SPECULATIVE PARALLELIZATION OF POINTER-BASED APPLICATIONS

Adrian Tineo, Dpt. Computer Architecture, University of Malaga 7 '
T I-*I*PC-Eurjopa Marcelo Cintra, and School of Informatics, University of Edinburgh)@A (G informatics

Usvencion

Diego R. Llanos Dpt. Computer Science, University of Valladolid
MOTIVATION: KEY FEATURES:

*Pointer-based applications pose a challenge for *We extend an all-software speculative parallelization engine

OPTIMIZATIONS:

*We can choose coarse- or fine-granularity of heap locations

(example is for fine-granularity)
*The speculative heap can be reduced with help from

dependence detection in current parallelizing compilers based on sliding window to support pointer-based applications
*Speculative parallelization is useful for running in parallel *We create a scratch heap for each window slot, which provides a

compile-time analysis:

code sections that: working space for threads

» cannot be fully analyzed by the compiler, or *3 tables provide the needed support for scratch heap allocation, pairipy el

* exhibit a small amount of dependencies address translation and tracking possible conflicts between accesses *def-use chains analysis

eshape analysis

Example program . s . . . - - - -
Speculatlve parallellzatlon engine with Window slot 1 Window slot 2 Window slot 3 Window slot 4
. Address | Size | Type User heap | Type | Scratch | Scratch | Seratch | Seratch Scratch State Scratch State Scratch | State Scratch State
, support for pointer-based programs o . heap 1 | heap? | heap3 | heap 4 heap 1 heap 2 heap 3 heap 4
// Pointer-based data structures (version for 4 window slots and 2 processors) oG " P u() ptr SI(h) |s2(1) |S3(1) | S4) S1(1) ExpLdMod | 52(1) NotAcc S3(1) |NotAce |Sd(1) NotAcc
Stril:;tdt;fa' U(z) " pr U@ pir S12) [S22) [S3(2) |S42) S12) NotAcc s22) |ExpLd $32) [NotAcc [S4(2) NotAce
TR © *At the start of the loop, a new scratch heap is created Ut) " i Uu@) pir s13) [s23) [s3@) [s40) S13) NotAcc $23) | NotAcc $33) |ExpLd__[s403) NotAcc
} ’ for every window slot, based on the current user &) P U pir SI4) |s2¢4) [S3@) | sS4 S14) NotAce S24) | NotAce S34) |NotAcc |s44) NotAce
h ing the HAT ol 2o U non-ptr |S1(5) |S2(5) [S3(5) | S4G) s1(5) ExpLdMod [S2(5) | NotAce $3(5) |NotAce [s4(5) NotAce
eap, using the . u(6) 4 |pr
struct t1 ** arr; u©) e SI6) |S26) |S3(6) |S4(6) S1(6) ExpLd 52(6) | NotAcc $3(6) |NotAce | S4(6) NotAce
= A . . u@ 2| non-pir um non-pr |SI(7) |S2(7) [S3(@) | S4(D) S17) NotAce 527 |ExpLaMod [83@) [Expld [s4(D) NotAce
, *Each available thread takes the first free window slot u®) 4 |pr L L
// Data structure creation . U®) ptr SI8) |S28) |S3(®) |S4@®) S1(8) NotAcc 52(8) NotAcc S3(8) |NotAcc | S4(8) NotAce
and runs its block of statements. L(C) 2 _|meme u©) nonptr [S19) [5209) |83 [S49) S19) NotAce S29) | NotAce $39) [NotAcc [S4(9) NotAcc
u(0) 4 |pr uio) |p S1(10) |s2(10) [S3(10) |s4(10) :
// Speculativel llelized | *Scratch heaps are created empty. Values are fetched udn 2| non-pir L0 SutAce S0 Nohee S0 Rodee MO Mo
peculatively parallelized loop . ¢ ucn non-ptr | SI(11) |S2(11) |S3(11) |S4(11) S1(11) NotAcc $2(11) | NotAce S3(11) |NotAcc | S4(11) NotAcc
for(i=0; i<4; i++){ from the user heap as needed by load operations, L) 4 lpr U2 [pr S112) [s2012) [$3(12) [s412) S112) Nothce S212) | NotAce S3(12) |NotAce | S412) | Nothce
ptr = arr[i]; i i HAT (Heap Allocation Table): i :
val = ptr->data; using the HTT for translation. B (. faap } oca.lonv ghle) HTT (Heap Translation Table): N AST (Access State Table): keeps track of accesses to scratch heaps.
P 3 p
) registers allocated pieces of translates the user heap addresses to the different - . b 9
ptr->data = val + 2; . . memory in the heap, their size ccratch heaps Possible states are: NotAcc, not accessed; ExpLd, read from user heap;
arrli] = ptr->nxt: .Heap accesses are recorded in the ASTs with no need ’ scratch heaps Mod, modified; ExpLdMod, first read from user heap then modified
p ’ . . . and type. p
} for memory fences. If a conflict arises, the offending
thread is squashed. [TTTTTTTTTTTTT s omnTomoomooy 2 '
1 ' 1
N ative swindow slofs that are d e | Thread 2, P Thread 1, :
*Non-speculai : ! 1 . !
speculative window slots that are done can be | | less speculative thread i | more speculative thread :
committed to the user heap, using the HTT and AST. | ____________ - ____________________________. o L L T !
5 o s
Window slot 1 : Window slot 2 P Window slot 3 ; Window slot 4
1 ! 1 H
User heap Scratch heap 1 i Scratch heap 2 . Scratch heap 3 ! Scratch heap 4
1 ! 1 1
1 q i 1
S1(1) S1(2) S1(3) S1(4) \ g \ |
Ul) U@ UG) UM . : E2OROICRS2C)) E : S3(1) S3(2) S33) S34) : S4(1) S4Q2) S43) S4@)
arr SI ——|s1(7
arr ues) |um) | ua |ue) - (: Pl Jamss . $3) : arr S4— .
: puSI i ptr_S3 :
1 1
6] (] G BEa L0 [T [T | EEEmEEE | T T [T
1 1
S1(5) S1(6) S1(7) S1(8) S1(9)S1(10)SI(11)S1(12) 1 i 1
UG) U UT) UE) UE) U10)UA1)U(12) : SHEDEHE) SPImEHE) SRR QNI 5 : S3(5)S3(6) S3(7) S3(8) $3(9) S3(10) S3ADSID) | S4(5) S4(6) S4(7) S4(8) S4(9) SA(10) S4(11)S4(12)
E o s
- N ‘Window slot state: DONE E ‘Window slot state: 0 E Window slot state: SQUASHED i Window slot state: FREE
1 .
10 ptr_S1 =arr_S1[0]; 1 ! H T
Read-only pointers (such as arr) are 1 val_S1 =ptr_S1 -> data; 2 a g 0
translated to each scratch heap address tr_S1->data = val_S1 +2; H T H i
12 p ; b :
space (arr_S1, arr_S2, ...). 13 arr_S1[0] = ptr_S1->nxt; ! ptr_S2 = arr_S2[1]; d ' 3 Conflict: thread 1 reads S3(7)
Variables which are first written then read t4 ' val_S2 = ptr_S2 -> data; T ! ptr_S3 =arr_S3[2]; 1 but S2(7) was modified in a
(suc_h as ptr or val?, 15 ! ptr_S2->data = val_S2 + 2; E ! val_S3 = ptr_S3 -> data; E less speculative window slot
are made private to each window slot time g ! g ! both S3(7) and S2(7) refer to U(7)),
1 1, 1

(ptr_S1,val_S1, ptr_S2, val_S2, ...) Thread 1 must be squashed.

