
206 SIMULATION OCTOBER 1999

TECHNICAL ARTICLE
SIMULATION 73:4, 206-212
© 1999, Simulation C-ouncils, Inc.
ISSN 0037-5497/99
Printed in the United States of America

1. Introduction
One of the aspects that define the quality of a simula-
tion language is the key point of user interaction. Two
important problems have received continuous atten-
tion in this field: how to describe the model, and how
to perform the experiments on the simulation. Earliest
simulation languages, such as CSMP (Continuous Sys-
tems Modeling Program), tried to mimic the way ana-
log simulators described the set of differential equa-
tions that make up the model. Besides, there was no
real separation between model and experiments, these
being performed in alphanumeric form and accessing
the simulation program. The arrival of the CSSL’67
(Continuous Systems Simulation Languages) standard
introduced many improvements, among which we
could mention a model description closer to the math-
ematical format, and the detachment between model
and experiments. A command language was an inte-
gral part of the simulation language, allowing changes
in the model variables, plotting, etc., without the need
for recompiling the simulation program. A typical ex-
ample of this kind of language is ACSL (Advanced
Continuous Simulation Language).

These simulation languages are well established
and have thousands of users all over the world. Ide-
ally, the separation between model and experiments

A Configurable ACSL-Based
Interface Generator for Simulated Systems

César de Prada
Department of Systems Engineering

and Automatic Control
University of Valladolid, Spain
E-mail: prada@autom.uva.es

This paper presents a software tool for generat-
ing graphical interfaces for general-purpose
ACSL simulation models. The tool is aimed to
construct simulators for education and training
in fields such as process control. Final users can
manipulate the simulation from an upper level,
avoiding the details of simulation, names of
variables and experiments, etc., and focusing
attention on the work with each particular simu-
lated system. The tool is based on graphical op-
eration and transparent communication with
the supporting simulation. The steps that must
be followed by the programmer to prepare the
graphical interface for users of the simulation
are outlined. An application example, including
the interface configuration as well as its use
with the simulation, is provided.

Keywords: Graphical interfaces, ACSL,
simulation tool development environments,
simulation languages

Miguel A. García
Department of Systems Engineering and Automatic Control

University of Valladolid, Spain
E-mail: miguel@autom.uva.es

Diego R. Llanos
Department of Computer Science
University of Valladolid, Spain

E-mail: diego@infor.uva.es

OCTOBER 1999 SIMULATION 207

should be total, in such a way that once the simulation
is finished, its use in different experiments made by
different users could be carried out as easily as possible,
taking into account the differences between users be-
cause of their aims, level of expertise, etc. The way in
which ACSL handles the separation between models
and experiments is by using different files and syntax
for each one. The models are implemented in a Fortran-
based language and compiled separately, while the
experiments are performed by typing commands that
involve the names of the variables and parameters of
the model, as well as procedures composed of groups
of predefined commands with a given syntax. This
way of performing experiments using procedures and
commands requires a certain degree of expertise and
knowledge of the implementation of the simulation
model, which can be a real barrier for certain classes
of users.

Nowadays everyone recognizes the advantages of
the description of simulation models at an upper level
of abstraction. This has been approached using object-
oriented languages, and libraries of pre-written mod-
els, such as Dymola [1], or with expert systems, such
as SIMPD [2]. These kinds of modeling languages are
generators of source code of a simulation language, as
with ACSL. This means that from the point of view of
the final user, he is in the same position as with the
traditional simulation languages, with the added dis-
advantage that the naming of the variables of the gen-
erated model is quite often very obscure due to their
automatic generation.

At the same time, with the arrival of graphical inter-
faces, certain languages, such as Simulink or Graphics
Modeller [3], have given a new life to the old approach
of describing a model in terms of interconnecting
blocks, but this time using all the graphical facilities
of modern operating systems and computers. At the
same time, recognizing the importance of the user in-
terface, they utilize the same graphical interface for
performing experiments in the model, with the user
having access to all the model parameters, and with
the same problems as before.

