
Encapsulated synchronization and load-balance
in heterogeneous programming

Yuri Torres, Arturo Gonzalez-Escribano, and Diego Llanos

Departamento de Informatica, Universidad de Valladolid
{yuri.torres,arturo,diego}@infor.uva.es

Abstract. Programming models and techniques to exploit parallelism
in accelerators, such as GPUs, are different from those used in traditional
parallel models for shared- or distributed-memory systems. It is a chal-
lenge to blend different programming models to coordinate and exploit
devices with very different characteristics and computation powers. This
paper presents a new extensible framework model to encapsulate run-
time decisions related to data partition, granularity, load balance, syn-
chronization, and communication for systems including assorted GPUs.
Thus, the main parallel code becomes independent of them, using inter-
nal topology and system information to transparently adapt the com-
putation to the system. The programmer can develop specific functions
for each architecture, or use existent specialized library functions for dif-
ferent CPU-core or GPU architectures. The high-level coordination is
expressed using a programming model built on top of message-passing,
providing portability across distributed- or shared-memory systems. We
show with an example how to produce a parallel code that can be used
to efficiently run on systems ranging from a Beowulf cluster to a machine
with mixed GPUs. Our experimental results show how the run-time sys-
tem, guided by hints about the computational-power ratios of different
devices, can automatically part and distribute large computations across
heterogeneous systems, improving the overall performance.

1 Introduction

Currently, heterogeneous systems provide computing power using mixed types of
devices and architectures, such as CPU-cores, GPUs or FPGAs [6, 10]. General-
Purpose Programming for devices such as GPUs (GP-GPU) has been simplified
by the introduction of higher level data parallel languages, such as CUDA or
OpenCL. However, to obtain efficient codes the programmer needs knowledge
about the underlying target architecture, and how it relates to the programming
model. The intrinsic complexity of the code generation for heterogeneous sys-
tems increases every time we add any different hardware device. Thus, it is an
important goal to devise abstractions and tools that allow the programmer to
blend the different programming models involved, also simplifying the tasks of
data-distribution and device coordination across an heterogeneous system.

In previous works we presented Hitmap [3, 5], a library to support both data
and task parallelism in distributed-memory environments, through manipulation

2

and mapping of hierarchical tiling arrays Hitmap features an extensible plug-in
system that allows the programmer to choose among different data-partition
and distribution techniques, or easily program and reuse new ones. It provides
functionalities for tile communication, allowing to build complex and scalable
communication patterns in terms of the results of the mapping functions.

This paper presents a new framework model to encapsulate run-time deci-
sions related to data partition, granularity, load balance, synchronization, and
communication for heterogeneous systems. It introduces a new abstraction layer
in the conceptual structure of Hitmap. More precisely, in this work we present
the following contributions:

(1) We propose a new plug-ins layer to encapsulate the decisions related
to map tile computations to specific accelerator devices. We discuss how load-
balancing techniques relate to the different plug-ins layers.

(2) We introduce a high-level API that selects the proper kernel for a given
device, and hides all details of synchronization and communication between log-
ical processes and accelerators.

(3) We discuss an implementation of this framework model currently sup-
porting distributed-memory clusters of multicore CPUs and NVIDIA GPUs.

(4) We show with an example how to produce a single parallel code that
adapts the computation to efficiently run on systems ranging from a Beowulf
cluster to a machine with mixed GPUs. Our experimental results show how the
run-time system can automatically part and distribute large computations across
very different devices, improving the performance of a homogeneous approach.

The rest of the paper is organized as follows. Section 2 discusses some previous
approaches and their limitations. Section 3 introduces our conceptual approach.
Section 4 describes the architecture of our solution and the design problems
faced. Section 5 shows a case study. In section 6 we present a performance
evaluation of the case study with a load-balancing strategy in different scenarios.
Finally, section 7 discusses some conclusions and future work.

2 Related work

Several research groups are working in the problem of simplifying heterogeneous
programming without sacrificing hardware accelerators performance.

