Universidad de Valladolid
Departamento de Informética

Dynamic exploitation of relationships
between documents in digital libraries:
application to legal documents.

Submitted in candidacy for the degree of Doctor of Philosophy by

Maria Mercedes Martinez Gonzalez

April 24th, 2001

Contents

1 Introduction
1.1 Motivation and aimso
1.2 The proposal
1.3 Implementation Prototype
1.4 Evolution of thework
1.5 Organisation of the thesis

2 Documents in digital libraries

2.1 Documents e
2.1.1 Abstract document, document copies and document versions . .
2.1.2 The Document logical identifier

2.2 Structured documentso
2.2.1 Document structures
2.2.2 Capturing the logical structure of documents
2.2.3 Document classeso
2.2.4 Standards for structured documents

2.3 Documents in the legal domain 0oL
2.3.1 Abstract document, document copies and document versions
2.3.2 Structured documents
2.3.3 Standards for structured documents in the legal domain

2.4 Proposal for content-based semantic logic structure capture
2.4.1 Inputs to the algorithm
242 Output e
243 Anexample
2.4.4 The extraction algorithmo

2.5 Application to legal documentso

2.6 Discussion e e e

3 Relationships between documents
3.1 Classes of relationships between documents in digital libraries
3.2 Links.
3.2.1 Link graphs L
3.3 Linking with standards for structured documents
3.3.1 XLink
3.3.2 Addressing internal document fragments: XPointer, XPath.

N O Ot N

ii

CONTENTS

3.4 Document versions Lo 49
3.5 Linking and versioning in the legal domain 50
3.5.1 Relationshipso 50
3.5.2 Versioningo 51
3.6 Modelling of citations and modifications with typed links 52
3.6.1 The relationships modelled, 52
3.6.2 The resulting link graph 0oL 53
3.7 A proposal to generate document versions using links 55
3.7.1 The output version tree 59
3.7.2 Versioning graphs oL Lo 62
3.7.3 The document version generation process 62
3.74 Nodeversioning L L 63
3.7.5 Input and output documents in version generation 68
3.7.6 Modelling the graph with a links database 68
3.8 Application to legal documents 69
3.9 Discussion L. e 70
Link-oriented architecture 75
4.1 Protocols and architectures in digital libraries 76
4.1.1 Basic reference model for a digital library 7
4.1.2 Citation-linking architecture 78
4.1.3 Document manipulation architecture 79
4.1.4 Query and retrieval protocols L. 80
4.1.5 Multi-service oriented protocols 81
4.2 A proposal for linking-oriented services 83
4.2.1 Overviewo 83
4.2.2 A brief presentation of some scenarios 86
4.2.3 System services 88
4.2.4 Services interactiono 91
4.2.5 Services interfaces Lo 94
4.2.6 System componentso 98
4.2.7 Components interaction L. 101
4.2.8 Data architectureo 104
4.2.9 System qualities oL o o 107
4.3 Discussion e e 109
The prototype 113
5.1 Component interfaceso 114
5.2 A revision of the scenarioso oo 117
5.2.1 Document Retrieval 118
5.2.2 Get Document Version oo 118
5.2.3 Querying relationships Lo o000 121
5.2.4 Document search L0 L 121
5.3 The document databases Lo 121
5.3.1 Classes of documents in the legal information library 121

5.3.2 Translating documents Lol 125

CONTENTS

5.4 Relationships and links in the prototype
5.4.1 Mapping of link fields to XLink attributes
5.4.2 The influence of document type on document relationships
543 Anexample L

5.5 Version generation Lo
5.5.1 Data types in the generation process
5.5.2 Complete substitution algorithm

5.6 Discussion L

6 Conclusions
6.1 Contributions Lo
6.2 Related work Lo
6.3 The prototype and the technology
6.4 Future worko

A Logical structure capture evolution on an example

iii

127
127
128
129
133
133
134
135

137
138
140
140
141

143

iv

CONTENTS

List of Algorithms

1 Structure extraction algorithm. 0L 35
2 Algorithm for modifications. Document treatment. 67
3 Algorithm for modifications. Node treatment. 67
4 Links variable creationo o o 134

vi

LIST OF ALGORITHMS

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1

Logical structure of a scientific article.
Two different logical structures for the same Spanish rule.
General logical structure for the “scientific article” document class.

Grammar corresponding to Spanish rules.
Class tree for the “Spanish rules” document class.
A DTD fragment extracted from the “Spanish rule” class DTD.
An input document to the extraction algorithm
Output document in the logical structure capture example.
Output tree resulting in the logical structure capture example.
Inclusion hierarchy used in the logical structure capture example.
Structure extraction algorithm evolution at every input event.
Source document for the algorithm evolution example.

An example of navigational graph in hypertext.
Citation linking. An example. oL
Asimplelink.o
An extended link.o
Example of use of XPath. 00000
Atypedlink.o
A link graph with three heterogeneous links.
Link graph with heterogeneous links.
Partial graphs obtained from graph in figure 3.8.
Documents in the version generation process.
Version generation. Input and output documents.
Element substitution, based on links.
“Substitution” link.
Versioning graph.o L
Transitive modifications. 0oL
Transitive modifications. ej, Ceag..
Transitive modification in version generation.
Exact overlapping; all targets match. 0.
Modifications overlapping. e1, Ce€g,..
Modifications overlapping.
Data in the generation process

Basic services in digital libraries.o oL

vil

viii

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1
5.2
9.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

LIST OF FIGURES

A components model for reference linking in journal articles. 79
An architecture for a document management system. 80
The NCSTRL services model. 82
Keyword searching; a first draft of the scenario. 86
Querying about relations; a first draft of the scenario. 87
Insertion of new documents; a first draft of the scenario. 87
Link generation; a first draft of the scenario. 88
Document version generation; a first draft of the scenario. 89
Keyword searching. Services interaction. 92
Qerying relationships. Services interaction. 92
Inserting documents. Services interaction. 93
Link generation. Services interaction. 93
Document version generation. Services interaction. 94
Services interaction. Global view. oo 95
Data flow between services. Global view. 95
Components interaction. "Calls" view. 100
Data flow between components. L. 102
Querying relations. Components interaction. 102
Link generation. Components interaction. 103
Document version generation. Components interaction. 104
Document architecture., 107
Components interaction. L o Lo oo 115
Scenario for document retrieval.o L0000 119
Scenario for generation of a document version. L. 120
Scenario for querying of relationships. 122
Scenario for searching in documents., 123
Grammar for Spanish rules. 125
Inclusion hierarchy between elements in Spanish rules. 125
Grammar for jurisprudence. L o oL oo 126
Inclusion hierarchy between elements in Spanish jurisprudence. 126
Grammar for metadata. 126
Version generation. Input and output documents. 131
Element substitution, based on links. 131
‘Substitution” link. 132
Text for the example link. 132
Virtual document generation. 133
Elements in link variables. 0o 0oL 134

Variations in citations found in Spanish rules. 136

List of Tables

2.1

4.1

5.1
5.2
5.3
5.4

Vocabulary mapping used in the logical structure capture example. . . . 29
Logical Document Identifiers. 108
Mapping of link fields to XLink attributes. 127
Origin attributes.o Lo 128
Target attributes. 128
Arc attributes. oL 128

ix

LIST OF TABLES

Introduction

Contents

1.1 Motivation and aims

1.2 The proposal

1.3 Implementation Prototype

1.4 Evolution of the work

1.5 Organisation of thethesis

NN o ot

2 Motivation and aims

1.1 Motivation and aims

Digital libraries are advanced, complex information systems that complement tra-
ditional libraries; they provide more resources and services and make the development
of new solutions to users’ problems possible. In addition they have two very highly
valued advantages in the information society: A cheap support for large quantities of
information and the possibility of easy access for all to the information. They provide
access to their resources for a wide range of users, who would not otherwise possess the
ability to gain access to the said resources. The resources of a digital library do not
suffer the greatly feared "wear and tear" that their physical counterparts suffer and it
is not necessary therefore to restrict access to the resources in order to preserve them.
In addition, access to a digital library does not require the user to physically go to the
place where the library is; it is, rather, the library which “moves” to where the user
is, offering its resources via interfaces, in some cases so popular as that of the Web
navigators.

