.

Figure 1 shows an example of Cetus IR from a C source
code. In Cetus terminology, a “TranslationUnit” is a file con-
taining source code. The syntax tree and the class hierarchy are
not equivalent. For example, in the syntax tree, the parent of a
TranslationUnit is a Program, however neither TranslationUnit
nor Program have a parent in the class hierarchy.

Although Cetus is a powerful tool, adding new function-
alities requires an in-depth knowledge of Java, Cetus IR,
and its associated data structures. Due to both simplicity and
extensibility reasons, instead of using Cetus capabilities for
developing our compiler framework, we modify it to build an
XML representation of its Intermediate Representation, and we
use XML standard tools to perform queries and modifications
to the structure. The next section describes the framework in
more detail.

III. COMPILER FRAMEWORK ARCHITECTURE

Figure 2 shows our source-to-source compiler framework
architecture. Solid lines represent the data flow currently
implemented; dashed lines represent work still in progress.
The input of this system is the original C file. A modified
version of Cetus, called XMLCetus, uses Cetus’ IR to build
an XML tree representing the original C code, containing all
the information needed to analyze and rebuild the source files.

A second tool, called Loopest, receives this input file and
uses XPath to query the XML DOM tree. Queries currently
implemented perform a dependence analysis of scalar variables
and looks for other constructs (like memory management, I/O
function calls and pointer arithmetic) in the context of every
single for loop. With this information, Loopest generates an
analysis report. As an example, in Sect. IV we will use this
framework to process the SPEC CPU2006 benchmark.

Loopest is currently being extended in two ways: to also
analyze the dependence pattern of array structures and dy-
namic memory, needed for the application of speculative
parallelization, and to transform the XML tree representing
the original C file into a speculative, parallel version (dashed
arrow labeled “modified XML”).

We have also developed a third tool, called Sirius, that uses
XSLT to transform any XML representation of a C file back
into C code. For legibility, we use the GNU tool indent to
format the result generated by Sirius (not shown in the figure).

After briefly reviewing the overall framework architecture,
we will now discuss XMLCetus, Loopest and Sirius in more
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Figure 2: Compiler framework architecture.

detail.

A. Converting Cetus IR to XML

XMLCetus is a modification of Cetus that generates an
XML DOM tree based on Cetus IR. The main changes to
Cetus are made just after Cetus has finished the analysis of
the C source and has generated the IR. At this point, a new
function called createDomTree() is invoked with the Program
node (the first node of the tree) as input parameter. Every node
of the IR will have a corresponding representation in the XML
DOM tree, thus preserving the original structure of the Cetus
IR. The following steps explains the transformation procedure
from Cetus IR to XML DOM tree.

• Beginning with the first node, Program, XML Cetus re-
cursively descends all its TranslationUnit children nodes,
representing the source code files passed to Cetus. The
tree is traversed in preorder, depth-first search. A getChil-
dren() function gets the children of each node as a list of
nodes. Through a casting operation, the list is transformed
into a Traversable-type objects list. Traversable is the
type defined by Cetus as the generic class, representing
any kind of node.

• Next, the type of the children nodes are checked. If one
node is an instance of both a given class and its parent
class, two DOM elements that represent both nodes are
created to reflect the original structure. This is just an
example of the several situations that may arise when
creating DOM nodes and their relationships.

• When the instance is checked as belonging to a particular
class, an object instance of this class is created. Now, it is
possible to obtain relevant information from the node and
create a new DOM element with attributes that reflects
this information.

• Finally, after the creation of the element with its at-
tributes, the DOM element is appended to its correspond-
ing parent.

This procedure generates an XML document which rep-
resents the DOM tree, and can be printed using the print-
DomTree() function.

B. Querying and Modifying the XML tree

Loopest is an experimental Java tool that provides two
functionalities: (a) generation of reports on the use of variables
in the context of every single for loop present in the source
code, and (b) modification of the XML tree to insert directives

and functions that allow the speculative parallelization of the
original source code.

Loopest relies on XPath capabilities to perform queries
and generate reports based on the XML tree generated by
XMLCetus. XPath syntax is easy to learn and provides enough
functionality for this purpose. With XPath, it is possible to
build complex queries with few words or lines. The result of
these queries may be new node-sets that can be combined to
search for new results. One of the main advantages of using
such a tool is that its functionality can be modified easily,
detecting new language constructions by adding or modifying
queries, thus allowing fast prototyping of new solutions.