Quintana-Ort́ı et al. [11] presented the FLAME programming model. It focus
on programming dense linear algebra operations on complex platforms, including
multicore processors, and hardware accelerators such as GPUs, and Cell B.E.
FLAME abstracts the target accelerator architecture. It divides the parallelism
in two levels, the first one considering each accelerator device as a computation
unit (coarse-grain parallelism), and the second one considering each hardware
accelerator as a set of multiple cores (fine-grain parallelism). They rely on the
BLAS library to exploit this second level. Besides the limited application domain,
global configuration parameters are fixed, while it has been shown that it is
important to adapt them to the particular thread memory access pattern [14].

3

MCUDA [13] is a framework to mix CPU and GPU programming. In MCUDA
it is mandatory to define kernels for all available devices. No data distribution
policy is provided, and the toolkit can not make any assumption about the rel-
ative performance of the supported devices. Introducing any of these features
would involve a redesign of the framework. Other works [8, 15] try to exploit at
the same time CPU and GPU devices, attempting to obtain good load balancing
with the help of heuristics. Data structures partition and manipulation is not
abstracted and they do not support flexible mechanisms to add new partition
and layout policies. Finally, papers as [9, 2] use MPI and CUDA parallel pro-
gramming model in order to exploit all GPUs devices in heterogeneous systems.
However, the authors do not abstract the use of both models and the target
underlying hardware details.

Chapel [1], a PGAS language, proposes a transparent plug-in system for do-
main partitions in generic systems. The PGAS approach tries to hide the com-
munication issues to the programmer. Thus, efficient aggregated communications
can not be directly expressed, and most of the times can not be automatically
derived from generic codes. Contributors to Chapel are currently working in
prototyped layouts to generate array allocations, data transfers, and parallel op-
erations in CUDA. However, they do not offer a different layer for accelerator
partition policies, or synchronization among different CPU and GPU devices.

3 Conceptual approach

Heterogeneous systems can be built with very different hardware devices (CPU-
cores, accelerators) in several nodes interconnected in a distributed environment.
Portable codes for such systems should implement parallel algorithms abstract-
ing them from the mapping activities that adapt the computation to the plat-
form. Thus, the programming model should encapsulate the mapping techniques
and the CPU/accelerator synchronization with appropriate abstractions.

We propose a programming framework based on: (1) Several layers of plug-
in modules that encapsulate the mapping functions; and (2) functionalities to
build the coordination (synchronization and communication) structures of the
algorithms, which are transparently adapted at run-time in terms of the results
of the mapping functions.

Hitmap [3, 5] is a parallel programming library where partition policies are
implemented through a set of plug-ins with a common interface. The program-
mer may select, or change the chosen plug-in in the program code, using only
its name. Hitmap automatically associates logical processes to processing nodes.
The data-partition plug-in interface returns an object containing information
about which parts of the data are mapped to the logical process, taking into
account the neighbourhood relationships of a virtual topology. Coordination
patterns are built with high-level point-to-point or collective tile communica-
tions, using the results stored in the map objects. If partition details change,
the communication structure will reflect the changes automatically. Thus, the

4

Data distribution and layout

Coordination of processes

Partition for local device
(Core, GPU, ...)

Coordination CPU/Accelerator

Memory access patterns C
o

o
rd

in
at

io
n

 le
ve

ls

M
ap

p
in

g
 le

ve
ls

Fig. 1. Mapping/Coordination levels. White boxes show the original Hitmap approach.

coordination among processes may be programmed in an abstract form, inde-
pendently of the target system topology.

Our work extends the Hitmap approach. Figure 1 shows the different mapping
levels of the original Hitmap, and our proposed extension. Hitmap has a single
level of data-partition and layout. It is designed to encapsulate coarse-grain
mapping techniques, appropriate for distributed-memory nodes.

