Relationship-based dynamic versioning of
evolving legal documents

M. Mercedes Martinez!, Pablo de la Fuente!, Jean-Claude Derniame?, and
Alberto Pedrero®

! Universidad de Valladolid, Edificio TIT, Campus "Miguel Delibes" s/n, 47011
Valladolid (Spain)
{mercedes,pfuente}@infor.uva.es
2 LORIA, BP 239
54506 Vandoeuvre Cedex, France
derniame@loria.fr
3 Universidad Pontificia de Salamanca, Salamanca, (Spain)
apedreroQupsa.es

Abstract. Rule evolution is usually performed by creating a new do-
cument which explicitly details changes to specific parts inside other
rules’s content. Obtaining (virtual) document versions corresponding to
a rules’s state at a specific date is thus left to document users, who ma-
nually extract from library collections, and compose, the pieces of text
needed to obtain the desired version. When changes are numerous this
can be a tedious task. We propose a solution to dynamically generate
virtual rule versions on user demand, respecting the library documents
integrity. References to other documents and modification relationships
can be automatically detected and are modelled as typed links —-modelled
with XLink- in a relationships graph. This graph can be used to query
relationships, to create hypertext, and to dynamically generate rule ver-
sions. In this paper, we focus on the version generation process: a dy-
namic document composition based in a graph traversal, during which
we intelligently infer the composition rules of the desired version.

Keywords: Rule evolution, virtual document, document versions, document rela-
tionships, dynamic document generation, relationship graph, typed links, XLink,
structured documents, document composition.

1 Introduction

Legislative documents are intensively related (references to other documents
are numerous) and rules can be the target of temporal sequences of partial
amendments, that result in different versions of the document, valid during the
period of time between two modifications. To be able to access the version of a
document as it was valid at a certain moment is crucial —but not evident— for
analysing some other documents [23]. For example, to understand a sentence, it
is necessary to read the rules that justify it, as they were valid at the moment

Relationship-based dynamic versioning of evolving legal documents 299

the sentence was made; neither previous versions of the rule, nor later versions
can be used.

If we consider this problem from the digital library perspective, the new rule
version obtained by the application of changes to the initial version is a virtual
one, in the sense that the library users know it exists, but there is no physical
copy of it available. Indeed, even if not physically, in the collective conscience
of library authors and users, the original version, the modified version, and the
document containing the modification (which is a separate document with its
own identity) coexist. This leads to a problem that can be stated as follows:
“Given an abstract document* D and the collection of versions of D (also abstract
entities), is it possible to access any version of D in this library?”

There is an example in figure 1: a fragment of a Spanish rule, where a mo-
dification to a previous rule (Ley Orgdnica 2/1980) is expressed: the articles
(articulos) 1st, 4th, and 8th have to be replaced by the ones included in this
modifying rule. A new version of the document Ley Orgdnica 2/1980 is this way
created, even if no physical copy of it is provided.

DISPOSICIONES ADICIONALES.
1. Quedan modificados los articulos 1.°, 4.° y 8.° de la Ley Orgénica 2/1980,

de 30 de abril , que quedaran redactados en la forma siguiente :

Articulo 1.

Con la denominacion de Instituto de Astrofisica de Canarias se crea un
Consorcio Publico de Gestién, cuya finalidad es la investigacion astrofisica .
El Instituto de Astrofisica de Canarias estara integrado por la Administracién
del Estado, la Comunidad Auténoma de Canarias la Universidad de La Laguna y
el Consejo Superior de Investigaciones Cientificas .

Fig. 1. A fragment of modifier rule.

Rule versioning has, however, some additional characteristics, to be conside-
red before facing an automatic treatment of this problem:

1. In legislative documents, modifications are embedded inside other docu-
ments, so that the document to be modified is referenced while how it should
be modified is expressed later. A modification is always "geographically” close
to a reference.

4 An "abstract document” is the intellectual entity a user or creator has in mind. It
may or not correspond unidirectionally to any of the physical objects stocked in the
library’s database.

300 Mercedes Martinez et al.

2. A document is modified by the replacement of some of its fragments by
fragments coming from other documents. Modifications are not available as
complete documents.

3. A document can modify several other documents, and modifications to a
given document can come from various sources.

4. Legal documents are highly structured (their component elements can be
accurately addressed), and this structure is used in references to rules por-
tions to be modified. In the example above, it was clearly stated which are
the specific fragments (articulos) to be replaced.