However, these advantages hide an intriguing complexity: digital libraries are mul-
tidisciplinary, the data they store being heterogeneous in nature, format, type, etc., and
the applications used as supports are also generally heterogeneous. To speak of digital
libraries is to speak of such diverse fields of interest as information searching or filter-
ing, the distribution of resources and/or applications, heterogeneity, manipulation of
information and documents, the interaction between man and machine, or the aspects
related to security and legal rights of access to the resources offered. Thus they share
some of their problems and solutions with that enormous source of information available
in Internet, and this contributes to increased interest in them and activity around them.

The documents stored in a digital library can be accessed by the user through
a series of services. Some are “classical”, such as search -which allows users to locate
documents containing one or more key terms- and retrieval of documents. Other services
complement these, thus turning them into advanced systems that can classify documents
and/or the results of queries according to one or more criteria specified by the user. The
user can also manipulate documents and generate other new ones, as well as interact
with the library to “improve” his/her knowledge of the library and viceversa.

Of the possible desirable qualities in a library, the following receive special attention in
this thesis: firstly, the capacity of the library to offer access to heterogeneous documents
through its services, which allows additional information about them to be discovered
(for example, relationships between them), and secondly, that the user should be able
to ignore the existence of multiple versions of the same document or not (as required
by the circumstances). That is, library documents are normally related one with the
other and this information should be accessible, able to be manipulated automatically,
and of benefit to the user and the applications. In addition, the library should be able
to provide users with any version of a document. All this should be possible without
reducing the basic functionality of any library, which means that the new services must
be able to be integrated in a “classical” library.

INTRODUCTION 3

Heterogeneity in documents

In addition to the variety and complexity of the services offered to users, the heteroge-
neity of the information is characteristic in digital libraries. A digital library may contain
heterogeneous data at a structural level (structured, semi-structured, non-structured in-
formation), according to its nature (text, video, audio, ...), its format (.doc, .tex, .fm,
...), etc. Concentrating on the documents, they can be subdivided into structured (made
up of well defined elements between which there is an inclusion hierarchy) and unstruc-
tured documents. Even structured documents can be of different classes: as does the
inclusion hierarchy between them.

However, heterogeneity in structured documents may be due to the diversity of
structures[66], or to the nature of the information they contain. The structures intro-
duced artificially by the information manipulators adequately satisfy the purpose for
which they were designed, but they have the disadvantage of hiding information about
its semantics (and even making it inaccessible) [65]. The possibilities of having access
to digital documents whose structure accurately reflects the semantic structure of the
associated abstract entity are many. Some will be presented when access to internal
fragments, the detection of citations and the modelisation and exploitation of these re-
lationships are commented on. This aspect has, up to now, been undervalued in many
of the implementations of existing digital libraries. Formats and structures where re-
levance is given to the document’s presentation (for example HTML [112]) have been
widely used in these implementations, thus leaving the semantic structure of the do-
cument hidden (see [81, 80, 78, 74]). This problem is not so much due to the lack of
technology to support it (both SGML [75], initially, and XML [117] later, allow struc-
tures and labelling to be defined at will), as to the fact that, as far as documents are
concerned, the urgency of enabling mass access has relegated the aspects related to its
semantics, structure and manipulation to a secondary level.

Relationships between documents

The generic services that can be found in any library are those that allow the search
and retrieval of documents, while the advanced services are defined, in each case, with
respect to the needs or possibilities of each particular library. The classification of the
query results according to similarity of topic, origin, author or other criterium are some
examples. Another desirable aspect incorporated in many libraries is the possibility of
“navigating” the collections: the user starts the exploration in a guide document which
has document references grouped into collections which can, in turn, be subdivided
into smaller collections. Any of the mentioned classifications (the collections are the
result of a classification process) is a reflection of the existence of semantic relationships
between the documents grouped in the same category: documents with the same topic,
documents created on the same date, documents cited by the same authors, etc.

In most libraries these relationships are expressed through links created manually
[26] and those cases where some type of automatic detection of relationships of any kind
have been achieved are very scarce. This in itself is a limitation but, in addition, the
possibilities of extracting the information implicit in the relationships are restricted by
the way in which they are modelled. The most frequently used options are: the already
mentioned one consisting of modelling relationships as links inserted manually in the

4 Motivation and aims

document, or as metainformation associated to documents [23]. The insertion of links
in the documents gives rise to hypertext, and this means that the way of “querying” the
relationships is to navigate through it. Some kind of querying that does not require this
navigation has only been considered in very few cases, and implemented in even fewer:
It can therefore be concluded that the relationships between documents has been, up to
now, a little exploited aspect. However, it is in the metainformation (the relationships
are a particular kind of metainformation) where the possibilities to advance towards a
better semantic use of digital libraries is to be found. This is one of the challenges for
the future and it is in this field where a great deal of the professional and research effort
will be centred.

Manipulating documents

Documents present in a library can be reused to create new documents. The manipu-
lation of documents can consist of a format conversion, so that a copy with the same
content but different format is obtained; for example, the generation of HTML pages
for the final presentation in a user interface is a format conversion. Another example is
the composition of collections, series or journals by the inclusion of articles. This reuse
is really a composition of documents that can be expressed as a set of links between
the framework document and its fragments [109]. Even more interesting is the reuse of
fragments of documents instead of complete documents. The manipulation of fragments
requires the characterisation and access to the fragments of other documents, which is
possible if the work documents are structured.

Document versions

Over time, documents can be modified, which gives rise to new versions of the modified
document. These historical versions, which owe their name to the temporal factor of the
changes, coincide partially in their content, the part affected by the modification being
different. In some cases it is interesting to have (or be able to obtain) all the versions
of a document; this is the case, for example, for the historical versions of the preceptive
documents in the legal sphere, which must be read exactly as they were at the time a
sentance was given for it to be understandable. Also, in some cases, authors describe
these modifications as a new document or part of another document, so the original
version, the modified version, and the document containing the modification (which is
a separate document with its own identity) coexist. For each modification, the author
cites the document fragment in question and indicates how the said fragment could be
modified (eliminating it, substituting it, ...).

The existence of multiple versions of a particular work implies a relationship bet-
ween them, and this has been dealt with as a question of maintaining the database
and the links between the different versions of the same document stored [38]. The
difficulties of this approach arise from the risk of an explosion in size in the database if
the modifications are frequent or if the documents with different versions are very large;
while for the maintenance of the links, each link that affects a document can affect all
its different versions.

INTRODUCTION 5

The architecture of digital libraries

The architecture of a digital library is defined according to the functionalities required
in it. It should facilitate the distribution of tasks among the services of the library. It is
possible to extract a reference model for the basic functionalities: queries, document re-
trieval and navigation'. There are also proposals which concentrate on services oriented
to the treatment of relationships: detecting semantic relationships of the type citation
[?], management and maintenance of the library links [32, 97], and others which enable
users to create links [33]. The integration of databases and services requires a protocol
to regulate the interaction between the services participating in each operation. The
incorporation of new services supposes a modification of the system: its interaction with
the existing services means the protocol must be enriched.

Once the implementation phase is reached, in practically any library, it is possible
to find indexing and search components, as well as a user interface to implement the
basic services, alongside the databases (documents, metadata, others). In the case of
heterogeneous (and/or distributed) libraries, there are also “integrating” components?.
Finally, the fact that the documents (or data in general) that make up the library
can, in turn, be distributed among different elements and databases should be taken
into account, as this means that the architecture of the data must be considered. The
incorporation of a new service supposes the incorporation or substitution of a component
or set of components, whose cooperation implements the whole group of services of the
library: the new service and those existing previously.