We propose to add a second, middle-grain partitioning level that allows to
adapt the local part of data to the specific characteristics and architecture of
the actual device associated to the logical process by the virtual topology. The
programmer naturally introduces a third level of mapping inside the kernel code
by implementing specific thread-level memory access patterns.

The second-level mapping plug-ins use information about the device and the
global memory access pattern of the kernel, to generate domain partitions that
exploit locality, maximum occupancy, coalescence, or other device properties that
affects performance. The result is an object encapsulating information about a
partition of the local computation in a grid of blocks. The same abstraction can
be used for techniques of very different nature: CPU-cores, GPUs, or other kind
of accelerator. Finally, the coordination, data movement between the CPU and
accelerators, and kernel launch, can be automatized by a run-time system, using
the second-level partition results. Padding can be automatically added to tiles
if needed to properly align data to the memory banks of the particular device,
alleviating memory bottlenecks, and improving cache use.

This approach can be used together with techniques to automatically gener-
ate kernels for different architectures from common specifications (see e.g. [12,
4]), avoiding the current need to supply optimized kernels for all the archi-
tectures that compose the target heterogeneous system, By encapsulating the
CPU/accelerator coordination in a transparent system, we also allow to inte-
grate as kernels libraries specifically optimized for a given architecture, such as
CUBLASfor GPUs. We also promote the abstraction of hierarchical tiles to spe-
cific programming languages for accelerators (in this work we use CUDA as a
proof of concept, doing this exercise for more generic languages such as OpenCL
is straightforward). Thus, we introduce a common array abstraction, simplifying
the porting of code between CPU cores and accelerators.

5

This conceptual framework has been implemented adding new functionalities
to the Hitmap library, without modifying the original structure. This imposes a
minimal impact on the original Hitmap codes. The original Hitmap code takes
care of the coordination of processes in the higher level. The new extension
takes care of adapting the local parts to the device automatically assigned to
the logical process. Plug-ins with new mapping techniques may be included and
tested without modifying the framework implementation.

4 Design and implementation

We have developed a prototype implementation of this framework extending
Hitmap. In this section we describe some design and implementation considera-
tions, and problems solved.

The original Hitmap library was written in C language. Nevertheless, it has
and object-oriented design, and future releases could provide a neater C++
interface. Hitmap is designed to manipulate hierarchical tiling arrays. The Hit-
Shape class implements tile domains. A shape object represents a subspace of
array indexes defined as an n-dimensional rectangular parallelotope. Its limits
are determined by n Signature objects. Each Signature is a tuple of three integer
numbers (begin, end, and stride), representing the indexes in a domain axis.

Hitmap defines an API for data-partition modules, named Layout plug-ins.
It defines a wrapper function that links the main code with the chosen plug-
in. The Layout plug-ins receive as parameters: (1) a virtual topology object
(HitTopology), (2) a domain to be mapped (a HitShape object), and (3) optional
parameters for the specific technique. They return a HitLayout object containing
a local domain (another HitShape), information about neighbor relations, and
other mapping details. These objects are used as parameters in the constructors
of HitComm objects that express tile communications across logical processes.

Partitions We follow the same approach for the new second-level Partition
plug-ins. The wrapper function is similar, but also selects different implementa-
tions of the same plug-in name depending on the architecture of the target de-
vice. Our current wrapper differences between CPU-cores, and different Nvidia’s
CUDA supported architectures.

The Hitmap initialization function gathers information about the particular
system devices and builds an internal physical topology object. The virtual topol-
ogy constructors attach each logical process to one device, storing its informa-
tion. The Partition plug-ins receive as parameters: (1) the attached device data;
(2) a HitLayout object with information of the local domain to be mapped. Op-
tional parameters indicating the memory-access patters of the low-level threads
can be supplied. The result is a new HitPartition containing information about
block shapes, grid sizes, and information to generate tile paddings if needed.