We can appreciate some of these peculiarities in the example in figure 2. It is
extracted from a Spanish legal documents digital library. The upper left docu-
ment (Real Decreto 685/1982) —a decree— is the target of several modifications,
ennonced in the bottom document (Real Decreto 775/1997). The fragments to
modify are referenced (by structure —apartados inside pdrrafos inside articulos—),
and it is also indicated how to modify them. The application of these modifica-
tions deals to a new version of the Real Decreto 685/1982, as shown in the upper
right corner of the figure. Even if we can not see it in the figure, the modifier
document (Real Decreto 775/1997) modifies some other parts of Real Decreto
685/1982 and also some other laws.

In this paper we present a proposal to automate the obtaintion of rule versions
(in figure 2, the document in the upper left corner), by dynamically composing
them. We deal with this problem as a relationship treatment functionality.
Our thesis is that rule versions are due to modifications made to previous versions
(historical versions [11]), which, in the end, are just another type of relationship.

Every version of a document shows the resulting document version after
applying all modifications made to the document in the time interval from do-
cument creation and requested version date to the original version, extracted
from modifier documents. The user specifies in the inputs the document to re-
trieve and the date. The presumption is that the initial version of the document
is available, as well as documents that hold modifications to it. Version genera-
tion is tackled as a graph problem: composition rules that allow obtaining new
documents are dynamically inferred during a graph traversal.

The approach presented in this paper works on structured documents®, in
which modifications concern document fragments whose limits can be specified
in terms of the document structure. With structured documents, it is feasible
to have a structural graph, whose vertices are node sets (sets of nodes inside
the document’s tree); to this graph, we add reference and modification relation-
ships, detected inside documents content. The resulting graph is used to query
relationships, to create navigational hypertext, and to dynamically generate rule
versions.

Relationships can be automatically detected by analysing documents con-
tent (searching references), and stored in a links database, that contains the
information about the relationships graph. We profit from the expressiveness

% for example, XML documents

Relationship-based dynamic versioning of evolving legal documents

Redl Decreto 685/1982, de 17 de marzo, por el que se
desarrollan determinados aspectos de la Ley 211981, de
25 de marzo, de Ri n del Mercado Hi i

Articulo T2, Irversiones
1.

b) En la inversion de los recursos de kas sociedadesy fondo
de imversion moblliaria, u otras entidades similares de

inversidn colectiva

i

Real Decreto 685/1982, de 17 de marzo, por el que se
desarmollan determinados aspectos de la Ley 211981, de
25 de marzo, de Regulacién del Mercado Hipotecario.

Articulo 72 Inversiones
T,

b En la inversidn de |os recursos de 10s fondos de pensiones

3. Para gue los activos citados en el apartado uno de este
articuln puedan ser objeto de las imersiones de las
instituciones provistas en 1a Ley 4601 934, de 26 de diciernbre,
reguladora de Inversidn Colectiva, deberdn curmplir los
requisitos exigidos en dicha Ley ¥ en su nommativa de

301

D%en Madrldaﬂde%ﬂo de 1982 \
desarrollo.

Dada en Madrid 8 17 de marza de 1982,

Real Decreto
Tasacion

511997 de 30 de mayo, sobre el Régil Juridico de

on de los Servicios ¥ Sociedades de

guientes modificaciones en el[#Hcwb 72 gel Real Decralo Boaw 1902, ge 17 o8 Fnarsd, .. sigue

Se introduce un Boantach treslcon |a siguiente redaccion:

3. Para que 1o activos citados en el apartado uno de este articulo puedan ser objeto de 1as inversiones de las insttuciones
provistas en la Ley 461984, de 26 de diciembre, reguladora de Irversidn Colectiva, deberdn cumplir 1os requisitos exigidos en
dicha Ley ¥ 8n su normativa de desarrollo.

E‘)‘adu en Madrid 2 30 de mayo de 1997,

Fig. 2. Dynamic generation of updated versions of legislative documents.

that characterises XML and its associated standards (XLink, XPath, XPointer)
to model document structure, to access document fragments —preserving docu-
ments integrity— and to represent semantic relationships in the most accurate

manner.
Section 2 gives a quick overview of aspects related with legal document ver-

sioning. Section 3 presents the graph relationship treatments are based on. Sec-
tion 4 describes how this graph is exploited to generate rule versions. In section
5, we discuss implementation aspects: what the data architecture and format
should be, to make feasible a translation of algorithms to operating applica-

tions.