The services designed for the manipulation and exploitation of relationships are
scarce and mainly concentrate on the management of the links [33] or the above men-
tioned citation detection. The exploitation of relationships and manipulation of docu-
ments have not yet been integrated into many libraries or protocols.

1.2 The proposal

The objectives outlined in the previous section include the extraction of information
in the documental libraries on the relationships between documents and the use of some
of this information as part of the generation process of new documents (to be precise
versions of documents). The incorporation in a digital library of services “oriented to
relationships” is considered, so that each service can be accessed through a series of
interfaces which form part of the interaction protocol between these services and the
other services present in the library. It would seem feasible to get an architecture based
on a basic services model, so that the new proposals can be integrated without affecting
the existing services. It is assumed that it is the structured documents which allow
fragments to be reused in the composition of new documents. However, to obtain really
advanced services and semantically coherent documents in document generation, it is
essential that the structure of the digital documents stored in the databases of the library

'Navigation is a later addition than the services of search and retrieval of documents, but because
of its widespread use in libraries (in degrees of variable sophistication) and the fact that the libraries
created in recent years incorporate some kind of navigation, it can be considered a classic functionality.

2These components can also be refered to as “mediators”.

6 Implementation Prototype

accurately reflect the semantic structure of the abstract entity that the digital copy
represents. Only if the logical structure associated to the abstract document is taken
into account, is it possible to obtain a digital copy so as to be able to model and exploit
the relationships between documents, with a maximum level of granularity, as well as
create new documents where the historical modifications suffered will be reflected. Given
its semantic origin, the necessary structure is obtained from the document content.
The most adequate way of achieving this would seem to be the most natural: the same
method that allows a reader to create a mental image of the said structure while reading
any copy of the document from start to finish.

It is not considered necessary to store the copies corresponding to the different
versions of a document: it is possible to generate them, provided the modification
relationships between documents have been adequately represented. The possibility
of obtaining an adequate representation for the relationships between documents and
their fragments, and the (prior) detection of these modifications are closely linked to the
availability of the document structure. An adequate representation of the said structure
allows the link between the fragments mentioned in the texts and the fragments that
are part of the stored documents to be established. In addition, if it is possible to
address the said fragments, the integrity of the document in which they are located can
be maintained, while, at the same time, the fragments can also be reused in as many
operations as necessary. It would seem possible to generate the versions by deducing
the rules of composition of the virtual document being created, instead of storing the
composition rules directly. The initial hypothesis is that, given a graph containing the
information on the structure of a document and the modifications that affect it, it is
possible to consider a traversal of this graph in such a way that the new version is
created during the traversal of the said graph.

1.3 Implementation Prototype

The exploitation of the relationships and access to multiple versions of a document
are necessities which are especially relevant in certain environments where the manipu-
lated documents have a rigid semantic structure. This is the case with legal documents,
that include all the characteristics of interest in this thesis: they are highly structured,
closely interrelated one with another and a jurist needs to have access to the version
of a document (for example, a law) as it was at a particular moment in time. The
differences between different versions are due to partial modifications to the content of
the document, in such a way that each modification gives rise to a new version. Given
their temporal nature, they are considered to be historical modifications.

The prototype where the theoretical proposals of this thesis are implemented is a
digital library of legislative information. It is a specially interesting environment, with
the additional peculiarity that the modifications are, in turn, expressed as part of the
content of a document where the affected document is cited, in order to then include
the modification.

INTRODUCTION 7

1.4 Evolution of the work

This thesis began by defining the aims, influenced by the needs as far as functio-
nalities are concerned. These aims are then considered in an environment such as that
of the prototype. Thus the need arose to gain access to the versions of a document,
to exploit the relationships between documents and to have a semantically structured
copy of any document that is to be automatically versioned. From this starting point,
the work continued in a series of stages that correspond, almost unidirectionally, to the
organisation in chapters of this memory:

e The stage following the definition of the aims was the expression of these requisites
as a set of services. The principal initial requisite was to consider them as services
which could be incorporated into a library, thus enriching its functionalities.

e The possibility of having some means to express the semantic structure of a do-
cument was then investigated: to obtain a copy of the document that reflects
the said structure and allows access to its fragments. The result of this stage
was an algorithm to obtain a copy of a document whose logical structure reflects
the semantic divisions of the abstract document. Entry to the said algorithm is
through one of the copies of the document whose logical structure does not reflect
the semantic divisions. The algorithm analyses the content of the document to
detect the semantic divisions.

e Once the properly structured documents were available, the representation of
the modifications and relationships as heterogeneous links was considered. The
associated information was stored in a labelled links database, from which the
graph needed for generating new documents could be recomposed. An algorithm
for the generation of versions traverses this graph, using the structural tree of the
versioned document as support, and progressively constructing the new version
with each step on the traversal.

e Finally, the automatic detection of the relationships was implemented in the pro-
totype, on the basis that the said relationships are detectable as citations between
documents and that positive experiences exist in the detection of citations in legal
documents.

1.5 Organisation of the thesis

Chapters 2 to 4 deal with the first three points mentioned in the previous section.
Each chapter includes a review of the state of the art in that field, the proposal and a
final section where it is compared to other previous proposals and the relevant aspects
of the proposal presented are analysed.

Chapter 2 introduces the differences and similarities between the abstract docu-
ment as an entity and its corresponding digital copies: those with the same content
but different formats, etc. It is thus possible to state the proposition of the chapter:
An algorithm to obtain a digital copy of a document whose logical structure accurately

8 Organisation of the thesis

reflects the semantic structure implicit in the conceptual document. Given that struc-
tured documents are the only ones able to exploit the relationships of interest in this
thesis (those affecting parts of a document and not only entire documents), attention is
focused on this aspect and an algorithm that allows a semantically structured document
to be obtained from one whose structure does not comply with the semantic criteria
is considered. The use of XML is proposed as the ideal standard for modelling the
logical structure of a document, and the implementation of the convertor algorithm on
a tool for manipulating XML documents is considered, as this would simplify the lexical
analysis.

The existence of many types of relationships between documents gives rise to a la-
belled graph in which the vertices are not mere documents, but fragments of documents
affected by the relationship. The exploitation of this graph, obtaining partial graphs
and subgraphs from the original, and querying the said graph allow new documents to
be generated. Chapter 3 looks at some types of relationships: structural, citations and
modifications. The structural relationships were obtained in the previous chapter, as
they are hierarchical relationships in the tree associated to the logical structure of the
document. An algorithm for generating historical versions is considered. It is based on
a recursive treatment of the versioning graph obtained from the tree associated with a
structured document and the links that represent the modifications which affect frag-
ments of the said tree. The information on this graph can be stored as a links database,
in such a way that the traversals on the graph become queries to the links database. The
implementation of this algorithm also allows the languages provided by XML to address
the subtrees in the documents (XPath [115]) to be used, as well as its contributions to
links modelling (XLink [119], XPointer [116]).

Chapter 4 gives a brief review of the most usual services in digital libraries and an
update on the functionalities offered in some digital libraries, their expression as services
and their impact on the architecture and protocols used. In this chapter, an architecture
is proposed in which classical services are incorporated into digital libraries alongside
the new services dealt with in this thesis: that is, the exploitation of relationships, the
manipulation of documents and querying relationships. Document translation services
are also integrated, thus allowing a structured document to be obtained through its
semantic structure. The services proposed in this chapter correspond th the algorithms
described in previous chapters.

Chapter 5 is dedicated to the prototype. The document databases on which the
above proposals have been tested are presented. The chosen documents are heteroge-
neous with respect to the type, some of them being highly structured. They are thus
the preferred candidates for experimentation on the algorithms presented in chapters
2 and 3. The possibility of automatically detecting some of the relationships used in
chapter 3 is also commented on, as this would enable the relationships considered to
be dealt with completely automatically. However, this kind of detection is itself an area
of research, thus restricting its inclusion in this work to the feasibility of the said au-
tomization in certain fields with well defined conditions, as is the case of the prototype
considered here.

