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Parallel computing

• What?
The simultaneous use of multiple computational resources to
solve a problem.

• Why?
Many computing problems are so costly that they cannot be
solved sequentially in a reasonable time.

• Where?
Usually associated to high-performance computing but
nowadays also for mainstream computing.
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The evolution of parallel computing systems
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Common tools for parallel computing
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Common tools for parallel computing II

Google Scholar search:

TERM+ “parallel computing”
“parallel computing”

%

Most popular parallel tools in 2014:
• MPI 18%
• CUDA 17%
• OpenMP 12%

Themost cited parallel programming tools are message-passing for
distributed-memory, threads models for shared-memory
environments, or kernel solutions for accelerators.

7 / 78
Supporting general data structures and execution models in runtime environments

▲



How do we currently develop programs for
these systems?

We need to know:
• Sequential programming

• Distributed memory
• Shared memory
• Accelerator offloading

A programmer must be proficient in all these technologies to be
able to take advantage of the current parallel systems.
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Development of parallel programs:
How should it be?

• We need:
• Frameworks with unified parallel models.
• High-level abstractions to represent parallel algorithms.

• So:
• Programmers can focus on the design
• while compilers do the complex optimizations
• using highly-efficient and adaptable runtime systems.
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Related work

• Compiler auto-parallelization:
• High Performance Fortran 1.
• Polyhedral model, e.g. Pluto 2.

• Multi-paradigmmodels:
• Partitioned Global Address Space languages: e.g. Chapel 3.
• Heterogeneous platforms: e.g. OpenCL 4.

1High Performance Fortran Language Specification, HPF Forum, 1993.
2PLUTO+: near-complete modeling of affine transformations for parallelism and locality,
Acharya and Bondhugula, ACM PPoPP, 2015.
3User-defined distributions and layouts in chapel, Chamberlain et al, HotPar 2010.
4The OpenCL specification, Khronos group, 2008.
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Work carried out by Trasgo group

• Trasgo programming framework: 5

• Amodular parallel programming framework.
• Its model is based on high-level, nested-parallel specifications.
• The high-level parallel code is transformed into a source code

with Hitmap calls.

• Hitmap runtime library: 6

• A library for hierarchical tiling andmapping of arrays.
• Provides a global view of the parallel computation.
• Module system to perform data partition.
• Communications are adapted based on the partition.

5Trasgo: a nested-parallel programming system, Gonzalez-Escribano et al, Springer JoS,
2009 (see Ref. [58])
6An Extensible System for Multilevel Automatic Data Partition and Mapping,
Gonzalez-Escribano et al, IEEE TPDS, 2013 (see Ref. [59])
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Trasgo framework architecture

High level source code

Intermediate representation

Mapped program

Target code + Hitmap calls

Program representations Transformations

Font-end translator

Expresion builder

Back-end

Native compiler

Binary executable

Hitmap
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Towards a unified programmingmodel

Most parallel programmodels, including Hitmap, suffer from some
limitations.

• Unified support for dense and sparse data.
• Integration of dynamic parallel paradigms andmodels.
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Limitations I: Sparse support

• Common parallel tools do not offer integrate support for data
structures.

• MPI and OpenMP only give parallelism support.

• Most parallel languages offer support only for dense
structures.

• Such as HPF, UPC

• Some PGAS languages are being augmented with sparse
support:

• E.g. Chapel, Titanium.

• For sparse structures:
• Manual management: implied a high programming effort.
• Specific libraries: may not follow the same approach.

• Reusability of dense code was rather poor.
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Limitations II: Dataflow structures

With common parallel solutions (e.g. MPI, OpenMP):

• Simple static parallel structures are easy to program.
• Programming dynamic and dataflow applications is still

challenging.
• Low abstraction level to deal with complex synchronization:

• Complex codes with many hard-wired decisions.
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Research question

Is it possible to create a runtime system for a generic
high level programming language that offers (1) common
abstractions for dense and sparse datamanagement, and
(2) generic data-mapping and data-flow parallelism
support for hybrid shared- and distributed-memory
environments?
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The Hitmap library
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The Original Hitmap library

• Library for hierarchical tiling andmapping of arrays.

• Main features:
• Use of a global view of the parallel computation.
• Module systems of load-balancing and distribution techniques.
• Communications are declared based on partition result.
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Features and terminology

• Three categories and six entities:

Mapping CommunicationTiling arrays

Topology

Layout

Shape

Tile

Communication

Pattern
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Tiling example

Tiling

1 2 3 4 5 6 7 8
1 2 3 4

0

0 11 2
0

1 2

0 110

0
120

A [0:4][1:7]

B = A[1:3][1:3]

C = B[0:1][1:2]

D = A[0:4:2][6:8:2]
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Mapping example
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Communication

• Transmission of tile elements among virtual processors.
• Types: point-to-point communications, paired exchanges for

neighbors, shifts along a virtual topology axis, collective
communications, etc.