2 Document versioning and relationships

2.1

The document versions problem

The document versioning problem has been treated in legislative digital libraries
in three ways:

1. Maintaining simultaneously all versions as individual documents in system

databases [9, 20]. Versions of the same document are linked by revision links.

302 Mercedes Martinez et al.

Its main difficulty is to keep these links up to date, as well as links that
affect documents (which may, in consequence, affect all the versions of the
involved document).

2. Modelling modifications as attributes. This solution is, however, compatible
with the previous solution. These attributes are considered as “links”, whose
resolution (obtaining the link’s target) is left to the user [12]. Its main aim
is to facilitate queries about the “history” of a document (changes made to
it): the user can know the document has been changed and where to find the
changes; however, it is up to the user to obtain the versions if this is his/her
wish.

3. Keeping the rules that allow the generation of document versions [6]. For
every version there are associated rules that allow it to be generated auto-
matically at user’s request.

2.2 Modelling relationships

Relationships between documents can have varied causes and meanings. They
can be semantic (documents that share the subject, author, ...), they can be
referential (derived from references inside documents to other documents), or
they can be ezplicit links (as the case of HTML links) [1]°.

Relationships can be represented by a hypertext graph, which allows users
to "navigate” within related (linked) documents [10]. Other option is to model
relationships in the documents metadata —this is done, for example, when using
metainformation standards as the Dublin Core [7]- or as links. There are ex-
amples in the legal domain of using hypertext to model relationships [2,9, 14,
15].

2.3 Structured documents and relationships between document
fragments

Documents made by composing well-delimited pieces of content (that can present
an inclusion hierarchy between them) are said to have a logical structure, and
called structured documents [3]. This structure is represented with a tree model,
where internal nodes are document elements (fragments), and leaves are the
document content [13].

3 A relationship graph to represent relationships between
documents

In this section we present the conceptual model that allows us to manage rela-
tionship information (references and other relationships derived from references),

6 Semantic and referential relationships can be considered both implicit relationships,
by contrast with ezplicit relationships where there is a mark that explicits the exis-
tence of a relationship (see [1]).

Relationship-based dynamic versioning of evolving legal documents 303

and in which we base the solution for rule versioning explained in section 4. All
the information we deal with at this level are abstract entities, that correspond
to the entities that library users (who are supposed to have no knowledge about
computing information systems) would expect to found in the library [4, 19]. For
example, rules, decrees, etc.

The relationships that receive our main attention are those that derive from
references between documents. These relationships can be recognised by the
presence of a citation or reference in the text of a document A to some portion
of some other document B. A and B are related documents. The reference can be
merely a citation in A to some portion of B, or a reference to some portion of
B indicating how to modify the portion referenced (The first disposicion of the
rule in figure 1 references articles 1, 4 and 8 —to afterwards say how to modify
them-— of the Ley Orgdnica 2/1980). This granularity is a very important feature,
especially in the virtual document generation shown in section 4. These cases
where modifications are extracted from document content have the property
that modifications are always “geographically” close to a citation that designates
the target of the modification that follows. There are two heterogeneous links
(a citation and a modification) that share the target, but which have different
origins.

3.1 Obtaining a relationship graph

We model the information about relations in a relationship graph. The graph is
constructed from references detected inside document content.

This places us in a situation such that we are able to develop a complete
automatic treatment of relationships (from detection to exploitation). To have
a graph that can be later exploited, it is needed:

1. To obtain a graph, whose nodes correspond to the fragments of documents
referenced (or which reference). A document normalisation step provides
what will be the nodes of the relationship graph. As a result, a ‘normalised’
structured document (XML) is obtained, whose elements correspond to abs-
tract document fragments. The normalisation is done with a linguistic ana-
lysis of the document, detecting starts of elements by the presence of voca-
bulary keywords and expressions that are systematically used in document
content. The graph is constructed on the forest formed by related documents
trees (we call it structural graph).

2. Detecting relationships. This step is based on similar principles than
normalisation: a linguistic analysis of documents, in which references are
recognised. Linguistic and syntactic rigidity in this type of texts eases the
automatic detection of citations [23], by comparison with other contexts
more ‘flexible’ in their language structures.

To the structural tree forest, we add some more labelled arcs that represent
other types of relationships. The label of the arc depends on the type of
relationships (this way the semantic of the relationship is considered).

Thus, the resulting graph is formed as follows:

304 Mercedes Martinez et al.

1. Arcs from the document tree represent the hierarchical relationships between
nodes inherent to the document logical structure. These are structural arcs
and are not labelled in the examples in figures 3 and 4, but drown in bold.