As example, we have implemented a trivial partition plug-in. The CPU-cores
implementation simply creates a grid with one element containing the full local
shape. The GPU implementations split the local domain in rectangular blocks

6

with 1 × 512 threads. This is appropriate for computations that access data
linearly in both Nvidia’s architectures [14]. For specific grid sizes an extra block
is added at the end of each row to alleviate GPU memory contention effects.
More sophisticated policies can be integrated as new plug-ins.

Assigning several logical processes to the same device We have intro-
duced a new technique in the virtual topology modules of Hitmap. It allows to
assign more than one logical process to the same device. It has two purposes.
As a potential load-balancing technique (see section 6), and to transparently use
accelerators to perform large computations whose data do not directly fit in the
accelerator global memory. Thus, the full computation is done in smaller parts,
coordinated by the Hitmap upper-level communication structures.

Kernel definition and launch We provide a macro function to define with a
common interface the function headers of different kernel versions for different
architectures. The following example shows the headers of two implementations
(one for CPU-cores, another for pre-Fermi GPUs) of the same kernel:
hit_kernelDefinition(CORE, mmult, HitTile_float *A, HitTile_float *B, HitTile_float *C) {
hit_kernelDefinition(GPU_R1, mmult, HitTile_float *A, HitTile_float *B, HitTile_float *C) {

We have developed one function that transparently do the coordination with
the assigned device. It receives as parameters the kernel name, a partition object,
and the kernel parameters, indicating which ones are inputs and outputs. See
the example in Fig. 2. This function deals with linking issues of kernels written if
specific languages. For example, the launch of a kernel for an Nvidia GPU needs
a special syntax and the launching code has to be compiled with the CUDA
compiler. We use internal wrapper functions with different implementations for
different architectures. Each implementation is compiled with the proper tools
before linking. A selection mechanism checks at run-time the assigned device
architecture and calls the appropriate implementation for the local device.

For CPU-cores the wrapper simply calls the proper C function passing the
indicated arguments. For accelerators the process is more complex, and involves
communication between the main system memory and the device memory. We
have implemented the synchronization with Nvidia’s GPUs with the following
stages: (1) Move to the GPU memory the input tiles (the data and the tile
handler structure). Padding restrictions expressed in the HitPartition object are
applied to the memory allocation in this step. (2) Launch the kernel, using the
grid parameters from the Partition object, passing the pointers to the new tile
handlers in GPU memory. (3) Copy data from output GPU-memory tiles to the
CPU, eliminating padding if needed. Finally, a mutual exclusion mechanisms
has been added in the kernel launch function to allow several processes assigned
to the same device to coordinate themselves for the use of the device.

These abstractions completely encapsulate the synchronization and coordi-
nation between CPU and different devices, such as cores and accelerators. The
same primitive call automatically invokes CPU-core functions written in plain
C language, or launches CUDA kernels.

7

Running the programs Hitmap programs are started like any MPI program,
using the mpiexec command. The MPI hosts file is used to select the machines
where the processes are started. Processes in the same machine are automatically
attached to CPU-cores or GPU devices. If data do not fit into the memory of an
accelerator device, more MPI processes are required to obtain a finer partition.

5 Case study

In this section we show with an example how Hitmap abstractions lead to codes
which are independent of the encapsulated mapping techniques. We have chosen
the Cannon’s algorithm for matrix multiplication (see e.g. [7]). It is a task-
parallel algorithm focused on reducing local memory usage for distributed sys-
tems. Thus, it shows the interaction of different levels of parallelism.

In Cannon’s algorithm the available processes are organized in a perfect
square topology to generate neighbor relations. Each matrix A, B and C is di-
vided into rectangular blocks, distributing them across processes. It starts with
an initial communication stage to relocate A and B blocks in a circular shift
(Aij = Ai(j−i), and Bij = B(i−j)j). On each step, every process multiply its lo-
cal blocks of A and B, accumulating the partial results in the local block of C. It
then sends the used block of A to the leftward process, and the used block of B to
the upward process, both in a circular shift. There are as many communication-
computation steps as the square-root of the number of total processes.