Finally, chapter 6 summarises the conclusions arrived at in this thesis.

Documents in digital libraries

Contents
2.1 Documents @ i i ittt e e e e e e e 11
2.1.1 Abstract document, document copies and document versions 11
2.1.2 The Document logical identifier 12
2.2 Structured documents 13
2.2.1 Document structures 0 13
2.2.2 Capturing the logical structure of documents 15
2.2.3 Documentclasses. 16
2.2.4 Standards for structured documents 19
2.3 Documents in the legal domain 21

2.3.1 Abstract document, document copies and document versions 21
2.3.2 Structured documents 22
2.3.3 Standards for structured documents in the legal domain . . . 22

2.4 Proposal for content-based semantic logic structure capture 23

2.4.1 Inputs to the algorithm 24
242 OULPUL .« o oo 26
243 Anexample oL oL 26
2.4.4 The extraction algorithm 28
2.5 Application to legal documents 37
2.6 Discussion v i v i ittt e e e e e e 37

10

Documents are the main elements in digital libraries. However, the definition of such
a concept is not precise and when used, there is only a general understanding of what a
document could be in the context the term is used. This derives from the fact that the
mental representation of what a document is can differ from one community of users
to another. As digital libraries offer services to various communities, one such service
is retrieval of documents. When a user asks for a document, he/she has an abstract
entity in mind that may not match exactly any (digital) document in the library, or it
may match more than one document. In these cases, the required document has to be
composed on demand to deliver it to the user, or the user is asked to select a copy from
the set of candidate document copies. If the document to be delivered to the user is
obtained by composing fragments from several documents, it is easier to accomplish this
task if working with structured documents. Different document structures may be asso-
ciated with a unique document. These structures can describe the document content,
the document’s physical aspect or how the document can be obtained by composition
of document fragments.

Documents made by composing well-delimited pieces of content (that can present an
inclusion hierarchy between them) are said to have a logical structure. Sets of documents
that have similar logical structures (they share the set of division types allowed, as
well as the inclusion rules permitted between components) constitute a document class.
Such classes have grammars that define what elements can be found in any document
of the class, as well as the inclusion rules between them. These grammars, as well as
the documents themselves, can be described by means of specially designed standards.
Hereafter, attention is centered on the XML standard. XML is well suited for structured
documents, and provides its users with tools that facilitate their description. It also
facilitates their manipulation, taking advantage of their structure (this aspect is dealt
with in the next chapter).

As the concept of what a document is can differ from one community to another, this
can also happen with the idea of which document components are permitted in a class of
documents. That is, a document can have different logical structures, depending on the
author that created it. One of the most interesting structures to have available is the
abstract structure implicit in the document content semantics (that exists even before
any physical copy of the document entity is created), due to its inherent semantics and
the possibilities it offers for treatments that exploit it. Given that, at the moment of
copy creation, the criteria used by authors to structure the digital document are mostly
formatting considerations instead of the semantic division of the abstract document,
there is a need for an algorithm able to capture the semantic structure of a document,
and to create a document copy whose logical structure accurately reflects the abstract
document semantic structure: a semantically structured representative. The input to
such an algorithm would be one of those document copies that do have arbitrary (non-
semantic) structures.

There are three possibilities to consider about existing document copies: the input
copy is tagged and its DTD is known, the input copy is tagged and there is no knowledge
about its DTD and, lastly, the input document is not tagged. The case considered
in this chapter’s proposal is the second one: input documents that are tagged, but
whose DTD is not known. Tagged documents become more and more frequent with the
expansion of markup languages, which makes this situation more probable. The first

DOCUMENTS IN DIGITAL LIBRARIES 11

case , that where the input DTD is known, is the one considered when talking about
DTD transformations [27]. And the third one (the input document is not tagged) will
be discussed in section 2.6 as a simplification of the situation considered by this thesis
proposal.

The semantic structure will be valuable -as explained in chapter 3- for detecting
references between documents, and for exploiting them. Legal document databases are
good examples of documents with a precise semantic document structure, associated to
the abstract document, which can be extracted from whatever copy of the document.

2.1 Documents
2.1.1 Abstract document, document copies and document versions

There is no precise definition of the concept document as used in computer science.
According to the Spanish Diccionario de la Real Academia de la Lengua a document
is algo que da testimonio de algo (something that gives proof of something). This
definition is not very suitable when speaking about a digital library that has documents,
considering one of the properties required in a digital library (presented in chapter
4): digital library users want intellectual works; that is, they access the library with
the aim of manipulating intellectual documents, not digital files. The idea of what a
document is can be different in various communities. For example, a document can be
an abstract entity for a user of the library, and a physical file or web page for the library
administrator. Moreover, the abstract entity of the user may match several copies in
the library, or correspond to the composition of fragments coming from several library
documents.

A similar idea can be found in the IFLA report [72]', which specifies the difference
between work, copy, and manifestation:

A work is an abstract entity; there is no single material object one can point
to as the work. We recognise the work through individual realizations or
expressions of the work, but the work itself exists only in the commonality
of content between the various expressions of the work. When we speak of
Homer’s Iliad as a work, our point of reference is not a particular recitation
or text of the work, but the intellectual creation that lies behind all the
various ezpressions of the work.

Similar considerations have been taken into account in some different digital library
contexts. The NCSTRL [42] digital library architecture (presented in chapter 4) design
includes the data architecture, to reflect the fact that a document may have several
copies corresponding to different formats. They hide this information during all the user
search process, only informing the user of the existence of such copies at the moment
of document retrieval in order to ask him/her which one to retrieve. Other authors

! An equivalent classification was made in Europe under by the indecs (interoperability of data in
e-commerce systems) [73] initiative.

12 Documents

[14] make the difference between copies -different formats- and renditions, which are
versions of a document where the content has suffered modifications.

Given that throughout this chapter we will talk about documents, we adapt the def-
initions that are fundamental to understanding the rest of this manuscript. An abstract
document is the abstract entity an author or user has in mind; it corresponds to the
work. Similarly, a document may have several copies corresponding to different formats
(.doc, .pdf, plain text, .xml, etc.). All document copies share the same content; their
only difference is in formatting aspects. The application of modifications to a document
content results in document versions -note that they would be named expressions in the
IFLA ontology-.

Example 1. Modifications originating different versions are frequently made of songs,
theatre plays, technical books, course notes from one year to the next, laws, and others.
O

Example 2. Tegal documents, as for example rules, are entities that exist independently
of the presence of copies of such documents. Moreover, the aspect (paper, electronic
version, fragmentation of text in pages) of such copies is irrelevant, as the valuable
information of these documents is in their content. OJ

2.1.2 The Document logical identifier

In the previous section it was explained that there can be several copies and versions
of a given document. The question now is: “ What does a user refer to when interacting
with a digital library: the abstract document, the copy, the version?. How are these ver-
sitons managed in a digital library? Are the properties of a copy or version different from
the properties of the abstract document? And, if not, how does the system differentiate
them?.

A first set of properties of a document can be distinguished that are proper to
the intellectual object, and thus shared by all its versions or copies. These properties
are metadata that provide additional information about the object or document. For
example, the author of a novel is a valuable piece of information about the document.

When a user talks about a document, the intellectual object is normally identified
first (the Bible, the Iliad, the LRU law, ...). This description is usually sufficient to
identify the object. Only in some cases is it of interest to specify the version (version of
the LRU at the present moment) or the copy (the postscript file, the ascii copy, ...).