2. Arcs that represent a citation in the origin to the target have the label
citation. They represent citation links and they connect tree nodes.

3. Arcs associated to a modification link are labelled modification. They also
connect tree nodes.

4. Other types of relationships would be represented by corresponding typed
links. They are not needed for the versioning, thus, we will obvious them
hereafter.

Document D in figure 3 is composed of three elements (d1, d2,ds3); element
dy is itself formed by two other elements (d21,d22). Document P is composed
of three elements (po, p1, p2); element p; is itself formed by two other elements
(p11,p12)- Similarly, documents T and N are composed by elements (¢1,t2) and
(n1, na, n3) respectively. The figure shows a relationship graph, where these
structural relationships (bold lines in the figure) and modification relationships,
m1, ma, mg and my (dashed arrows in the figure), are represented.

3.2 Manipulating the graph

To manipulate information in this graph, we need tools that allow to address
document fragments we are interested in, and to store the information about the
graph in a digital format. XML related standards, XLink, XPointer and XPath,
have the required characteristics.

4 Dynamic generation of document versions, exploiting
the relationship graph

We introduce in this section the process we follow to obtain a copy of a document
in its valid state at a certain date. The dynamic generation of versions relies on
an exploitation of the relationship graph, in which the composition rules of the
desired versions are dynamically inferred.

4.1 Versioning graphs

Every document version is the result of resolving a versioning graph obtained
from the modification graph (the graph that contains all modification relation-
ships). The modification graph is a subgraph of the relationship graph presented
in section 3.

The versioning graph associated to the requested document version is ob-
tained with:

1. The tree, T', of the document version available in the document database.
This version is the source document for the versioning process.

Relationship-based dynamic versioning of evolving legal documents 305

2. The set of modification links, M, that reach some node in T'.
3. Modification links that reach some source node of links in M should also
join M.

Modification links in the versioning graph have a priority attribute: the date
of the link (the date when the modification was stated). This priority attribute
will be used to resolve conflicts such as that found when a node is affected by
more than one modification (see part 4.2).

The graph in figure 3 is in fact a versioning graph. D is the document to be
versioned. The tree with D in the root represents the version available in the
document database. Modification links my, mo and mg directly reach nodes in
D. As for modification mq, as its target is itself the source of a modification link
reaching D, it also is a composing item of the graph.

D
A\ m
dl 7 ogp o ad T 4
] e 121 d22 s
P R Sae m U AN
o T : : . i L
Coer \om RN 4\-
******* L2 S P07 pl P2
\ e | }\ : Ei
N "\ \..i pll pi2’ /._,.
- \—\ 77777777 - a
nl m2 n3 e

—— modification

Fig. 3. Versioning graph.

4.2 The output version

A document is considered as a tree with elements. The tree that represents the
output document from the version generation process is at its basis the same as
the initial one (that associated to the initial version), where some nodes have
been replaced, deleted or inserted. Nodes in the source document (initial version
available in the library) not affected by any modification (nodes that are not the
target of a link) remain untouched in the output version.

The document version generation algorithm deals with the source document
tree in a recursive manner, beginning at the root node and treating its descen-
dants in the same manner till there are no more nodes to consider. When the
algorithm reaches a node, this can be in one of two possible categories:

— It is a node affected by a modification (it is the root of some modification
link’s target). The modification link is resolved.

306 Mercedes Martinez et al.

— It is not affected by modifications (there are no modification links that reach
it).

In the example in figure 3, node d; is not affected by any modification,
while nodes ds and ds3 are both affected by some modification, which should be
resolved.

To resolve a modification link is to apply the modification expressed by it.
That is, to replace the target vertex content by the source vertex content. When
the current node is affected by some modification, there can be several situations
to consider:

— Simple case.
The node is affected by a unique modification link, /. Treatment of the node
limits to resolve [, that is, to substitute the node by {’s origin.

— Transitive modifications.
There is a sequence of historical modifications: the origin node of some mo-
dification is itself the target of other modifications (it is modified somewhere
else). Transitivity implies that the target will be replaced by the node at the
end of the modifications chain.

— Modifications overlapping.
There is a conflict due to the fact that a node set is the target of several
modifications. When all modifications apply exactly to the same node set it is
resolved by applying the priority criteria to the modifications: only the most
recent is applied”. In other cases, there can be further criteria to consider; a
detailed explanation of these situations can be found in [17].