Figure 2 shows the Cannon’s matrix multiplication algorithm implemented
with the Hitmap library for heterogeneous systems. We use float base elements.
The code is the same used in previous versions of Hitmap for distributed-memory
systems except lines 40–41 (that encapsulate the low-level partition for the as-
signed device), and lines 47 and 50, that encapsulates the coordination between
the CPU and the accelerators.

Lines 3–6 declare the full domain of the three matrices with a global-view
approach. Memory is not yet allocated. Line 9 builds a virtual topology enforcing
a perfect square of processes, as required by the algorithm. Lines 12–14 create
layout objects that distribute the matrices domains across the virtual topology.
The layout plug-in modules used are different for the three matrices. Figure 3
shows a diagram of the resulting layouts. Matrix B uses a classical block data
partition, with evenly sized parts. Matrices C and A use a load-balancing plug-in
technique. The rows dimension is split unevenly according to a Balance factor,
decided in terms of the relative computing power of the device types as recorded
in the low-level topology description. Currently, it is experimentally determined.

In lines 17–21 each logical process creates and allocates the local part of the
matrices. Thanks to the maxShape padding function, n and m do not need to be
exact multiples of the number of processes in a given axis. Lines 24–26 read in
parallel the tiles of the input matrices. The C matrix is initialized with 0 values.

Lines 29–32 perform the initial relocating stage prescribed by the Cannon’s
algorithm, shifting A and B tiles. Lines 35–37 build the shifting communication
pattern that will be used between the computation stages. The layout objects

8

1 void cannonsMM(int n, int m, int p) {
2 /* 1. DECLARE FULL MATRICES WITHOUT MEMORY */
3 HitTile_double A, B, C;
4 hit_tileDomain(&A, float, 2, n, m);
5 hit_tileDomain(&B, float, 2, m, p);
6 hit_tileDomain(&C, float, 2, n, p);
7

8 /* 2. CREATE VIRTUAL TOPOLOGY */
9 HitTopology topo = hit_topology(plug_topSquare);

10

11 /* 3. COMPUTE PARTITIONS */
12 HitLayout layC = hit_layout(plug_layBlocksLB, topo, C, 0);
13 HitLayout layA = hit_layoutWrap(plug_layBlocksLB, topo, A, 0);
14 HitLayout layB = hit_layoutWrap(plug_layBlocks, topo, B);
15

16 /* 4. CREATE AND ALLOCATE TILES */
17 HitTile_double tileA, tileB, tileC;
18 hit_tileSelectNoBoundary(&tileA, &A, hit_layMaxShape(layA,1));
19 hit_tileSelectNoBoundary(&tileB, &B, hit_layMaxShape(layB,0));
20 hit_tileSelect(&tileC, &C, hit_layShape(layC));
21 hit_tileAlloc(&tileA); hit_tileAlloc(&tileB); hit_tileAlloc(&tileC);
22

23 /* 5. INITIALIZE MATRICES */
24 hit_tileFileRead(&tileA, "matrixA.dat");
25 hit_tileFileRead(&tileB, "matrixB.dat");
26 float aux=0; hit_tileFill(&tileC, &aux);
27

28 /* 6. INITIAL ALIGNMENT PHASE */
29 HitComm commRow = hit_comShiftDim(layA, 1, -hit_layRank(layA,0), &tileA);
30 HitComm commCol = hit_comShiftDim(layB, 0, -hit_layRank(layB,1), &tileB);
31 hit_comDo(commRow); hit_comDo(commCol);
32 hit_comFree(commRow); hit_comFree(commCol);
33

34 /* 7. REUSABLE COMM PATTERN */
35 HitPattern shift = hit_pattern(HIT_PAT_UNORDERED);
36 hit_patternAdd(&shift, hit_comShiftDim(layA, 1, 1, &tileA));
37 hit_patternAdd(&shift, hit_comShiftDim(layB, 0, 1, &tileB));
38