Document identifiers should have some properties to facilitate the manipulation of
the metainformation and objects associated to a given document. The permanence of
these identifiers, which make for easy maintenance, should also be guaranteed. The
first requisite is that there is a unique identifier associated to a document and all its
copies/versions. The benefits of such a policy are many: more user-friendly identifiers,
location-independent identifiers, etc.; a detailed explanation that completes our argu-
mentation can be found in [31]. Properties of such identifiers include unigqueness and
multiple resolution. Uniqueness guarantees that an identifier is unique in its names-
pace. If namespaces are well managed, uniqueness will be preserved in larger universes
by adding the namespace identifier to the document identifier. Multiple resolution deals

DOCUMENTS IN DIGITAL LIBRARIES 13

with potential access to all versions/copies of a document from the document identifier.
There can be several copies of a given book (for example, the Bible). These copies can
be in different formats, and may even be fragmented in several files. Nonetheless, when
a user requires a copy of the Bible, this identifier clearly designates a unique work, of
which several copies can be offered. That is, there is a Document Logical Identifier,
associated to the work or abstract document.

The question of identifiers is of great interest in the reference linking ? domain [31].
Multiple definitions of what an identifier is and work to try to discover, treat or resolve
identifiers in the most appropriate way, have emerged in this area. The Serial Item and
Contribution Identifier (SICI) [87] standard provides rules for calculating identifiers for
journal articles. The Digital Object Identifier (DOI) [94]. This standard defines a stan-
dard way to characterize an abstract work. This identifier is an implementation of a
Uniform Resource Name, and it establishes a series of fields that inform an applica-
tion about document copies, their location in the library collections, the provider, and
some more information that could be useful for some applications. Other identifiers
used in reference linking are the ISSN (International Standard Serial Number), with an
internal article identifier that discerns articles in the publication. Metadata about the
documents is, therefore, related to the document identifier.

2.2 Structured documents
2.2.1 Document structures

Several types of structures can be associated to a document |7, 5, 59]. Classification
varies from one author to another [66, 30, 106]. In any case, there is general agree-
ment about the two main types of structures: physical or layout structure, and logical
structure. The logical structure of a document shows it as the composition of abstract
objects. The layout structure is associated to the physical placement of text on a page.
A third type of structure is considered by some authors [106]: the content structure,
which describes the purely semantic relationship within documents.

The layout structure divides a visible representation of the document into rectangu-
lar areas. It is the structure found in graphic formats.

The logical structure characterizes a document by the hierarchy obtained from the
containment relationships between abstract objects; relationships such as those formed
by references in the text do not form part of the logical structure. Parts of a structured
document have type [58]. For example, an article or a book may have parts of type
chapter, section, etc. The logical structure can be represented as a tree, where relations
between nodes in the tree represent the inclusion hierarchy between document compo-
nents. Document contents are always placed at the lowest level of the tree hierarchy.
Documents that have a logical structure are called structured documents, in contrast to
those where information is found as a chunk of text.

2Reference linking is the general term for links from one information object to another. It is mainly
concerned with relationships derived from citations, which is why it is also referred to as Citation
linking.

14 Structured documents

article|

‘ abstracl‘ ‘ introductiod ‘ matherials & methoxH result# ‘ conclusior{ ‘acknowledgmenis‘ reference*

Figure 2.1: Logical structure of a scientific article. The lowest levels (paragraphs and content) are
not represented, to keep the figure clear.

Example 3. Figure 2.1 shows the logical structure of a scientific article. This article
is composed of a title, author information, an abstract that summarizes the content,
an introduction, the presentation of material & methods used for experimentation, the
results obtained, a discussion explaining the results, acknowledgements and references
cited in the article. The Results include a table providing a visual overview. [

Logical structures can be classified as content-oriented or layout-oriented [106]. A
logical structure is more content-oriented than another if its definition relies more heavily
on internal content semantics; a more layout-oriented structure has a definition that
relies more heavily on visual presentation (this means that some authors consider them
as layout structures, even if they do have an associated tree that other layout structures
do not have). Content-oriented structures require linguistic cues, as their structure is, in
most cases, embedded in the content of the document [106]. Layout-oriented structures
make automatic searching in documents difficult, as searches are commonly done with
semantic criteria, not formatting. A well known example of layout-oriented structure is
that of HTML pages, where document components are defined according to their final
aspect in a browser.

Example 4. The article in example 3 could be found as an HTML page. In this case
the content would be exactly the same, but the fragments would not be the ones in
figure 2.1. They could be something like a sequence of h4, h3, p, and other HTML
elements. OJ

The advantages of having the structure of a document are many. Access to document
components allows them to be reused to compose new documents [14, 96]. Linking is
improved when accessing the part of a document of interest [121, 109, 53], thus also
improving navigation [40], and queries about documents can be refined to make sure
that a search term is only of interest if it appears in a concrete part [1] of the document.
The use made for linking and link querying in this thesis will be shown in chapter 3.

Multiplicity of structures for a document

The logical structure of a document divides and subdivides it into items meaningful to
the human author or reader; since the logical structure is based on the “meaning” of
the document parts, there is no single, unique, logical structure for a given abstract
document.

Example 5. The trees in figure 2.2 are two different representations for the same
Spanish rule, which could be found in different collections. As can be seen, they are very
similar, but some subtleties, that do not affect their content, differentiate them. The

DOCUMENTS IN DIGITAL LIBRARIES 15

@ ﬁ ‘ aniculo‘ ‘ articulo‘ articulo‘ ‘ aniculo‘

B O i (5] (5 [5]] [5]

Figure 2.2: Two different logical structures for the same Spanish rule. The content (not shown in
the figure) is the same, but the organization into logical parts is slightly different.

leftmost structure considers the document divided into two main elements: preambulo
and capitulo. To the right, there is a division of the document into an element of
type p and a capitulo. Yet more interesting is to see how the articulo elements are
obtained in each case. When considering all the text of an articulo to be enclosed in
an element p in the left option, the hierarchy to the right differentiates two elements
in every articulo element: a title, and a p. Despite this difference in structure, the
content is exactly the same in both cases. That is, we can state that it is the same
document with two different structures. [

One common source of multiplicity in structures for a document is due to docu-
ment copies created with formatting criteria in mind (layout-oriented logical structures).
These structures are poor from a semantic point of view and difficult to exploit for re-
trieval or document manipulation purposes.

2.2.2 Capturing the logical structure of documents

The advantages of knowing the structure of a document, make this an active research
field. The structure of documents is not always directly accessible from the available
document copy. Sometimes input documents are images [19, 70]. When the input
consists of files where the information has been stored according to layout criteria [123,
107], the document logical structure can be recognised by using layout cues or content
information; a revision of this problem and aspects related to it can be found in [106].
There are other cases where the input are markup documents [102, 83].

The problem that has been generally dealt with is the discovering of the grammar
that describes the logical structure. There is no knowledge of the target grammar, so
layout cues are used to deduce the logical structure of the document. This being a
difficult process, it is helped either by the availability of a subset of documents whose
structure has been extracted manually [123], or by analysing the document in several
steps such that each step adds some information until the complete structure has been
recognised [107, 38|.

There are other cases where the problem is centered in a single document: the
goal is to discover a document logical structure (the class grammar is known or it
is not meagninful). The utility proposed in [83] takes HTML documents as input and

16 Structured documents

discovers the containment relationships between HTML elements reached from the input
document. It is a hierarchy discovery; the elements in the output graph are the same as
they were in the input document, but the previously unknown containment relationships
between them are now known. A second approach is presented in [102]; they use content
cues to detect the presence of concept components inside a document, whose division into
components is known. They divide the input document into contexts that are analysed,
searching for the appearance of concepts; these concepts belong to a known collection of
input concepts. Morphological cues, some knowledge of relationships present between
input document contexts and concepts searched for, as well as concept taxonomies help
them to recognise the presence and limits of the searched concepts inside input contexts.
The problem dealt with in this thesis, to “find” a document logical structure, can be
included in this last group. The comparison with these approaches will be done in
section 2.6.

2.2.3 Document classes

What is a document class?

Documents that have a similar structure form a class, to which a generic logical structure
can be associated. This structure is defined by a set of rules common to all documents
in the class: types of elements that can appear within an instance of the class, which
are the allowed containment relationships between these elements and properties that
characterize each type of element (content type and -optionally- additional attributes).
If there is a document that does not comply with some of the conditions attributed to
the document class, it is not an element of the class.