4.3 An example

Let s take the versioning graph in figure 3 and briefly describe the way the
algorithm process it.

Modications m; and mg affect the same document fragment (ds); there is a
conflict —only one of them has to apply— that is resolved using the date criteria
(the most recent one is applied). On the other hand, the resolution of ms has
to take in count the transitive modification (mg’s origin is itself modified in
document N); ms’s target will be replaced in the end by my’s origin.

The application of these modifications to D gives as result a new version of
D, obtained as follows:

— Document T is more recent than document P, what means the modification
expressed in T' (m1) gets relevant over the modification expressed in P (ms):
element ¢o (with its descendant t21) replaces element ds in D.

" A sequential application could, of course, be envisaged, and it would be the only
way to resolve modifications in case there were no clear priority criteria. The result
being the same, we prefer to take profit from information priority criteria provides
us with, to reduce algorithm steps. It is to note that —at least in our experience—
ezact overlapping can always be resolved on time criteria.

Relationship-based dynamic versioning of evolving legal documents 307

— Element no replaces element ds in D. This modification is the transitivity

(ma, my) .

The version generation algorithm starts with node D. A modification to this
node would suppose a replacement of the whole document by another document
or document fragment. As this node is not affected by any modification, the
algorithm continues exploring the possibility that its descendants —d;, d2 and
ds— are themselves the object of some modification. Node d; remains untouched.
dy is replaced by t5 and its descendants while ds is replaced by ns, thereby
completing the recursion. The resulting document can be seen in figure 4.

Fig. 4. Output version obtained by resolving the versioning graph in figure 3.

5 Data architecture

The data architecture is conceived to facilitate access of abstract document enti-
ties, as well as manipulating the information items modelled in the relationship
graph. Abstract document entities determine the document architecture.

5.1 Document architecture

A document is an aggregation of three information elements: document content,
metadata that describe it, and document links (see figure 5).

Document content. Document content is stored in a digital copy of the do-
cument, whose logical structure reflects the abstract document entity inherent
structure. It is a XML document, that adapts to specific DTDs. For Spanish
rules, there is a document class, with its own DTD. This copy is obtained in the
normalization process (see section 3.1).

Document metadata. Every document in the system is designated by a unique
identifier that distinguishes it from other documents in the library universe®.
The advantages of such an identifier are several, but to deal with references and
derived relationships, the main advantages that have been critical in the decision

to use such an identifier instead of a physical locator are as follows:

® This identifier follows the criteria used in the DOT standard [19].

308

Mercedes Martinez et al.

Document
content

Document
links

Document
metadata

Fig. 5. Documents are the aggregation of three information elements: content, meta-
data and links.

1.

2.

It is possible to deduce such an identifier from citations in document content,
but it will never be possible to deduce physical addresses from citations. This
property is the one that citation detection (section 3.1) is based on.

Links detected from citations will therefore be between abstract document
entities, and never between physical copies of the document.

Links. Links represent the arcs in the relationship graph. They are typed, on the
semantic of the relationship they represent. The link composition derives from

the

1.
2.
3.

requirements to the links:

Links must be able to address internal document fragments.

The links database should accept queries about linking information.

Links can be queried multidirectionally. A citation or modification can be
exploited in both directions. For example, it can be asked What documents
modify this document? or What documents are modified by this document?.
There is n-arity in the graph: a node can participate in more than one link.
An example: the algorithm in section 4 needs to access the set of nodes that
modify a given node.

The links database must be accessible separately from the documents: to
query this database, it must not be necessary to enter the documents. This
condition is necessary to exploit multidirectionality and n-arity.

5.2 Using XLink to model the relationships

XML has associated standards that allow relationships between documents to be
modelled. Linking with XML includes rules to link resources (XLink) [21] and
to address internal fragments inside linking resources (XPointer) [22]. XLink
allows traditional unidirectional links embedded inside a document (as HTML
links are), but also more complex links: they can have associated semantic, they

Relationship-based dynamic versioning of evolving legal documents 309

T 102=1980.xml 7T T T ' CTI3=1986 xml T AN

/K ! ! MODIFIER DOCUMENT;
‘cnpitu]o‘ ‘capilulo‘ ‘disposicion ‘ ‘disposicion H i

I
seccion 3 3 ‘ arlicu]o‘ ‘ arlicu]o‘ ‘ :micu]o‘ 3
1 1 |

| | Link source: !