Our point of view is that the requirements of an in-
terface for describing a model are quite different from
those of an interface oriented to performing experi-
ments, and that the latter requires adaptation to the
needs of specific users and aims. This is particularly
true when the aim of the simulation is to train people,
or when the users are non-experts in simulation.

In this paper we present a tool for developing
graphical interfaces for general-purpose simulation
models, oriented to performing experiments by the
final users. The implementation has been made with
ACSL, but the ideas behind it are general, and the
tool could be adapted to other environments. The cur-
rent implementation is made in C language for the
Windows environment and communicates with ACSL
for Windows by using Dynamic Data Exchange

(DDE)1, but with the same policy and different com-
munication methods, versions for other operating sys-
tems could be developed.

The developed system allows the user to avoid the
need for knowledge of the details of the simulation
and the use of the ACSL command tool. The work
with the experiments can be carried out graphically,
using controls such as scrollbars, buttons, bitmaps,
etc., in a different application that communicates with
the ACSL command tool in order to load the com-
mands remotely.

The capability of dealing with the models transpar-
ently with regard to the background simulation en-
hances its power and accessibility by users, without
the need for knowing the simulation details. The advan-
tage of this approach is that attention can be focused
on the experiments and the evolution and operation
of the simulated system, which is the proper object of
interest, reducing the simulation to its condition of
supporting tool.

Of course, this advantage requires extra work for the
programmer of the simulation. Simulation program-
ming will consist not only of implementing the algo-
rithms of the model and preparing the battery of ex-
periments for using this model, but also of designing
a graphical user interface that corresponds both with
the variables in the model and with the commands in
the experiments. This last task must be achieved by
the programmer of the simulation himself, who is the
person with the necessary deep knowledge to prepare
a user interface for users not familiarized with the
simulation aspects.

2. Interface Generator Architecture
The interface generator consists mainly of two appli-
cations: PConfig, which allows the programmer to de-
sign a user interface, and SimuModu, which allows
the user to run the simulation through the graphical
interface, avoiding the need to know the details of the
simulation language. This set of programs interacts
with ACSL, as shown in Figure 1, where we can see
the group of different applications, files and commu-
nications between them and with the simulation pro-
ject [4].

The programmer of the ACSL model uses PConfig
to implement a graphical user interface that is stored
as a file with a dedicated .pcf extension. The non-expert
user of the simulation uses SimuModu to load the .pcf
configuration file and automatically generate the user
interface and establish a communication with ACSL.
Then, manipulating the buttons, bars, etc. of the inter-
face, he is able to obtain results from the ACSL program.

One related goal in the development of this appli-
cation was to achieve resolution independence, in

1 DDE is an established protocol for exchanging data
through active links between applications that run under
Microsoft Windows.

208 SIMULATION OCTOBER 1999

order to use it in any graphical mode with any kind of
computer configuration

2.1 PConfig: Interface Generation
The objective of this application is to facilitate the de-
sign of an interface in such a way that a user not fa-
miliar with the simulation details can understand at a
glance the way to manipulate the simulated system.
This is done by combining a schematic of the process
in which the programmer can place a set of graphical
controls (sliding bars, buttons, etc.) once he has a de-
sign of the desired interface, such as, for instance, the
one in Figure 4. PConfig will provide the tools he
needs for implementing his design. The way in which
this is done is described next.

First, PConfig asks for an ACSL project to commu-
nicate with. Once this is done, PConfig starts ACSL and
establishes a DDE channel with it. Then it tries to find
those variables of the ACSL simulation involved in the
experiments. Typically, during the simulation, a user
changes values of the variables defined as Constants
(real valued parameters, flags, etc.), fires predefined
procedures of the command file with a .cmd extension,
and visualizes results of the experiments in numerical
or graphical format. Because of this, PConfig is able to
look for this kind of variable in the source code file
(with a .csl extension) of an ACSL project, as well as
for the names of the procedures of the experiments
file (.cmd). Both of them are able to be associated with
graphical controls or items on the experiment menu.

PConfig offers four main classes of elements for
building an interface: bitmaps, scrollbars, buttons, and
a specialized association of these.