39 /* 8. COMPUTE DEVICE PARTITION USING ACCESS PATTERN INFO */
40 HitPartition parts = hit_partition(plug_partBlocks, hit_layShape(layC),
41 2, hit_shape(2, ALL, THIS), hit_shape(2, THIS, ALL));
42

43 /* 9. DO COMPUTATION */
44 int loopIndex;
45 int loopLimit = max(hit_layNumActives(layA,0), hit_layNumActives(layB,1));
46 for (loopIndex = 0; loopIndex < loopLimit-1; loopIndex++) {
47 hit_kernelLaunch(mmult, parts, 3, IN, tileA, IN, tileB, INOUT, tileC);
48 hit_patternDo(shift);
49 }
50 hit_kernelLaunch(mmult, parts, 3, IN, tileA, IN, tileB, INOUT, tileC);
51

52 /* 11. WRITE RESULT */
53 hit_tileFileWrite(&tileC, "matrixC.dat");
54

55 /* 12. FREE RESOURCES */
56 hit_partitionFree(parts);
57 hit_layFree(layA); hit_layFree(layB); hit_layFree(layC);
58 hit_patternFree(&shift);
59 hit_topFree(topo);
60 }

Fig. 2. Heterogeneous Hitmap implementation of Cannon’s matrix multiplication

9

A

B

m1 m2k1 k2

k1

k2

=

C

m1 m2

n1 n1

n2 n2
x

Balance factor = n1 / (n1+n2)

Fig. 3. Load balancing layout scheme in the Cannon’s matrix multiplication example.

and the tiles provide all the information needed to internally find neighbors and
build MPI derived data types to optimize the communications. Thus, communi-
cations are adapted to the partition transparently. For this example we choose
synchronous communication to avoid the need of double buffers, exploiting our
full system memory to do larger computations.

Lines 40–41 generate a partition object tailored to the device assigned to the
logical process. Line 41 is a shape expression that represents the global memory
access pattern; indicating, in relative coordinates, which elements are accessed by
a thread. Lines 44–50 implement the main loop of the algorithm. The computa-
tion stage of the last iteration has been unrolled to avoid the last unneeded com-
munication stage. The computation is launched by the hit kernelLaunch primi-
tive, independently of the actual device. The shifting communication pattern is
activated by the hit patterDo primitive. Line 53 writes the output matrix tiles
to a file in parallel. Lines 56–59 free all the Hitmap resources before finishing.

6 Experimental work

We have designed experimental work to show that: (1) Our new abstractions do
not impose a significant overhead on the computation; and (2) this framework
allows to easily exploit different devices to obtain performance benefits.

In order to show the efficiency of the Hitmap codes, we have manually devel-
oped and optimized reference codes for matrix multiplication: (a) A direct MPI
implementation of the Cannon’s algorithm (see [7]); and (b) a direct CUDA im-
plementation that may also split and multiply the matrices block by block if
they are too big to fit in the GPU device memory.

For our experiments we have used two different platforms. The first one is
a Beowulf cluster with up to 18 dual-core PC computers. The second one is
an Intel(R) Core(TM) i7 CPU 960, 3.20GHz with active hyper-threading. This
system has two GPUs: a GeForce 8500 GT, and a GerForce 9600 GT, both
managed by the CUDA driver included in the 4.0 toolkit. From now on, we
identify the different available devices in this machine with the following letters:
(A) GeForce 9600 GT; (B) GeForce 8500 GT; (C) Cores of the CPU.

We select several matrix sizes: N = M = 2048, 8192, 12288. The first size is
small enough to allocate the three matrices in any of the devices of both systems.

10

 3

 10

 30

 100

 300

 1 4 9 16 25 36

E
xe

cu
tio

n
tim

e
(s

ec
.)