SOURCE DOCUMENT. 1 ' Item that

(Document to modify) ‘ ‘ Con la denominacion El Instituto substitutes
i 1 <vveenn investigacion . Investigaciones

cientifica. Cientificas.

* Link target: Item to substitute

Link: Modification

Fig. 6. “Modification” link. The OrRIGIN will replace the TARGET when generating a
new version of the source document. The TARGET is a subtree of the source document
made up of the element articulo and all its descendants. The ORIGIN is the subtree
in the modifier document tree whose root is the first element articulo inside the first
disposicion, as can be seen in figure 7.

can link multiple resources, and it is possible to create independent link databases
[21].

Xlinks are, in consequence, a means to model graph information, accomplis-
hing all the requirements expressed in part 5.1: vertices are resources (documents,
images, etc.), arcs in the graph are arcs inside an xlink, arc labels are modelled
with arcrole attributes and other metadata about arcs or vertices can be joined
as (resources or arc) attributes.

Figures 7 and 6 show respectively the code of an xlink and the link it mo-
dels. In this case, the link relates two node sets (document fragments) extracted
from two Spanish rules. It express a modification, consisting in the substitution
of a specific articulo element (the link’s target) by a new one (the link’s ori-
gin). Its equivalent xlink consists in one ENLACE element, that contains three
subelements that completely describe the link composition and semantics. The
ORIGEN element specifies the target of the link to be the first articulo element
inside the document [02-1980.zml. The DESTINO element indicates the origin of
the link (the element that should replace the target) to be the first articulo ele-
ment that can be found inside the first disposicion of the rule 113-1986.xml. The
ARCO element tells about the link’s type: substitution. More semantic about the
relationship can be found inside the link’s elements: the documents’s dates and
the documents’s classes.

6 Related work

Document evolution has been considered from different perspectives and related
with other problems. Most of the times, the perspective taken is to study its
impact on the systems that suffer this evolution: maintaining the documents

310 Mercedes Martinez et al.

<ENLACE>

<ORIGEN xlink:href= "113-1986.xml#xpointer(child::disposicion[1]/articulo[1])"
xlink:label="113-1986-d1al"
date= "1981" doctype= '"norma" />

<DESTINO xlink:href= "102-1980.xml#xpointer(child::articulo[1])"
xlink:label="102-1980-a1"
date= "1986" doctype= '"norma" />

<ARCO xlink:from="113-1986-dlal" xlink:to="1l02-1980-al"

xlink:arcrole="http://.../substitution"/>

</ENLACE>

Fig. 7. Text for the example link.

database [9], obtaining the revision links this evolution provokes [9, 8], repre-
senting this evolution [8], or its influence on link evolution —and validity— [20, 18,
5]. As it can be seen, the study is frequently focused on the effect of document
versioning on links; that is, a document evolution causes new relationships or
degrades them. In all of them, versions are supposed to be manually generated.
We have taken a novel perspective to deal with document evolution: what is the
impact of relationships on document evolution? Can they be the key information
items that allow to know about changes and to obtain the different versions that
compose a document evolution?

There are two possibilities for representing changes aside from the one chosen
in this work —which were presented in section 2—: storing all versions caused by
a change and linking them [9,20], and representing changes as annotations [8,
12]. The solution of maintaining all versions simultaneously has shown to have
its main difficulty in links maintenance. Moreover, this approach presupposes
that someone has taken care of generating the different versions. This fact is
not always guaranteed, which is the case when modifications that cause different
versions to appear come from citations: the documents that should be used to
obtain every version are available, but the different versions must be composed
by users following the modifications and applying them. This is the reality we
deal with. In addition, the problem of maintaining revision links detected in [9,
20] disappears: versions are automatically generated.

As for representing changes as annotations, this facilitates queries about the
history of a document, but it is not the most appropriate choice to facilitate
version generation. The information about relationships does not appear as a
link that can make part of a graph, but as attributes of nodes. In the end, these
attributes express a relationship between two nodes. So, our decision has been
to model this type of relationship as any other type of relationship -with typed
links—, and to generate versions exploiting the relationship graph. If changes are
represented by independent links, to query changes is to query links, which is
the same as querying any document.