The first step in the interface configuration is the
introduction of a bitmap representing a schematic of
the simulated system. The configuration application
allows the introduction of any kind of bitmap previ-
ously created and composed with general-purpose

editors (Paintbrush, Paint Shop Pro or others), and to
load them in the interface at execution time. The bit-
map can represent a plan or scheme of the simulated
element, and constitutes the backbone of the graphical
environment. Around the bitmap or over some of the
elements in it, the controls associated to each variable
are placed in a logical manner, in such a way that they
would be found close to the zone in which they act or
are expected to appear in the representation. The bit-
map will play a central role and must be carefully
designed to give visual meanings to the different
variables, procedures, etc., that are in relation with
the simulated system, making access to them easier.

The other elements, scrollbars and buttons, can be
placed freely on the screen, in addition to the sche-
matic. A value within a given range can be easily as-
signed with scrollbars to an associated variable. The
buttons, when pressed, allow a set of associated ac-
tions to start:
• Open windows with a variable number of

scrollbars of related variables.
• Open windows with a variable number of options

(radio buttons) to be selected, each one giving a
different value to an associated variable.

• Open a window with a text message.
• Open a file with a related document.
• Start a procedure defined in the command file.
• Introduce a reset to their original values of the

variables of the simulation.
The programmer can use the messages and docu-

ment files to warn about some specific behavior of the
simulation, or to explain the simulated system. These
kinds of dialog boxes work as pre-built help windows
at the disposal of the designer of the simulation to in-
sert comments he considers necessary for the users.

The way in which the association of a variable to
one of those elements is made is through an “Exam-
ine” button in the configuration dialog of each control
added to the interface. So when the designer chooses
a control (e.g., a scrollbar), the application establishes
a communication with the selected project and pre-
sents a table with all the variables in the project that
can be associated to the given control.

When a variable in the simulation project is associ-
ated to a control in the graphical interface, the initial—
normally stationary—value for that variable in the
simulation is automatically loaded, giving the designer
help in establishing the allowed values around the
initial one. In the case of scrollbars, minimum and
maximum allowed values are requested, in such a
way that values out of the range of the imposed ones
are substituted for the limit values in the same trend.

In the same way, all the user interfaces have a menu
item called “Experiments,” and the different proce-
dures in the command file of the simulation project
can be associated to sub-items of “Experiments” with

Figure 1. Block diagram of the set of applications

OCTOBER 1999 SIMULATION 209

a proper experiment name. Likewise, the experiments
can be associated to buttons inside the mainframe
workspace, which is of interest for procedures that
execute a plot of the evolution of the variable associ-
ated to a transmitter and are loaded from a button in
the graphical representation of the transmitter.

The fourth graphical utility is a specialized dialog
box. Sometimes it is of interest to join a group of vari-
ables with a strong link between them in a separate
representation. For instance, a PID (Proportional, Inte-
gral and Derivative) regulator has three parameters
(Kp, Ti and Td) that can be put together in order to
manipulate them simultaneously when the tuning op-
eration of the controller is broached. Of course, such a
dialog box is normally thrown from a controller but-
ton placed on the controller representation at the
graphical scheme of the regulation system.

2.2 Configuration File
Once the graphical interface with all the bitmaps, menu
items, controls and secondary dialog boxes is finished,
the option of saving it as a text-only file can be cho-
sen. Indeed, the file itself can be edited and modified
outside of the design application just by changing the
coordinates of the position of the different controls in
the graphical interfaces that are registered in the con-
figuration file next to each type of control. Likewise,
the configuration file includes the names and paths of
the ACSL executable, the ACSL project associated to
the graphical interface, and the bitmap file used as the
background of the interface.

2.3 SimuModu: Application Execution
SimuModu provides the user with the capability of
using the simulation execution environment designed
by the programmer. When invoked, it is able to load
the different configuration files generated by the inter-
face designer. When this execution application loads a
configuration file, its first action is to run ACSL and to
execute the corresponding ACSL project read. With the
information in the configuration file, this application
can reproduce the graphical interface and add the
functionality of the controls in it. The way in which
this capability is implemented is by communicating
the changes in the values of the variables made with
the scrollbars, radio buttons, etc., from the interface to
the ACSL project that is being executed. In the same
way, when an experiment is chosen, the name of its
procedure is passed to the executing project as those
in the ACSL command line.

