
Window slot 4
Scratch heap 4

Window slot 3
Scratch heap 3

Window slot 2
Scratch heap 2

SPECULATIVE PARALLELIZATION OF POINTER-BASED APPLICATIONS

School of Informatics, University of EdinburghMarcelo Cintra, and
Dpt. Computer Science, University of ValladolidDiego R. Llanos

Dpt. Computer Architecture, University of MalagaAdrian Tineo,

arr

U(1) U(2) U(3) U(4)

U(5) U(6) U(7) U(8) U(9) U(10) U(11) U(12)

U(7) U(9) U(11) 01 2 3 4

U(5) U(7) U(7) U(9)
arr_S1

S1(1) S1(2) S1(3) S1(4)

S1(5) S1(6) S1(7) S1(8) S1(9)S1(10)S1(11)S1(12)

S1(7)3

S1(7)

ptr_S1 = arr_S1[0];
val_S1 = ptr_S1 -> data;
ptr_S1->data = val_S1 + 2;
arr_S1[0] = ptr_S1->nxt;

arr_S2

S2(1) S2(2) S2(3) S2(4)

S2(5) S2(6) S2(7) S2(8) S2(9)S2(10) S2(11)S2(12)

4

S2(7)

ptr_S2 = arr_S2[1];
val_S2 = ptr_S2 -> data;
ptr_S2->data = val_S2 + 2;

ptr_S1 ptr_S2
arr_S3

S3(1) S3(2) S3(3) S3(4)

S3(5) S3(6) S3(7) S3(8) S3(9) S3(10) S3(11) S3(12)

2

S3(7)

ptr_S3 = arr_S3[2];
val_S3 = ptr_S3 -> data;

ptr_S3
arr_S4

S4(1) S4(2) S4(3) S4(4)

S4(5) S4(6) S4(7) S4(8) S4(9) S4(10) S4(11) S4(12)

MOTIVATION:
•Pointer-based applications pose a challenge for
dependence detection in current parallelizing compilers

•Speculative parallelization is useful for running in parallel
code sections that:

• cannot be fully analyzed by the compiler, or
• exhibit a small amount of dependencies

KEY FEATURES:
•We extend an all-software speculative parallelization engine
based on sliding window to support pointer-based applications
•We create a scratch heap for each window slot, which provides a
working space for threads
•3 tables provide the needed support for scratch heap allocation,
address translation and tracking possible conflicts between accesses

User heap
Window slot 1
Scratch heap 1

Window slot state: DONE Window slot state: RUNNING Window slot state: SQUASHED Window slot state: FREE

Thread 2,
less speculative thread

Thread 1,
more speculative thread

OPTIMIZATIONS:
•We can choose coarse- or fine-granularity of heap locations
(example is for fine-granularity)
•The speculative heap can be reduced with help from
compile-time analysis:

•pointer analysis
•def-use chains analysis
•shape analysis

time

t0
t1
t2
t3
t4
t5

// Pointer-based data structures
struct t1{

int data;
struct t1 * nxt;

}

struct t1 ** arr;

// Data structure creation
[...]

// Speculatively parallelized loop
for(i=0; i<4; i++){

ptr = arr[i];
val = ptr->data;
ptr->data = val + 2;
arr[i] = ptr->nxt;

}

ptr4U(12)

non-ptr2U(11)

ptr4U(10)

non-ptr2U(9)

ptr4U(8)

non-ptr2U(7)

ptr4U(6)

non-ptr2U(5)

ptr4U(4)

ptr4U(3)

ptr4U(2)

ptr4U(1)

TypeSizeAddress

HAT (Heap Allocation Table):
registers allocated pieces of
memory in the heap, their size
and type.

S4(12)

S4(11)

S4(10)

S4(9)

S4(8)

S4(7)

S4(6)

S4(5)

S4(4)

S4(3)

S4(2)

S4(1)

Scratch
heap 4

S3(12)

S3(11)

S3(10)

S3(9)

S3(8)

S3(7)

S3(6)

S3(5)

S3(4)

S3(3)

S3(2)

S3(1)

Scratch
heap 3

S2(12)

S2(11)

S2(10)

S2(9)

S2(8)

S2(7)

S2(6)

S2(5)

S2(4)

S2(3)

S2(2)

S2(1)

Scratch
heap 2

S1(12)

S1(11)

S1(10)

S1(9)

S1(8)

S1(7)

S1(6)

S1(5)

S1(4)

S1(3)

S1(2)

S1(1)

Scratch
heap 1

ptrU(12)

non-ptrU(11)

ptrU(10)

non-ptrU(9)

ptrU(8)

non-ptrU(7)

ptrU(6)

non-ptrU(5)

ptrU(4)

ptrU(3)

ptrU(2)

ptrU(1)

TypeUser heap

HTT (Heap Translation Table):
translates the user heap addresses to the different
scratch heaps

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

State

S4(12)

S4(11)

S4(10)

S4(9)

S4(8)

S4(7)

S4(6)

S4(5)

S4(4)

S4(3)

S4(2)

S4(1)

Scratch
heap 4

Window slot 4Window slot 3Window slot 2Window slot 1

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

ExpLd
NotAcc

NotAcc

NotAcc

ExpLd
NotAcc

NotAcc

State

S3(12)

S3(11)

S3(10)

S3(9)

S3(8)

S3(7)
S3(6)

S3(5)

S3(4)

S3(3)
S3(2)

S3(1)

Scratch
heap 3

NotAcc

NotAcc

NotAcc

NotAcc

NotAcc

ExpLdMod
NotAcc

NotAcc

NotAcc

NotAcc

ExpLd
NotAcc

State

S2(12)

S2(11)

S2(10)

S2(9)

S2(8)

S2(7)
S2(6)

S2(5)

S2(4)

S2(3)

S2(2)
S2(1)

Scratch
heap 2

NotAccS1(12)

NotAccS1(11)

NotAccS1(10)

NotAccS1(9)

NotAccS1(8)

NotAccS1(7)

ExpLdS1(6)
ExpLdModS1(5)
NotAccS1(4)

NotAccS1(3)

NotAccS1(2)

ExpLdModS1(1)

StateScratch
heap 1

AST (Access State Table): keeps track of accesses to scratch heaps.
Possible states are: NotAcc, not accessed; ExpLd, read from user heap;
Mod, modified; ExpLdMod, first read from user heap then modified

Example program

Read-only pointers (such as arr) are
translated to each scratch heap address

space (arr_S1, arr_S2, ...).
Variables which are first written then read

(such as ptr or val),
are made private to each window slot

(ptr_S1, val_S1, ptr_S2, val_S2, ...)

Conflict: thread 1 reads S3(7)
but S2(7) was modified in a
less speculative window slot

(both S3(7) and S2(7) refer to U(7)).
Thread 1 must be squashed.

Speculative parallelization engine with
support for pointer-based programs
(version for 4 window slots and 2 processors)

•At the start of the loop, a new scratch heap is created
for every window slot, based on the current user
heap, using the HAT.

•Each available thread takes the first free window slot
and runs its block of statements.

•Scratch heaps are created empty. Values are fetched
from the user heap as needed by load operations,
using the HTT for translation.

•Heap accesses are recorded in the AST, with no need
for memory fences. If a conflict arises, the offending
thread is squashed.

•Non-speculative window slots that are done can be
committed to the user heap, using the HTT and AST.