Processors

Beowulf cluster (2048x2048)

Hitmap
Manual

 8

 11

 16

 22

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance facor

Mixed CPU-GPU platform (2048x2048)

Manual - A
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

 400

 800

 1600

 3200

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance facor

Mixed CPU-GPU platform (8192x8192)

Manual - A
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

 1400

 3000

 6000

 12000

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance facor

Mixed CPU-GPU platform (12288x12288)

Manual - A4
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

Fig. 4. Experimental work results

The second size cannot be fully allocated on the second GPU (device B) of the
mixed CPU-GPU machine. The last size cannot be allocated in any of the GPUs.
We also test using modified sizes (e.g. N = M = 2039, 2057), that our padding
mechanisms do not impose a significant performance effect on the results.

Figure 4 presents execution times obtained in different scenarios. Notice that
all y-axis are in logarithmic scale. The experiments in the Beowulf cluster show,
even for the small matrix size, that Hitmap implementations have the same
scalability and overall performance than the manually optimized MPI code. A
minimal Hitmap performance overhead is observed in all our experimental work.

In the more heterogeneous machine the best performance results are obtained
for a small number of processes. Remind that Cannon’s algorithm forces more
synchronization stages when the number of processes increase. Thus, for Can-
non’s algorithm, more MPI processes lead to bigger communication overhead,
while reducing the computation load of each task. In this machine, our exper-
iments show the best results for four MPI processes. We show results for the
following scenarios. Reference code: (A) Manually developed CUDA code, ex-
ecuting the whole computation with only one kernel launch in device A, the
fastest GPU; (A4) For matrices that do not fit in the GPU device memory, the
reference code parting the matrices in four even parts and executing the compu-
tation in several kernel launches. Hitmap code: Changing the topology module

11

we can easily experiment with different assignments of devices to logical pro-
cesses. (A3-B1) Mixed GPUs: 3 processes mapped to device A, and 1 process to
device B; (A2-B2) Mixed GPUs: 2 processes mapped to device A, and 2 process
to device B; (A3-C1) GPU and core: 3 processes mapped to device A, and 1
process to one CPU-core; (A2-C2) GPU and cores: 2 processes mapped to de-
vice A, and 2 processes, each one mapped to a different CPU-core. For all the
experiments with GPUs and Hitmap we have manipulated the partition plug-in
to experiment with different load-balance factors, between 0.5 and 0.975.

Consider the execution time of the reference CUDA code (A and A4). The
results show that it is always possible to improve these performance results with
the Hitmap code, exploiting heterogeneity with more than one device. The re-
sults for the small matrix size are more unstable, and impacted by the kernel
initialization times, including the communication between CPU and GPU. How-
ever, as the matrix size increases, the results are more stable, and show exactly
the same trends. We obtain performance improvements of up to 10% for the
small matrices, and a consistent best improvement of 20.5% for medium and big
input data sizes. Traces of the executions show that the MPI communication
times are always less than 10% of the total execution time for the small matrix
size. And their impact quickly decreases as the data input size grows.

On the left part of the plots (load-balance factor 0.5), the load is evenly dis-
tributed, not taking into account the different computing powers of the devices.
The critical path is dominated by the slower devices. As the load-balance factor
grows, the balance is improved proportionally reducing the total execution time.
After the optimum balance point is found, an increase of the factor leads to too
few computation on the slower devices. Thus, the critical path is dominated by
the fastest device, proportionally reducing performance again.

An important question is: Is it possible to predict the best load-balance factor
for a given set of devices? Profiling tests with simple benchmarks show that the
relative computing power between devices A and B is approximately r = 3.826;
and between device A and a core (device C) it is r = 14.153. In order to assign
to each device a computation proportional to its relative computing power, the
load-balance factor may be calculated as LB = r/(r+1) for the A2 scenarios, and
LB = (r − 1)/(r + 1) for the A3 scenarios. The experimental results show that,
for big enough matrices, this estimation is always a little lower than the value
that leads to the best performance: 10% in both A3 scenarios, 2% and 6% on A2
scenarios. A more sophisticated model, taking into account the synchronization
stages, is needed to automatically predict the best factor in the Layout plug-ins.