These hierarchy properties, common to a set of structured documents, can be de-
fined by using contezrt-free [69, 37| grammars, or by a tree-like document model [59].
Generic logical structures describe how the documents of the class are constructed. A
class general logical structure contains definitions of objects, while a document contains
instances of these objects. The tree representation provides a quick visual idea of what
the composition hierarchy between components is.

Example 6. Scientific articles are divided into parts. Besides title and author infor-
mation, there is an abstract that provides a general idea of the subject to be developed
in the article. The abstract is followed by an introduction about the state of the art in
the working area, and the presentation of objectives. Next, there is a description of the
material and methods used in experiments. Following that, there is an enumeration of
results obtained with each technique. Interpretation and comments on the results is the
part called conclusion. Actually, this part is optional, as it can appear as an indepen-
dent object, or be embedded inside the results. Acknowledgements and bibliographical
references close the article.

This generic structure (the matching tree can be seen in figure 2.3) is common to any
scientific article, no matter the subject it deals with. Some articles may have one figure,
others may have several figures, others only a table; but all of them share the same basic
rules governing their structure described above. Consequently, scientific articles are a
class of documents, characterized by sharing this common basic structure. Variations
such as those described (number of elements of a given type, further subdivisions) are

DOCUMENTS IN DIGITAL LIBRARIES 17

aicle

‘ abstraﬁt ‘introductioﬁ ‘ matherials & methobs‘ result# ‘ conclusior{ ‘ acknowledgmen{s‘ reference}

‘ figure‘

Figure 2.3: General logical structure for the “scientific article” document class. The lowest level
(paragraphs) is not represented, to keep the figure clear. The example in figure 2.1 is
an instance of this class.

conclusiod

particular to every instance of the class (to every particular article). O

Example 7. Spanish rules have an implicit and accurate grammar that describes
any rule as the possible composition of a certain set of components. Hierarchy rules
restrict what components may appear inside other components, as not all components
are permitted to appear inside another element. These restrictions can be expressed
with the grammar in figure 2.4. The tree in figure 2.5 also shows this hierarchy between
Spanish rule elements.

All rules may have a first part of text, followed by a sequence of some elements
(libro, titulo, capitulo, seccion, articulo), whose presence is optional. For
every type of element, there is a subset of elements that may appear inside it. For
example, an element of type 1ibro may be composed of several elements of type titulo,
capitulo, seccion, or articulo. This hierarchy continues to the last level in the
hierarchy, where the text is found, organised in paragraphs (elements of type p). The
most relevant quality of this hierarchy is that it is strictly forbidden for an element of
an upper level to appear inside an element in an inferior level (for example, there can
never be a capitulo inside an articulo); this property can clearly be seen in the class
tree of figure 2.5. O

<morma > u= < p>"(<libro>|< titulo >|
< capitulo >|< seccion >|< articulo >)*

< disposicion >*

<libro > u= < title >?(< titulo >|< capitulo >|< seccion >|
< articulo >)T
< titulo > == < title >?(< capitulo >|< seccion >|< articulo >)*
< capitulo > = < title >?(< seccion >|< articulo >)*
< seccion > u= < title >?7 < articulo >T
< articulo > 2= < title >?<p>T
< disposicion > u= < title >?<p>T

Figure 2.4: Grammar corresponding to Spanish rules.

18 Structured documents

Figure 2.5: Partial representation of the tree for the Spanish rules document class. The contain-
ment hierarchy between components is mapped to the tree nodes’ descendant hierarchy.
Wherever a node of a given type X appears, the subtree with X at the root should appear
in a complete tree representation.

Benefits of having the document class generic logical structure

Structured documents are widely appreciated in document manipulation applications
like editing, formatting, and document composition. The availability of a generic struc-
ture together with documents that conform to it offers the possibility to improve such
applications.

Formatters can use a declaration of formatting instructions for each generic element
in the document class; there is no need to relate each document to all kinds of formatting
directives, since they can be defined once for all the documents in the class. Translators
can follow general conversion rules, applicable to all documents in the class, using a
transformation grammar [76, 58]. Editors take advantage of the structure not only for
the presentation but also to manage the inclusion and elimination of elements by the
user [28, 84, 85|. It is also possible to transform a document instance to another one
matching a different logical structure[60]; knowledge of input and target classes allows
a series of transformation rules to be established between the two classes® [28, 84].
Querying documents can be done on structure; the query needs a document to be
retrieved only if the search term appears inside a certain element. Documents can be
composed [57, 6], assembling pieces extracted from documents, by declaring the rules
that express how to assemble those pieces.

3When it is concerned with SGML or XML -explained in subsection 2.2.4- this is known as DTD
transformation.

DOCUMENTS IN DIGITAL LIBRARIES 19

2.2.4 Standards for structured documents

A document’s structure is additional information about it that has been stored in
different ways at different times. In general, the approaches are: to store the structure
separately from the document content, or it to store with the document content. Initial
works with structured documents tended to store it separately, as there was no simple
way to do it otherwise [3, 99]. Markup languages came with a solution to keep together
structure and content, and therefore, ease structured document manipulation. SGML
and XML are the most popular markup standards. They also have some valuable
properties as data interoperability, semantic data description and legibility.

SGML and XML

The Standard Generalised Markup Language (SGML) [75] is an international standard
for the definition of device-independent, system-independent methods for representing
texts in electronic form. SGML provides the syntax to describe the logical structure
of documents. It allows a structured document to be modelled, interspersing markup
elements within document content. Markup consists of opening and closing tags, that
surround pieces of text. In other words, the markup establishes where a document
element starts and where it ends. SGML appeared in 1986, and since then its most
popular application has been the HyperText Markup Language (HTML) [112], widely
used in the Internet.

The Extensible Markup Language (XML) [117], which is a simplification of SGML,
was defined to solve some problems (most of them syntactic ambiguities that an au-
tomated application is unable to resolve*) detected from the experience with SGML
and HTML. XML is supported by the World Wide Web Consortium (W3C), and the
current recommendation dates from February 1998. XML documents have more restric-
tive syntactic rules than SGML documents. The minimal set of characteristics that a
document has to comply with to be XML-conforming (that is, to be processed by an
XML application) is reduced and simpler.

XML is extensible: it allows tag names to be created. Element names in an XML
document are chosen by the document creator, permitting tag names to be chosen
derived from the semantics in the document, and not from its format. This characteristic
is the crucial one of XML, as it is the one behind descriptive markup: the tags around a
chunk of text do not tell how to format it, or what to do with the document; they just
say what it is. This is a major difference between XML and HTML: XML decouples
the document from its presentation. While in HTML the name of the element is more
related with the aspect the element will have when the document is presented to the
user, in XML it is possible to use completely semantic tag names, and describe later
formatting rules with stylesheets (CSS [110] and XSL [111]).

XML was created with the aim of being easily understood, easy to use, and to provide
interoperability. It frees applications from formatting clues and -yet more important-
it is possible to define namespaces [114] to treat semantic interoperability, for example,
when exchanging data. Any document claiming to be XML conforming can be treated
by an XML processor that will parse it and reject it if this is not the case; the problem

“See reference [29] for a comparison of SGML and XML.

20 Structured documents

of poorly tagged documents, which often occurs when using HTML and may cause an
application crash is eliminated.

There are standards associated to XML, ruling how to add format to document
classes (CSS and XSL), how to model links between XML documents (XLink [119],
XPointer [116], XPath [115]). There are also tools to describe metadata (RDF [118]),
and others that can be found in the W3C XML page®.

The aspect of XML documents

Logical items in a marked-up document are referred to as elements. Each element is
introduced by a start-tag and terminated by an end-tag. The content of the element
is between the element tags and may contain further tags corresponding to nested
elements. Elements may have properties, represented with attributes. Attributes are
specified in the start tag of an element. Documents may also contain entities which
reference external files, or that are abbreviations for constant strings.