Both types of changes are related in such a way that
new values for the variables are sent to the simulation,
together with the chosen command, so when the ex-
periment is executed, it takes the values selected for
the variables in that moment. For instance, an experi-
ment can be based on a jump in an input variable at a
given time from an initial value to another one. The
concrete values for both the input variable and the

instant of the jump are taken from the user interface,
and they will be the current values when the experi-
ment is selected in the graphical interface and is sent
to the simulation. If only the value of the input vari-
able is changed at a fixed time instant, the selection of
the experiment executes the simulation and when the
simulation time reaches the given instant, the jump to
the new value in the input variable is imposed.

Because of the arbitrary changes in the values of
the variables, effects of different experiments can be
hidden or interfere with them. Thus a procedure (in
the ACSL command file) linked to an “initialization”
experiment (in the graphical interface) can be useful
in order to fix all the variables at their stationary val-
ues before executing any other kind of experiment.

3. Application Example
As an application example, let’s consider a process
composed of a heat exchanger and its associated con-
trol system: a PID regulator. The aim of the process is
to heat a flow of a cool liquid, a juice in this example,
using saturated steam as the heating element. A sche-
matic can be seen in Figure 2. Here the cool juice enters
the heat exchanger by the left-hand-side pipe and, af-
ter being heated, leaves through the pipe on the right-
hand side. The steam comes from the top pipe, and its
flow can be changed by the opening of the valve placed
on it.

The temperature of the juice at the output of the
chamber is measured with the temperature transmit-
ter TT, which uses this signal as input (controlled
variable) of the temperature controller TC. According
to the set point chosen by the user, the controller com-
putes the value of the manipulated variable, that is,
the closing or opening of the valve that regulates the
input of steam into the heating chamber. Inside the
chamber, the steam condenses on the pipes that the
juices pass through. After condensing, the steam leaves
the heater as condensate by the lower pipe. There are

Figure 2. Development of a graphical interface using PConfig

210 SIMULATION OCTOBER 1999

three main disturbances that affect the interchange of
heat between the juice and the heating steam: the flow
and the temperature of the juice at the input of the
chamber, and the pressure of the feeding steam. An-
other effect to be considered is the possibility of hav-
ing non-condensable gases mixed with the steam. The
consequence is to reduce the heat exchange between
vapor and juice. This is a real effect that decreases the
efficiency of the heat exchanger, and normally is avoid-
ed by using a manual valve to get the non-condensables
out of the heating chamber.

Let’s assume that we are interested in implementing
a graphical simulation environment that allows the
user to change the operating conditions (for example,
set point, disturbances or tuning parameters of the
controller) and to observe the results of the changes as
a function of time.

3.1 Interface Generation
Once a simulation program (source code in a file with
a .csl extension) of the given system has been written,
the following steps must be followed in order to de-
sign the graphical interface of PConfig:
1. First, after starting PConfig, the user, using the op-

tion ACSL of the main bar, should introduce a path
to indicate where ACSL is stored, and load the
ACSL project that will support the interface func-
tionality. From this point, the application analyzes
the command file of the ACSL project, and the
name of the procedures and variables in the simu-
lation are available for linking to menu items and
controls of the interface.

2. Then the user must load a previously drawn bitmap
of the heat exchanger and its temperature control
loop, using the button “Schematic” of the PConfig
window. The bitmap appears in the interface gen-
erator tool with its final aspect, and can be used as
reference for the location of the remaining controls.
Figure 2 shows the appearance of the graphical in-
terface at this point. Note the menu bar and toolbar
out of the frame of this window, with the rest oc-
cupied by the bitmap with its basic aspect.