XPath queries work in a similar way than recursive searches
in a directory-based filesystem structure, allowing to select
nodes or set of nodes in an XML document. We have found
that such queries are much simpler to develop than to directly
modify the Java code that manages the IR structure in Cetus.

In order to classify variable usage inside for loops, Loopest
executes a set of XPath queries which determine the variables
being read, being written, being read-and-written, and some
other queries useful to find private, read-only shared and
speculative variables in a loop, including detection of private
variables that are used after the end of the loop. These queries
process all for loops present in the code, regardless of their
depth level.

Loopest has two different functionalities. The first one
is to generate a report with the classification of variable
usage (using the ListUtils package, provided by Apache Com-
mons [16]), while the second one is to augment a given
loop with all the instructions needed to execute that loop
speculatively in parallel. To do so, the current version of
Loopest needs the line number where the target for loop starts.
We are currently working in other alternatives, such as using
profile-based analysis and different heuristics to choose the
target loop automatically.

C. Regenerating the C code

After building, analyzing and modifying the XML tree,
the last part of the process is to convert this representation
back into C code. To do so, we have developed a Java
tool called Sirius, that receives an XML document describing
either the original C code as produced by XMLCetus or
the augmented C code produced by Loopest. Sirius is based
on XSLT capabilities, and uses template rules to translate
the XML output document again to C. To apply the XSLT



transformation rules, we chose the Saxon tool [17], due to
its open-source nature and because it implements XPath and
XSLT 2.0.

The structure of the XSLT program developed consists of
a set of template rules, one for each element of the DOM
tree that should be transformed into C language elements.
These template rules generate the C code that corresponds to
the DOM element identified, and indicate the application of
another rule where necessary. In another cases, Sirius defines
modes for the template rules in order to apply them depending
on the context. This differentiation is necessary to correctly
rewrite the code. As a result of the transformation made by
Sirius, a C source file is generated. At this point, we use the
GNU tool indent to format the output file and make it more
pleasant for the programmer. With this transformation Sirius
finishes the compilation framework process.

D. Using Cetus for the same purpose

It is important to highlight the differences between our
framework and a similar system based exclusively on Cetus.
The main differences between both approaches are simplicity
and extensibility. Detection of private and read-only shared
variables is also within Cetus capabilities, but the code re-
quired to implement this functionality is much longer and
complex than Loopest’s code. Modifying Cetus requires a deep
knowledge of Java, Cetus Intermediate Representation, and its
associated data structures, while adding new functionalities in
our system can be done simply adding new XPath queries,
that requires some basic knowledge about XPath and Java
to combine the results into meaningful reports. Using the
number of code lines needed as an effort indicator, in Cetus
at least eight Java classes take part directly to locate the
private variables of a given loop, consuming 2 573 lines of
code (calculated with SLOCCount [18]). However, Loopest
only needs 425 lines of lower-complexity code to carry out
the same task, an 83% reduction in the number of code lines
needed.

Regarding extensibility, making changes to Cetus’ function-
alities requires also a deep knowledge about Cetus software
and its intermediate representation. Changes in Loopest soft-
ware are much easier, because it is developed with XPath,
not even requiring a widespread knowledge about Java or
XML. In fact, our framework can be easily adapted to other
transformation tasks not directly related with speculative par-
allelization, just modifying or creating new XPath queries or
XSLT transformations.

IV. LOOP CLASSIFICATION OF SOME SPEC CPU2006
BENCHMARKS

As an example of the capabilities of our compiler frame-
work, Table I shows a loop classification generated automat-
ically with our tools, for several applications in the SPEC
CPU2006 benchmark [19]. This list includes all C applications
except 400.perlbench and 403.gcc. This table does not pretend
to show an in-depth loop characterization of SPEC applica-
tions, since such a study requires additional information about

the loop coverage in terms of sequential execution. However,
we believe that this example is useful to show the capabilities
of the compiler framework developed.

Regarding the two C benchmarks that have not been in-
cluded in this study, we do not show their loop character-
ization because their source code is fragmented in many C
files (53 for 400.perlbench and 155 for 403.gcc) with many
conditional compilation flags, and the current version of Cetus
is not able to build a single IR for them. We are currently
transforming both benchmarks into a single C file to overcome
this limitation, but the number of code lines for both of them
(around 116 000 for 400.perlbench and 484 000 for 403.gcc)
is hindering this process.