• Use of layouts information about neighborhood.
• Composed in reusable patterns.
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The original Hitmap library architecture

Mapping

Tiling

Signature
(b:e:s)

Layout Topology

Tile

Comm Pattern

Tile integerTile double

Signature
Layout

List
Layout

Sig Shape
(n:S1:S2:...)

Communication
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Hitmap usage methodology

Compile and run

Partition technique

Implementation

Parallel algorithm design

Abstract solution

Problem
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Unified support for dense and
sparse data
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Sparse support in parallel frameworks

• Common parallel tools do not offer integrate support for data
structures.

• MPI and OpenMP only give parallelism support.

• Most parallel frameworks only integrate support for dense
structures:

• The Partitioned Global Address Space languages:
UPC 7, Coarray Fortran 8.

• Some frameworks have a limited sparse support:
• Titanium 9: Sparse Array Copying.
• Chapel10: Sparse domain distribution.

7Introduction to UPC, Carlson et al, Tech. rep. CCS-TR-99-157, 1999 (see Ref. [23])
8Fortran 2008 standard, ISO/IEC 2010 (see Ref. [78])
9Titanium Language Reference Manual, Bonachea et al, 2006. (see Ref. [21])

10User-defined distributions and layouts in Chapel, Chamberlain et al, HotPar 2010 (Ref. [27])
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Alternatives

• Manual management: implies a high programming effort.

• Specific libraries: may not follow the same approach.
• Sparse management libraries: Sparskit 11.
• Sparse partitioning tools: Metis 12.
• Mathematical solver libraries: PETSc 13.

11SPARSKIT: a basic tool kit for sparse matrix computations, Saad, Tech. rep. 1994, (Ref. [109])
12MeTiS–A Software for Partitioning Graphs, Karypis et al, Tech. rep. 1998, (see Ref. [80])
13PETSc Users Manual, Balay et al, Tech. rep. 2014, (see Ref. [13])
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Our proposal

• We present a solution to handle sparse and dense data
domains using the same conceptual approach.

• Stages of a parallel program:
• Sparse/Dense parallel design follows the same steps.
• The differences appear at the implementation stage.

32 / 78
Supporting general data structures and execution models in runtime environments

▲



Stages of a parallel program: Stencil example

Dense

Domain 
definition

Domain 
partition Communication

Memory 
allocation
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Stages of a parallel program: Stencil example

Dense

Sparse

Domain 
definition

Domain 
partition Communication

Memory 
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34 / 78
Supporting general data structures and execution models in runtime environments

▲



Stages of a parallel program: Stencil example

Dense

Graph

Sparse

Domain 
definition

Domain 
partition Communication

Memory 
allocation
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Adding support for sparse domains to Hitmap

Compile and run

Partition technique

Implementation

Parallel algorithm design

Abstract solution

Problem • New step in the Hitmap programming
methodology.

• Shape and Tile classes in abstract
interfaces.

• Two new kinds of sparse domains:
CSR, Bitmap

• Tiles with several data spaces: edges
and vertices.

• New layouts with graph partitioning.
• New communications.
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New architecture

CSR Matrix Bitmap MatrixCSR Matrix Bitmap Matrix

Layout Topology

Tile Comm Pattern

Graph TileMatrix Tile

Signature
Layout

List
Layout

Shape

Signature
(b:e:s)

Sig Shape
(n:S1:S2:...)

CSR Shape

Bitmap Shape

CSR MatrixDense Matrix Bitmap Matrix CSR GraphDense Graph Bitmap Graph
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Programing with Hitmap dense/sparse support

{}

{}

hitmap

Virtual Topology
Data domain
Local computation
Comm. structure

Particular data format
Partition technique

Adapts at run-time depending on the real topology

Abstract Design Implementation Executable
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Dense example: distributedmatrix initialization

// Load the global matrix.
HitShape sglobal = hit_shapeStd(2,ROWS,COLS);

// Create the topology object.
HitTopology topo = hit_topology(plug_topArray2D);

// Distribute the matrix among the processors.
HitLayout lay = hit_layout(layBlocks,topo,&sglobal);

// Get the shape for the local matrix.
HitShape shape = hit_layShape(lay);

// Allocate the matrix.
HitTile_double M;
hit_tileDomainShapeAlloc(&M, double, shape);