3. The next step, having the design in mind, is to place
elements that allow the user to modify the set point,
disturbances, etc., and to observe the results of the
simulation. For instance, the user can select a scroll-
bar control that will open a related window and
associate it to the variable of input flow of juice.
For this purpose the “Examine” button will provide
a list of the variables in the simulation. Once this is
done, PConfig will read the initial value of the
variable representing the input flow of juice in the
ACSL project that will be the default value in the
scrollbar. Next, the user must introduce minimum
and maximum acceptable values for this variable,
as well as a representative name, such as “Flow of
juice, m3/h.” Then the user must choose a location

in the window for the configured scrollbar with
the mouse, normally beside the representation of
the input pipe of juice in the bitmap.
The programmer can also place scrollbars for the
temperature of the input juice, and set point of the
output temperature controller. These scrollbars
will allow the user to modify the values of the cor-
responding variables in the simulation within the
selected range, using the mouse with the scrollbar
in the usual way.
Similarly, it is possible to define a button in order
to manipulate the tuning parameters of the PID
controller. In this case, selecting the PID option of
the PConfig window will open a window like the
one shown in Figure 3. In that window, the vari-
ables representing the gain, integral and derivative
times can be defined, with the same procedure de-
scribed above, as well as other details of this par-
ticular element such as initial state (auto/man),
name, controller type (continuous/ discrete), etc.
This button, given an appropriate name and placed
on the controller of the schematic, can be identified
easily by the user.
There are other types of parameters that the user
could modify, for example, the number of pipes
inside the heat exchanger. As was said above, the
interface generator tool offers the possibility of as-
sociating this parameter to a button in the graphi-
cal environment; when the user presses the button,
a window appears that shows the actual value of
it, and the range of possible values that it can re-
ceive. The possibility of “hiding” certain param-
eters adds modularity to the simulation environ-
ment. The designer of the interface can do this by
selecting the “button” option in the toolbar, and
choosing the kind of element he wants to associate
to it. Another example of this is the valve type: the

Figure 3. Scrollbar dialog window

OCTOBER 1999 SIMULATION 211

user can select between different types of valves,
checking the corresponding radio button associ-
ated to it.

4. Besides changing some numerical values, the de-
signer might be interested in giving information
about some particular aspects of the simulation
using a text window. This can be achieved by first
selecting a “button” in the toolbar at the left-hand
side of the PConfig window, and then the option
“Text” in the associated window. This will open
another window where the desired text can be
typed. The button will be given a name and each
time the button is activated, the text will display.

5. The last step is to select the experiments that the
user can use later. These experiments correspond
with procedures defined in the ACSL command
file of the project. There are two ways of imple-
menting them: either associating them to a button
using the corresponding option, or including them
in the main bar, using the “Select experiments” op-
tion. An example of a procedure often associated
to a button is one dedicated to plotting the results
of an experiment. A “browse” button allows the
user to select the experiments that will be included
in the graphical interface. Finally, the design must
be stored in a file with a .pcf extension, using the
“Save” option of the main bar.
The final result in the configuration of the interface

is shown in Figure 4. Notice the “M” buttons beside
the graphical controllers. Pressing them makes it pos-
sible to move the controls to different positions dur-
ing the design session, but they will not appear in the
user interface at execution time.

The same simulation code can be used for a differ-
ent purpose, for instance, for studying the effect of
changing the design parameters (as sizes or materi-
als). In this case, a different user interface should be
designed and generated, showing only what is rel-
evant for this particular use.

3.2 Running the Simulation
Once the simulation designer ends the graphical inter-
face, he must save it on disk. The interface description
file is a text file that describes it in terms of elements,
their names and main properties, the position on the
screen of the graphical controls, and so on, and can be
edited separately in order to make minor changes if
necessary.

To run the simulation, the user can start SimuModu
and load the interface description file that contains
the interface developed above (see Figure 4). Then the
ACSL project will be run, a window with the same
interface will appear, and a communication channel
with ACSL will be opened.

Then the user can start to play with the simulation,
using the scrollbars, buttons, etc., to make changes in
the working conditions (always into the range allowed
by the interface designer), and seeing the results pro-
vided by ACSL. For instance, the user can change the
value of the temperature set point with the correspond-
ing scrollbar, start the simulation, and see in graphical
form the evolution of the main variables involved (for
example, output temperature, set point, or valve open-
ing) just by pressing a button (see Figure 5). The trends
of these variables can be seen beside the schematic of
the process, with no need to know the ACSL experiment
language. In this concrete case, a step from 104.6ºC to
96.5ºC is imposed in the set point for the temperature
of the juice at the output of the heat exchanger, and
the values of the controlled and manipulated variables
offered by the simulation are represented.