An XML document is said to be well-formed if

e All tags are there.

e The begin and end tags match (with the possible exception of empty elements).
e All the attribute values are quoted.

e All the entities are declared.

An XML document is valid if it is well-formed and there is a document class general
logical structure® it conforms with. This structure is described by means of a Document
Type Definition (DTD). A well-formed XML document can be treated by an XML
processor’ .

The Document Type Definition

Both SGML and XML allow a DTD to be attached to a document. DTDs describe
which elements are allowed in a document class, and the permitted inclusion relation-
ships among them. DTDs are the formalism provided by SGML (and XML) to model
document class grammar rules in such a way that they can be treated by an application:
all documents in a class conform to the same DTD. Attributes and entities must be de-
fined in the DTD, which may be included in the same file as the document instance, or
reside in a separate file.

Example 8. Figure 2.6 is a fragment of the DTD for Spanish rules. It includes an
entity definition: 1ibro.md1 that is used later in the DTD, when declaring the element
libro. If the content of the entity is replaced in the element declaration, the result is an
element of type 1libro composed of an optional element title, followed by a sequence
of one or more elements of any of the types articulo, capitulo, seccion, titulo.

Shttp://www.w3c.org/xml

5The general logical structure specifies which are the elements allowed and the allowed relationships
between them.

"This is a main difference with SGML, where all documents must conform to some DTD.

DOCUMENTS IN DIGITAL LIBRARIES 21

The only attribute of an element libro is an identifier that uniquely distinguishes the
element from all other elements in the document. The attribute type is declared to be
IMPLIED; that is, the attribute is of optional appearance in elements and there is not
default value for it. [

<!ENTITY % libro.mdl
"articulo|capitulo|seccion|titulo">

<'ELEMENT libro (title?, (%libro.mdl;)+)>
<'ATTLIST libro id ID #IMPLIED>

Figure 2.6: A DTD fragment extracted from the “Spanish rule” class DTD.

The most popular DTD in SGML is HTML. HTML has been widely used to create
Web pages. This has contributed to SGML popularity, but at the same time, the
flexibility in HTML has given rise to lots of poorly structured pages, from which it is
difficult -or even impossible- to extract semantic information. For example, searches of
document abstracts, when these documents are HTML pages, are not evident as there
is no tag in the DTD HTML to express such semantic concepts. That is, with HTML,
documents are modelled according to formatting criteria. Now, there are proposals
for HTML conforming to XML, called XHTML [113], that will facilitate the syntactic
treatment of these documents, even if the semantic problem persists.

There are also DTDs whose purpose is to describe the general structure of docu-
ments. DocBook [120] is an SGML DTD maintained by the DocBook Technical Com-
mittee of OASIS. It is mainly oriented for use with books and papers about computer
hardware and software. One more DTD in the SGML environment is the TEI [103].
The Text Encoding Initiative (TEI) is “an international project to develop guidelines for
the preparation and interchange of electronic texts for scholarly research’. Work on this
DTD began in 1987, when XML had not even been proposed. So, in its origin, it is an
SGML DTD, while there is now an XML version. Its aim is to be general enough to al-
low modelling as many types of documents as possible, while permitting elements in the
document to be characterized with attributes giving semantic information. This DTD
has lent some important things to XML -such as XPointers-, which, in part, explains
why activity around this DTD has declined while XML has gained acceptance.

2.3 Documents in the legal domain
2.3.1 Abstract document, document copies and document versions
Legal documents exist independently of the way they are stored in a computer

system [3]. For example, when talking about a given rule, everybody identifies the rule
immediately despite whether the document is presented in one system or another, or

22 Documents in the legal domain

whether it is possible to access the complete text.

There may be several copies of a document with different formats. This is common to
any document that is digitalized. However, concerning “official” documents in particular
(laws, decrees, etc.), these documents are of a type that suffers several modifications
during their life, resulting in different versions of the document.

2.3.2 Structured documents

Legal documents, such as rules and jurisprudence, are very well structured docu-
ments. They have a semantic structure that is fixed and strictly kept in every new
document produced. That structure is useful for professionals to locate internal parts
in large documents (for example, some rules take up tens of pages), and to find the por-
tion of the document of interest at any moment. Indeed, references inside documents
to other legal documents are in many cases references to internal fragments. Moreover,
as they are used to take advantage of such structures, jurists, being conservative, tend
to maintain these structures.

So, this is a domain where it seems an interesting thing to have a document repre-
sentative where the semantic structure of the abstract document is somehow reflected
[14, 56]. This would permit some manipulation of legal information to be automated,
give jurists the possibility of profitting from utilities that help them in their daily work,
and also ease access to these -sometimes difficult- texts for common people. Given that
legal documents are of a certain class (rules, jurisprudence, ...), the structure of a given
document and all its copies conform to the same set of rules (general logical structure).
Actually, even if the document is modified, there will be little difference between the
structure of two versions of the same document. The tree structure will be very similar.

Among the advantages of structured documents in general, it is of note that the
structure of legal documents is intensively exploited in document references. It is also
of great usefulness for composing documents [14] and obtaining navigation hypertext

[3]-
2.3.3 Standards for structured documents in the legal domain

The way to store the structure of documents in the legal domain has evolved with
the appearance of new standards applicable to structured documents. Those approaches
where the structure is kept separately from the document content [38, 3|, have given
way to those where the structure forms part of the text of the document [56, 12, 65,
55]. XML allows a document to be tagged according to its semantic structure, and
provides additional standards and utilities to access (XPath) and manipulate document
components in XML documents (XSLT).

The standards used for structured documents have been applied in the legal domain.
SGML has been the object of several propositions and implementations. Some proposi-
tions consist of DTDs designed on formatting criteria [86, 51]. The clear disadvantage
of such proposals is that it is not possible to automate access to the semantic structure
of the document.

There are, however, more DTDs for legal documents, whose aim is to be as gene-
ral as possible. That is, the grammar implicit in the DTD has to describe as many

DOCUMENTS IN DIGITAL LIBRARIES 23

different types of legal documents as possible [101]. The intention here is to provide
access to documentation coming from several European Union countries, and to facili-
tate comparison between those documents. With this goal in mind, the Legis project
[65] proposes to include the metainformation about the legal document in the digital
version. Of course, to achieve such generality, the description of the structure has to
stop at a high abstraction level (top levels in the class tree); more precision about the
components of every document depends on the document class at its origin (the internal
structure of one with Spanish rules is not the same as a French one, despite similarities).
Another attempt -in the development phase- to provide common structure to legislation
in the European Union is the Eulegis [55] European project.

A different option is the one taken by some people who have tried to apply standard
DTDs to legislative documents. D. Finke [56] proposes extensions to the TEI DTD
for legal documents. The extensions include the addition of new attributes and new
elements. These new elements should reflect the particular structure of legal documents.
Legal information has a good semantic structure where components are of a given type,
defined in the legal domain. Without such extensions, the structure of legal information
would have to be simulated with element attributes (for example, with type attributes).
This solution, being a little artificial, is, in addition, not appreciated by legal specialists,
who prefer to work with documents where they can directly recognise the structure with
a first glance at the document (it is easier for a reader to recognise tag names than tag
attributes).

Example 9. The following example shows what has been said. In both cases the tag
marks the beginning of a semantic element of type articulo. The first tag corresponds
to a modelisation of a Spanish rule with the TEI DTD. The tag name div2 has been
chosen among the available ones in this DTD, and the semantic type of the element
is modelled in the type attribute (it is by no means more relevant than other element
attributes, even if it contains the main semantics of the element). In the second case,
the DTD has been defined expressly for this class of documents; the natural consequence
is that the tag name is semantically expressive, which guarantees that it will emerge
naturally over the element attributes.