// Init the matrix values.
int i,j;
hit_shapeIterator(j,shape,0){

hit_shapeIterator(j,shape,1){
hit_tileElemAt(2,M,i,j) = 0.0;

}
}
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Sparse example: distributed graph initialization

// Load the global matrix.
HitShape sglobal = hit_fileHBMatrixRead("file.rb");

// Create the topology object.
HitTopology topo = hit_topology(plug_topPlain);

// Distribute the matrix among the processors.
HitLayout lay = hit_layout(laySparse,topo,&sglobal);

// Get the shape for the local matrix.
HitShape shape = hit_layShape(lay);

// Allocate the matrix.
HitTile_double M;
hit_mcTileDomainShapeAlloc(&M, double, shape);

// Init the matrix values.
int i,j;
hit_cShapeRowIterator(i,shape){

hit_cShapeColumnIterator(j,shape,i){
hit_mcTileElemIteratorAt(M,i,j) = 0.0;

}
}
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Experimental evaluation

• Three benchmarks:
• Graph synchronization: Stencil-type operation in a graph.
• Sparse matrix-vector multiplication.
• Finite Element Method.

• Implementations:
• Manual C+MPI.
• Hitmap.
• PETSc.

• Computing environments:
• Geopar: A shared-memory systemwith 16 cores.
• Beowulf DC: A cluster with 20 dual-core nodes.
• Beowulf SC: A cluster with 19 single-core nodes.

Only most relevant result follow.
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Results graph synchronization
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Results matrix multiplication
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Results Finite Element Method
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Lines of code comparison
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Support for sparse domains: Conclusions

• A new approach to integrate dense and sparse data
management in parallel programming.

• The communication structure adapts to the data structure and
partition technique.

• Hitmap abstractions simplify the writing of a parallel program
with a similar performance compared to other solutions.

• The runtime for our generic parallel system now supports
dense and sparse programs with the samemethodology.
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A portable dataflowmodel and
framework
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Stream and dataflow libraries and languages

• Programming dynamic and dataflow applications is
challenging with current parallel solutions.

• Stream and dataflow: FastFlow 14, OpenStream 15, or S-Net 16.
• They have models where sequential computation and the

synchronization are defined separately.
• These models lack a generic system to represent:

• Channels with generic loops.
• Mechanisms to express task-to-task affinities.

• There some applications that can not be built.

14FastFlow: high-level and efficient streaming onmulti-core, Aldinucci et al. (see Ref. [5])
15OpenStream: Expressiveness and Data-Flow Compilation, Pop et al., (see Ref. [103])
16A Gentle Introduction to S-Net, Grelck et al., Parallel Process. Lett. 2008, (see Ref. [64])
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A portable dataflowmodel and framework

• We propose a new parallel programmingmodel based on
dataflow computations.

• Can bemodelled using Colored Petri nets 17.
• Hitmap++: A supplement to the static communication

structures available in Hitmap.

17Coloured Petri nets: modeling and validation of concurrent systems, Jensen and Kristensen,
Springer 2009.
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Our proposal

• Program: reconfigurable network of activities and typed data
containers.

• MPMC channels with a work-stealing mechanism.
• Task-to-task affinity to exploit data locality.
• Single representation for shared and distributed memory.
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Petri nets
Transition Place

Tokens

Transition

• Amathematical modeling language to describe systems.
• Directed bipartite graph:

• Places and Transitions connected by Arcs.
• Places are marked with Tokens.
• A transition removes tokens from its input places and adds

tokens to its output places.
• Colored Petri nets is an extension that adds data type

primitives and the ability of writing transitions with different
behaviors (for each type).
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Mode-drivenmodel formulation

• Themodes are the transition states and they define a
configuration of I/O channels.

• Used to:
• Define mutually exclusive tasks inside a transition.
• Exploit data locality.
• Reconfigure the network.

• Transitions read tokens with the color of their current mode.
• Signal system:

• Mode-change signal: Special token to mark a mode change.
• Amode-change propagates the signals across the network.
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Mode example

Network creation

Transition A Transition C

Transition D

Transition B
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Modes to define data locality

Two-phased wavefront computation:

Network without modes Network with modes
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Programming with Hitmap++

• Framework prototype: MPI + Pthreds.

Network

Transition PlaceUser class

Port

• How to use it?
• Build the transitions extending the base class.
• Create the network connecting transitions and places.
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Building transitions - Example

class MyTransition2: public Transition {
public:

void execute(){
double d1, d2; int i1, i2;
get(&d1, &i1); // Get one pair of tokens
get(&d2, &i2); // Get other pair

double result = process(d1,d2,i1,i2);
// Send a token to a particular place
if(result > 0)

put(&result,"place1");
else

put(&result,"place2");
}

};
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Building the network - Example

Place<double> placeA, placeB; // Declare the places
placeA.setMaxSize(10); // Set the place size

MyTransition transition;

// Add the method and places to the default mode
transition.addMethod(&MyTransition::execute);
transition.addInput(&placeA);
transition.addOutput(&placeB);
...