4. Conclusion
This paper introduces a software tool for using the
ACSL-based simulation models in a convenient way,
unbinding the model itself and its use, and comple-
menting the module of experiments in the simulationFigure 4. Final aspect of the interface

Figure 5. Running the simulation:
note the graphic plot provided by ACSL

212 SIMULATION OCTOBER 1999

language. The proposed tool is suitable for those
interested in producing simulation programs oriented
to end-users who are not familiar with the simulation
language or the details of the project implementation.
In particular, it allows the generation of training sim-
ulators for educational and other fields. It consists of
two main software tools: PConfig, oriented to the gen-
eration of the interfaces by the programmer of the
simulation, and SimuModu, which implements the
user simulation environment.

5. References
[1] Elmquist, H., Brück, D. and Otter, M. Dymola, Dynamic Model-

ing Laboratory User’s Manual, Version 3.0, 1996.
[2] Acebes, L.F. “SIMPD, Sistema Inteligente de Modelado de

Procesos Dinámicos.” PhD Thesis, Universidad de Valladolid,
1996.

[3] ACSL, Graphic Modeler Users Guide for Windows 3.1, 95 and NT,
Version 4.2, MGA Software, 1996.

[4] Petzold, C. Programming Windows, Fifth Edition, Microsoft
Press, 1999.

6. Additional Reading
Cellier, F.E. Continuous Systems Modeling, Springer Verlag, Berlin,

1991.
de Prada, C. Modelado y Simulación en Control de Procesos, Dpto.

Informática, Universidad Autónoma de Barcelona, Spain,
1990.

ACSL, Reference Manual, Version 11, MGA Software, 1995.
Pressman, R.S. Software Engineering: A Practitioner’s Approach, 4th

Edition, McGraw-Hill, New York, 1997.

Miguel A. García is a Teaching As-
sistant of Robotics and Control
Technology at the University of
Valladolid, Spain. His areas of re-
search are distributed control, inte-
gration, real-time systems and sim-
ulation environments. He was a
Visiting Researcher at the Fraun-
hofer Institute in Erlangen, Ger-
many. Dr. García received a degree
in Physics (Electronics) and a PhD
from the University of Valladolid
with highest honors. He is a Re-

searcher at the Sugar Technology Center (CTA), where he
has developed SICODI, a complete configurable distributed
control system implemented in C++ under Windows NT.
As his main project at the Center, he participates in the de-
velopment of the Training Simulator for operators of whole
beet-sugar plants.

Diego R. Llanos is currently a
Teaching Assistant of Computer
Architecture in the Department of
Computer Science, University of
Valladolid, Spain. He obtained his
Bachelor’s of Engineering and his
Master’s of Engineering degrees in
Computer Science from the Univer-
sity of Valladolid, Spain, in 1994
and 1996, respectively. He was a
Visiting Researcher at the Computer
Science Department at the Univer-
sity of Illinois at Urbana-Champaign,

USA. His research interests include heterogeneous process
communications, parallel and distributed simulation, distrib-
uted virtual shared memory systems, cache-only memory
architectures, and coherence maintenance protocols in dis-
tributed cache environments. He is a member of the Insti-
tute of Electrical and Electronics Engineers and the Associa-
tion for Computing Machinery.

César de Prada is a Professor at the
University of Valladolid, Spain,
with the Department of Systems
Engineering and Automatic Control.
He obtained his degree in Physics
(Electronics) in 1972 and, later, his
PhD at the University of Valladolid.
In 1987 he was appointed Full Pro-
fessor in the Autonomous Univer-
sity of Barcelona, Spain, Depart-
ment of Computer Science, where
he directed the System Engineering
Division. His research interests are

centered on modeling and simulation, identification, and
model predictive control. At present he is a member of the
Spanish Commitee of IFAC, where he chairs its Simulation
Technical Group.

