
Finding a way to use several kernels at the same time without developing parallel code is a very difficult task.
In this work we focus on how to use speculative parallelization in order to run sequential algorithms in parallel
(hopefully, decreasing the running time!) We focus on randomized incremental constructions, known to have
competitive running times, and also known to be difficult (if not impossible) to parallelize by hand.

We show that, using specialized mechanisms that distribute the work-load among processors carefully, we can
speedup the running time up to 6×.

Compiler-based automatic parallelization fails to
parallelize iterations in a loop if there is any suspi-
cion that there might be some dependences among
iterations.
Speculative parallelization [1] is, on the other hand,
a very optimistic mechanism: Loops are executed
in parallel until a dependence violation is found. In
this case, all threads working on wrong data will
be squashed and reexecuted.

Randomized Incremental Algorithms share some
properties that make them specially interesting for
speculative parallelization: Hard to parallelize, the
incremental paradigm implies that every iteration
has to rely on the results of the previous one. For-
tunately, since the dependence pattern of these al-
gorithms is known, we are able to estimate the
number of dependences and choose an appropiate
block size.

We have used four different standard inputs: two
sets of 10 and 40 million points randomly dis-
tributed inside a square (resp. a disc). These sets
have been generated and shuffled with CGAL [5].
The experiments were performed on a Sun Fire 15K
symmetric multiprocessor (SMP), equipped with
900 MHz UltraSparc III processors, with 1 GByte
of shared memory per processor.

We have executed in parallel three randomized in-
cremental algorithms: Clarkson et al.’s for the 2D
Convex Hull problem [2], Welzl’s for the 2D Small-
est Enclosing Circle problem [3] and the one in [4]
for the Delaunay triangulation.

4 8 12 16 20 24 28

Processors

1

2

3

4

5

6

S
p
ee

d
u
p
s

2D Hull, disc, 106 points

2D Hull, disc, 4·106 points

0.5

1.0

1.5

4 8 12 16 20 24 28

Processors

S
p
ee

d
u
p
s

2D SEC, disc, 106 points

2D SEC, disc, 4 · 106 points

0.5

1.0

1.5

4 8 12 16 20 24 28

Processors

S
p
ee

d
u
p
s

2D Del, disc, 106 points

1

2

3

4

5

6

4 8 12 16 20 24 28

Processors

S
p
ee

d
u
p
s

2D Hull, square, 106 points

2D Hull, square, 4 · 106 points

[1] M. Cintra, D. R. Llanos. Design space ex-
ploration of a software speculative parallelization
scheme. IEEE Transactions on Parallel and Dis-
tributed Systems, 16(6):562–576, 2005.

[2] K. L. Clarkson, K. Mehlhorn, R. Seidel. Four
results on randomized incremental constructions.
Computational Geometry: Theory and Applica-
tions, 3(4):185–212, 1993.

[3] E. Welzl. Smallest enclosing disks (balls
and ellipsoids). New Results and New Trends
in Computer Science, H. Maurer, ed., 359–370,
1991.

[4] M. de Berg, M. van Kreveld, M. Over-
mars, O. Schwarzkopf. Computational Geome-
try. Springer, 2000.

[5] CGAL, Computational Geometry Algorithms
Library. http://www.cgal.org

Sequential Speculative 1 Speculative 2

Thread 1 Thread 2 Thread 1 Thread 2

Squashes happen
when semantic
order is violated!

1 4

2 3

1 4

2 3

5 5

6 6

7 7

11

8

12

12

12

8
9

10

10

5

6

7

1 4

2 3

11 8

9

11

10

9

8

9

10

11

12

commit commit

commit

commit

commit

commit

D. R. Llanos (UVa) D.Orden (UAH) B. Palop (UVa)

Current CH Current CH