We are only aware of one proposal to automatically generate rule versions [5,
6] (the third option presented in section 2). They keep rules (“tables of contents”)
that describe the composition of document versions, in order to do an efficient

Relationship-based dynamic versioning of evolving legal documents 311

automatic generation of document versions. The version generation algorithm
presented in this chapter has an important difference in the working principle: it
deduces the composition rules of document versions from the relationship infor-
mation, modelled in a relationship graph, and stored in links. It is a link graph
traversal that allows versions to be generated, with variable parameters (such
as the version date); there are no “tables of contents’ or rules that express the
composition rules of the desired version. A specific set of rules for each ver-
sion has the advantage of its precision and efficiency, but the disadvantage that
every version’s set of rules has to be specified independently. Versions cannot be
generated unless the rules have already been specified, even if all the necessary
pieces are in the library. A more general method, such as the one presented in
section 4, to automatically infer the rules for generation of new versions allows
this to be done, taking advantage of the relationship graph. We have primed res-
pecting documents integrity and functional extensibility of our model (querying
relationships and hypertext composition) over efficiency.

Finally, the update of structured documents (concretely, XML documents)
has also been considered as the expression of a series of operations in a query
language. In [16] a language using logic programming is proposed, on the basis
of the advantages of declarative expression of update operations as tree paths
(as XPath, which we also use). Not being query languages our main concern, but
the resolution of the graph, we find these languages more appropriate in cases
where the update of documents is interactively made by users (for example, when
users edit the documents to apply changes). The situation with legal documents
happens to be different because of the peculiarities explained in the Introduction.

7 Conclusion and future work

An original solution for the dynamic intelligent assembly of new information
items has been presented. It is not an isolated solution; the ability to combine
the exploitation of relationships from several perspectives is one of the main
characteristics of the presented solution: information retrieval (querying rela-
tionships), hypertext-oriented exploitation, and dynamic information assembly
are softly combined. Dynamic aspects are a main value of the proposal, as it
allows us to believe that the solution is open for future integration of other
dynamic methods of treating relationships.

The conceptual model used —the relationship graph— has a great advantage:
working at the same abstraction level that library’s users. This feature allowed
us to translate in the most accurate manner the processes users utilise aside from
the digital library system to obtain information (and that provoke their demand
of new functionalities in digital libraries) to dynamic information assembly al-
gorithms.

Versioning is not a problem exclusive to textual documents, but these do
have an interesting peculiarity: modifications are mostly expressed inside do-
cuments that are themselves a semantic unit that should not be fragmented.
The approach we have chosen is to maintain links separately from document

312 Mercedes Martinez et al.

content. This has several benefits: the integrity of documents that contain mo-
difications is untouched (they are never fragmented to obtain individual entities
that could be directly inserted in a new document, neither their content, struc-
ture or attributes is touched), documents that participate in the relationship
are not touched when relationships are detected (the structural forest graph and
document contents are not modified by representing relationships, as would an
insertion of linking elements inside documents), the problem of maintaining re-
vision links disappears, and the process of version generation can be tackled as
an intelligent deduction of composition rules.

The prototype used to test this proposal contains a database of Spanish rules
(1665 documents), from which a subset —yet in expansion— is used to test the
versioning algorithm. The robustness of the versioning depends in a high level
in the accuracy of the expressed relationships. Because of this we still work in
the improvement of the detection of relations. To the moment, on a set of 50
documents, 90 % of the references by document identifier were correctly detected
(context-based references escaped the detection process). As for the versioning
itself, it happens to fail in cases of imprecision in references or overlapping mist-
maches, which, within the selected documents, we estimate about 10 % of the
cases; however, we do not consider this set of documents large enough to do final
statements on this subject. Future work will consider to explore methods that
allow a more intelligent resolution of conflicts during version generation, learning
from user indications.

References

1. AcgosTi, M., AND ALLAN, J. Methods and tools for the construction of hypertext.
Information Processing and Management 33, 2 (1997), 129-271.

2. Acosti, M., CoroTTI, R., AND GRADENIGO, G. A two-level hypertext retrieval
model for legal data. In 14th ACM-SIGIR International Conference on Research
and Development in Information Retrieval (Dipartamento di Elettronica e Infor-
matica, Universita’di Padova, Oct. 1991), Chicago, IL USA, pp. 316-325.

3. ANDRE, J., FuruTa, R., AND QuUINT, V. Structured documents: What and
why? In Structured Documents (1989), J. André, R. Furuta, and V. Quint, Eds.,
Cambridge University Press.

4. Arms, W. Y., BrancHi, C., AND OVERLY, E. A. An Architecture for Information
in Digital Libraries. D-Lib Magazine (Feb. 1997).

5. ARNOLD-MOORE, T., ANDERSON, P., AND Sacks-Davis, R. Managing a digital
library of legislation. In 2nd ACM International Conference on Digital Libraries,
ACM DL 1997 (Philadelphia, PA, USA, July 1997), ACM Press, pp. 175-183.