7 Conclusion

In this paper we present a new framework for heterogeneous programming. It
encapsulates the mapping techniques into plug-ins at two different layers of ab-
straction: one related to logical processes coordination, and another related to
adapting the computations to the inherent parallelism and architecture details
of the actual device associated to each logical process. We propose a high-level

12

API that transparently deals with all the details of communication and syn-
chronization between logical processes and accelerator devices, such as GPUs.
This framework allows to generate codes which are transparently adapted to
heterogeneous systems with mixed types of accelerator devices.

Current on-going work involves: (1) Introducing in the framework more so-
phisticated mapping policies that better exploit CPU-cores and GPU architec-
ture information; and (2) test the applicability of these techniques to more types
of programs, including well-know benchmarks and real applications.

References

1. Chamberlain, B., Deitz, S., Iten, D., Choi, S.E.: User-defined distributions and
layouts in Chapel: Philosophy and framework. In: 2nd USENIX Workshop on Hot
Topics in Parallelism (June 2010)

2. kui Chen, Q., kang Zhang, J.: A stream processor cluster architecture model with
the hybrid technology of mpi and cuda. In: ICISE’2009. pp. 86 –89 (dec 2009)

3. de Blas Cartón, C., Gonzalez-Escribano, A., Llanos, D.R.: Effortless and Efficient
Distributed Data-Partitioning in Linear Algebra. In: HPCC’2011. pp. 89–97. IEEE
(Sep 2010)

4. Farooqui, N., Kerr, A., Diamos, G.F., Yalamanchili, S., Schwan, K.: A framework
for dynamically instrumenting GPU compute applications within GPU Ocelot. In:
GPGPU. p. 9 (2011)

5. Fresno, J., Gonzalez-Escribano, A., Llanos, D.R.: Automatic Data Partitioning
Applied to Multigrid PDE Solvers. In: PDP’2011. pp. 239–246. IEEE (Feb 2011)

6. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., mei, W.: An asym-
metric distributed shared memory model for heterogeneous parallel systems. In:
ASPLOS’2010. pp. 347–358. ACM, New York, NY, USA (2010)

7. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Addison Wesley, 2nd edn. (2003)

8. Hong, C., Chen, D., Chen, W., Zheng, W., Lin, H.: MapCG: writing parallel pro-
gram portable between CPU and GPU. In: PACT’2010. pp. 217–226. PACT ’10,
ACM, New York, NY, USA (2010)

9. Karunadasa, N., Ranasinghe, D.: Accelerating high performance applications with
cuda and mpi. In: ICIIS’2009. pp. 331 –336 (dec 2009)

10. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO-42. pp. 45 –55 (dec 2009)

11. Quintana-Ort́ı, G., Igual, F.D., Quintana-Ort́ı, E.S., van de Geijn, R.A.: Solv-
ing dense linear systems on platforms with multiple hardware accelerators. In:
PPoPP’2009. pp. 121–130. PPoPP ’09, ACM, New York, NY, USA (2009)

12. Singh, S.: Computing without processors. Commun. ACM 54, 46–54 (August 2011)
13. Stratton, J.A., Stone, S.S., Hwu, W.M.W.: Mcuda: An efficient implementation of

cuda kernels for multi-core cpus. In: Amaral, J.N. (ed.) LCPC’2008. pp. 16–30.
Springer-Verlag, Berlin, Heidelberg (2008)

14. Torres, Y., Gonzalez-Escribano, A., Llanos, D.R.: Using Fermi architecture knowl-
edge to speed up CUDA and OpenCL programs. In: Proc. ISPA’12. Leganes,
Madrid, Spain (2012)

15. Yao, P., An, H., Xu, M., Liu, G., Li, X., Wang, Y., Han, W.: CuHMMer: A load-
balanced CPU-GPU cooperative bioinformatics application. In: HPCS’2010. pp.
24 –30 (July 2010)