Net net; // Declare the net
net.add(&transition); // Add the transition
net.run(); // Run the net
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Experimental evaluation

• Benchmarks:
• Smith Waterman (Swps3)
• Cellular Automata

• Implementations:
• Reference (shared-memory) (see Ref. [122]) / Manual C+MPI
• Hitmap
• FastFlow, FastFlow distributed extension

• Computing environments:
• Atlas: A shared-memory systemwith 64 cores.
• CETA-Ciemat: A cluster with quad-core nodes.

Only most relevant result follow.

65 / 78
Supporting general data structures and execution models in runtime environments

▲



Swps3

10

100

1000

0 10 20 30 40 50 60 70

Ti
m

e 
(s

ec
on

ds
)

Workers

SWPS3 (Shared-memory system)

Reference
Hitmap++
FastFlow

10

100

1000

0 10 20 30 40 50 60 70

Ti
m

e 
(s

ec
on

ds
)

Workers

SWPS3 (Distributed cluster)

Hitmap++
Distributed FF

66 / 78
Supporting general data structures and execution models in runtime environments

▲



Cellular Automata
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Lines of code comparison
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A portable dataflowmodel: Conclusions

• A new parallel programmingmodel and framework based on
the dataflow paradigm.

• Solves limitation of other proposals:
• General MPMC system, with loops, and reconfigurable

networks.
• Transparently targets hybrid shared- and distributed-memory

platforms.

• This framework extends the Hitmap library.
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Conclusions
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Research question

• This PhD. Thesis answers the research question affirmatively.

It is possible to create a runtime system for a generic
high level programming language that offers (1) common
abstractions for dense and sparse datamanagement, and
(2) generic data-mapping and data-flow parallelism
support for hybrid shared- and distributed-memory
environments.
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Thesis conclusions

• This Ph.D. Thesis gives an answer to these problems:
• The unified support for dense and sparse data.
• The integration of data-mapping and data-flow parallelism.

• Our implementation extends the Hitmap library:
• To support dense and sparse data structures.
• With a model for dataflowmechanisms.

72 / 78
Supporting general data structures and execution models in runtime environments

▲



Contributions I

Our first step: Study of Hitmap automatic data-layout techniques
applied to multigrid methods.

• Journal article:
• Gonzalez-Escribano, Torres, Fresno and Llanos. “An Extensible

System for Multilevel Automatic Data Partition and Mapping”.
IEEE Transactions on Parallel and Distributed Systems. 2014.

• Conference article:
• Fresno, Gonzalez-Escribano and Llanos. “Automatic Data

Partitioning Applied to Multigrid PDE Solvers”. IEEE Euromicro
Conf. on Parallel, Distributed and Network-Based Processing
(PDP). 2011.
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Contributions II
Integration of dense and sparse data support into Hitmap.

• Journal articles:
• Fresno, Gonzalez-Escribano and Llanos. “Blending Extensibility

and Performance in Dense and Sparse Parallel Data
Management”. IEEE Transactions on Parallel and Distributed
Systems (TPDS). 2014.

• —. “Extending a hierarchical tiling arrays library to support
sparse data partitioning”. Journal of Supercomputing. 2013.

• Conference and workshop articles:
• —. “Data abstractions for portable parallel codes”. Int. Summer

School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES). 2013.

• — “Integrating dense and sparse data partitioning”. Int. Conf.
Computational and Mathematical Methods in Science and
Engineering (CMMSE). 2011.
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Contributions III
A newmodel for dataflowmechanisms.

• Conference article:
• Fresno, Gonzalez-Escribano and Llanos. “Runtime Support for

Dynamic Skeletons Implementation”. Int. Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA).
2013.

• Research stay:
• —. “Exploiting parallel skeletons in an all-purpose parallel

programming system”. Science and Supercomputing in Europe -
research highlights (HPC-Europa2 project). 2012.

• —. “Dataflow Programming Model for Hybrid Distributed and Shared
Memory Systems”. Work in progress for a journal publication.
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Future directions

• Higher-level abstraction artifacts:
• Specialized networks.
• Skeletons.

• Development of newmapping policies:
• Load balancing.
• Heterogeneous systems.

• Transformation from high-level code:
• Open issue: Data structure, topology, and layout selection.
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