6. ARNOLD-MOORE, T., FULLER, M., KENT, A., SAcks-Davis, R., AND SHARMAN,
N. Architecture of a content management server for XML document applications.
In Ist International Conference on Web Information Systems Engineering (WISE
2000) (Hong Kong, June 2000).

7. Biacioni, S., CARLESI, C., AND CASTELLI, D. Supporting retrieval by ‘relation
amog documents‘ in the ERCIM Technical Reference Digital Library. In 11th
ERCIM Database Research Group Workshop on Metadata for Web Databases (May
1998).

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

23.

Relationship-based dynamic versioning of evolving legal documents 313

CHAWATHE, S. S., RAJARAMAN, A., Garcia-MoriNa, H., aAxD Wipowm, J.
Change detection in hierarchically structured information. SIGMOD Record (ACM
Special Interest Group on Management of Data) 25, 2 (1996).

CHOQUETTE, M., PouLiN, D., AND BRATLEY, P. Compiling Legal Hyper-
texts. In Database and Ezpert Systems Applications, 6th International Conference,
DEXA’95 (Sept. 1995), N. Revell and A. M. Tjoa, Eds., vol. 978 of Lecture Notes
in Computer Science, Springer, pp. 449-458.

ConkLIN, J. Hypertext: An introduction and survey. IEEE Computer 20,9 (1987),
17-41.

DERoOSE, S. J. Expanding the Notion of Links. In Proceedings of Hypertest’89
(Pittsburgh, PA Baltimore, 1989), N. Meyorwitz, Ed., Association for Computing
Machinery Press, pp. 249-255.

FiNkE, N. TEI Extensions for Legal Text. In Text Encoding Initiative Tenth
Anniversary User Conference (Providence, Rhode Island, USA, Nov. 1997).
FuruTa, R. Concepts and models for structured documents. In Structured Do-
cuments (1989), J. André, R. Furuta, and V. Quint, Eds., Cambridge University
Press, pp. 7-38.

HAIDER, G., SI0BERG, C. M., QUIRCHMAY, G., AND SEBALD, V. The Compar-
ative Part of the Corpus Legis Project - Using SGML for Intelligent Information
Retrieval of Legal Documents. In EXPERSYS-96, Artificial Intelligence Applica-
tions. (1996), A. Niku-Lari., Ed., Technology Transfer Series, pp. 181-186.
Noticias juridicas. http://noticias.juridicas.com/.

L, P., aND Hsu, L. H. A Logic Approach to XML Document Update Query
Specifications. In XML Europe 2001 (Berlin, Germany, May 2001).

MARTINEZ GONZALEZ, M. Dynamic exploitation of relationships between docu-
ments in digital libraries: application to legal documents. PhD thesis, Institut
National Polytechnique de Lorraine / LORIA, Sept. 2001.

NieEDEREE, C., ANS JoAacHiMm W. ScHiMDpDT, U. S., AND MATTHES, F. Ag-
ing Links. In Research and Advanced Technology for Digital Libraries, 4th Fu-
ropean Conference, ECDL 2000 (Lisbon, Portugal, Sept. 2000), J. L. Borbinha
and T. Baker, Eds., vol. 1923 of Lecture Notes in Computer Science, Springer,
pp. 269-279.

PaskiN, N. DOI: Current Status and Outlook May 1999. D-Lib Magazine (May
1999). http://www.dlib.org/dlib/may99/05paskin.html.

S16BERG, C. M. DTD development for the legal domain. In Swedis SGML 97
(1997). http://info.admin.kth.se/SGML/.

W3C, THE WORLD WIDE WEB CONSORTIUM. XML Linking Language
(XLink) Version 1.0, June 2001. W3C Recommendation 27 June 2001.
http://www.w3.org/TR/2000/REC-xlink-20000627.

W3C, THE WORLD WIDE WEB CONSORTIUM. XML Pointer Language (X Pointer)
Version 1.0, Sept. 2001. W3C Candidate Recommendation 11 September 2001.
http://www.w3.org/TR/2001/WD-xptr-20010108.

WiLsoN, E. Links and structures in hypertext databases for law. In Furopean
Conference on Hypertext, ECHT’90 (Paris (France), 1990), A. Rizk, N. A. Streitz,
and J. André, Eds., The Cambridge Series on Electronic Publishing, Cambridge
University Press, pp. 194-211.