A detailed description of each column of Table I follows,
together with some comments regarding the possibility of
using speculative parallelization techniques with these loops.
For each benchmark considered, the table shows the following
information:

• The number of for loops present in the benchmark.
• Percentage of “classical” for loops. These are loops with

a single control variable, with all three fields of the
FOR structure (initialization, conditional evaluation, and
increment) being used, and with no changes in the control
variable inside the loop body. Current implementation of
the speculative engine used can only deal with this kind of
loops, accounting for more than 85% of the total number
of loops on average.

• Percentage of loops that contain uses of pointer variables.
The average value (80%) reflects the importance of sup-
porting pointer arithmetic in speculative parallelization
schemes, a problem that is not yet solved in the general
case.

• Percentage of loops that perform calls to memory man-
agement functions, such as malloc() or free(). On average,
only 1.17% of loops make use of dynamic memory ca-
pabilities. Although this datum should be complemented
with the actual coverage of this 1.17% of loops in
terms of sequential execution time, this preliminary result
suggests that dynamic memory management might not
be a priority in the list of problems that speculative
parallelization techniques should solve to speed-up these
benchmarks.

• Percentage of loops that contain I/O function calls. Cur-
rent speculative parallelization implementations are not
able to handle I/O speculatively, so these loops can not
be parallelized.

• Percentage of loops that only hold private and read-only
shared variables, and therefore may be parallelized at
compile time. Although our study indicates that roughly
half of the loops fall into this category, the reader
should take into account that in most cases it may not
be profitable to parallelize these loops because thread-
management overheads may lead to slowdowns.

This is just an example of the studies that can be conducted
with our framework. The flexibility provided by XML tools



Lines of Number of Classical Loops with Loops with memory Loops with Parallelizable
Application code FOR Loops Loops (%) pointers (%) management (%) I/O activity loops (%)

401.bzip2 7 292 120 93.33 88.33 0.83 7.5 46.67
429.mcf 2 044 33 63.64 96.97 0 12.12 30.3
433.milc 12 837 418 64.11 87.56 2.39 19.86 33.25

456.hmmer 33 210 739 88.23 95.81 3.52 13.67 46.55
458.sjeng 13 291 216 91.67 10.19 0 4.17 51.39

462.libquantum 3 454 89 92.13 87.64 0 7.87 48.31
464.h264ref 46 142 1 792 95.31 88.23 3.23 0.89 57.59

470.lbm 875 23 100 78.26 0 43.48 69,57
482.sphinx3 18 280 556 80.4 93.53 0.54 14.2 46.04

Average 15 270 443 85.42 80.72 1.17 13.75 47.74

Table I: Loop characterization results for some C applications of the SPEC CPU2006 benchmark.

makes easy to modify XPath queries to further investigate the
possibility of using speculative parallelization techniques in a
different context, such as task-based speculative parallelism.

The development framework presented here is freely avail-
able under request.

V. SUMMARY AND FUTURE WORK

This paper presents a source-to-source compiler infrastruc-
ture based on Cetus that takes advantage of XML represen-
tation and its associated analysis and transformation tools.
This infrastructure is primarily intended to be used in the
context of speculative parallelization studies, but can be easily
modified for other purposes. The resulting system extends
Cetus capabilities in a much more flexible way: as an example,
the use of our system leads to an 83% reduction on the number
of code lines needed to perform private variable analysis.
Regarding code modification, our system currently relies on
the user’s choice of the loop to be modified in order to augment
it with speculative parallelization capabilities. We are working
in different mechanisms to choose these loops automatically.

It is important to highlight that this compiler infrastructure
is not intended to be directly inserted into a production
compiler. Instead, we have developed a flexible and robust
tool that allows fast prototyping of new solutions regarding
code analysis and modification. Our current and future work
include the use of this tool with two purposes. First, to discover
parallelization niches in widely-used benchmarks that may
benefit from speculative parallelization. Second, to use this
information to decide what limitations of current speculative
parallelization schemes ought to be solved first. We hope that
this process will let speculative parallelization technology be
mature enough to be included in mainstream compilers.
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