<divl id=14/198722” type=’articulo’”> (1)
<articulo id="’14/198722*> (2)

2.4 Proposal for content-based semantic logic structure
capture

The conversion algorithm presented in this section generates the semantically-tagged
representative digital copy of a markup input document from another document copy
tagged with different criteria. It obtains the logical structure of a document from
its text, thereby showing that it is possible to translate a document from one copy
where the semantic structure is hidden, to another document copy where the semantic
structure is reflected in the document logical structure. This process is taken on by

24 Proposal for content-based semantic logic structure capture

the document translator component in part 4.2.6 of chapter 4. The resulting copy
is thereby normalised, and can be used by any system component. To have such a
representative will be crucial to be able to exploit relations between internal document
fragments; this aspect is developed in chapter 3 about relationships.

The semantic structure of the document can be obtained from its content. Well-
structured documents present a set of keywords inside their text that help the reader
to recognise the start of document components. The presence of a keyword in the text
marks the start of a semantic component. These components are the ones referred to as
"semantic", as they come from content criteria, with no presentation aspects involved
in their definition.

The input document to the algorithm is a tagged document copy, whose logical
structure does not correspond to the abstract document semantic structure. The input
document copy structure is, in most cases, based on formatting aspects (as is the well
known case of HTML documents), hiding the semantic structure that is lost inside the
input components content.

Structure recognition that allows the document copy to be obtained with a logical
structure that matches the semantic document structure is content-based, guided by the
target DTD; aspects present in the source copy structure and common to the abstract
document, that cannot be discovered from the document content, are kept in the output
copy. Decisions to create elements in the output are made from the content when
possible. When the text does not provide information about logical divisions (lowest
levels of divisions, that are indeed layout divisions, as for example paragraphs), they will
be transferred from the source document, trusting its correctness as far as formatting
aspects are concerned.

The output is a structured copy of the input document, with the same content,
but with a different logical structure: the semantic one. This structure is reflected in
the representative markup (the output is an XML document). While main divisions
in the output document are created from input content, the highest granularity level
-paragraphs and similar divisions that cannot be inferred from content- are preserved,
as they come in the input document.

Considering the target document with a tree and focusing on elements (abstract-
ing from text and attributes), it can be said that internal nodes are generated from
document content, while leaves either come from the input document structure, or are
generated using information from content and input markup.

The example in section 2.4.3 illustrates the output document obtained from a
layout-oriented tagged document.

2.4.1 Inputs to the algorithm

In every application of the algorithm there are three inputs: a document d, a hie-
rarchy h, and a vocabulary mapping v.
The input document

The input document, d, is a tagged copy of a document, with a logical structure that
does not reflect the semantic document structure.

DOCUMENTS IN DIGITAL LIBRARIES 25

Every input document d to the algorithm complies with some assumptions (condi-
tions), listed below:

e The input document is text, where there is content and markup.

e All text that is not markup is relevant. That is, it is also in the abstract document.
There are no pieces of content dependent on the copy used as input.

e The text has keywords (in v) inside it that can guide the generation of elements in
the output. The presence of every keyword marks the start of a semantic element.

e The start of one of these semantic elements, signals the end of all semantic ele-
ments, of inferior or equal level -as defined in the semantic components inclusion
hierarchy-. For example, the start of a chapter in a book, implies that previous
chapters are finished.

e Markup can be of any type. But there is a guarantee that all open tags are closed,
and all closed tags were previously opened. This condition guarantees that pre-
sentation markup recovered from the input is reflected in convenient presentation
elements in the output (there is no other way to recognise the limits of these
elements).

e Lowest divisions in the output document tree cannot be characterized from text
alone. They are layout divisions that also appear in the abstract document, or
layout elements whose presence is always associated to a semantic element (semi-
formatting elements).

e Granularity in the source document markup reaches the minimum paragraph level.
This condition guarantees the presence in the output of layout divisions mentioned
in previous conditions.

e Nesting in the input markup is limited to presentation elements. This condition
guarantees the correct transfer of closing presentation tags. Nesting interspersed
semantic elements inside presentation elements would break the granularity con-
dition and obstruct the acquisition of element titles (semi-formatting elements).

The vocabulary mapping

A vocabulary mapping (v) guides the generation of markup in the output document.
v is the equivalence between keywords that can be found in the document content,
and elements in the target DTD. It is defined according to the target document class
(semantic structure).

The target components inclusion hierarchy

h is information about inclusion rules in the target DTD. These inclusion rules are
expressed as a level hierarchy of elements in the target DTD, such that if an element
type el is in a lower level than another element type e2, elements of type el may contain
elements of type e2, but elements of type e2 cannot contain elements of type el. If two
element types are at the same level in the hierarchy, inclusions between them -in any

26 Proposal for content-based semantic logic structure capture

direction- are forbidden. This hierarchy concerns semantic elements in the target DTD:
elements that are created from the vocabulary in the source content.

2.4.2 OQutput

The output of the algorithm is a tagged document str with the following characte-
ristics:

str content is the same as the content in the input document d

e str is the semantic representative (copy) of d, tagged according to the abstract
document structure

e str is XML well-formed
e str is tagged according to rules given in h and v
e The nesting of elements in str conforms to inclusion rules in h

e Internal nodes in the associated tree are semantic elements, while leaves are cre-
ated on presentation criteria.

2.4.3 An example

Input document

The document in figure 2.7 is a simplified fragment extracted from a Spanish rule.

<doc>

<p>Ley 1.</p>

<h4><a>CAPITULD I. DEL REFERENDUM.</h4>
<p><a>Articulo Primero.</p>

<p> Texto del articulo primero.</p>
<p><a>Articulo Segundo.</p>

<p>Texto del articulo segundo.</p>
<p>Articulo Tercero.</p>

<p>Texto del articulo tercero.</p>

</doc>

Figure 2.7: An input document to the extraction algorithm

A reading of the text -ignoring the markup- shows that the document has a chapter
(Capitulo), which in turn contains three articles (Articulo). A second look considering
markup, refines the information in the following way:

e There is a paragraph (Ley 1.), which is not inside any document subdivision.
e The chapter has a title: CAPITULO I. DEL REFERENDUM.

e The text inside the first Articulo is a paragraph: Texto del articulo primero.

DOCUMENTS IN DIGITAL LIBRARIES 27

e The text inside the second Articulo continues until the beginning of the next
Articulo.

e The text of the third Articulo expands to the end of the document.

Output document

The output document from the algorithm is in figure 2.8 and its associated tree in
figure 2.9. Markup in the output reflects the division recognised when reading the input
content, by contrast with the input document, where the markup did not correspond
to it. There are three articulo elements placed inside a capitulo element. These are
internal nodes in the document tree. Element titles have been recognised with the help
of input markup. Presentation elements (paragraphs in the figure) are preserved from
the input document. They are leaves.

<doc>

<p>Ley 1.</p>

<capitulo><title>CAPITULO I. DEL REFERENDUM.</title>
<articulo><title>Articulo Primero.</title>
<p> Texto del articulo primero.</p>
</articulo>

<articulo><title>Articulo Segundo.</title>
<p>Texto del articulo segundo.</p>
</articulo>

<articulo><title>Articulo Tercero.</title>
<p>Texto del articulo tercero.</p>
</articulo>

</capitulo>

</doc>

Figure 2.8: Output document resulting from the application of the extraction algorithm to the do-
cument in figure 2.7.

Articulo Primero. Texto del articulo primero. ~_Articulo segundo. Texto del articulo segundo. _Articulo Tercero. ~_Texto del articulo tercerc

Figure 2.9: Tree for the output document when transforming the document in figure 2.7. Internal
nodes are semantic elements; couloured leaves are obtained by using information from
input content and markup, and uncoloured leaves are formatting elements transferred
from the input document.

28 Proposal for content-based semantic logic structure capture

Hierarchy

Information about the target DTD (Rules DTD) needed by the algorithm is the hierar-
chy in figure 2.10. The tree expresses inclusion permitted between semantic elements
in the target DTD grammar explained in the example in section 2.2.3. The tree is com-
pletely expanded in its leftmost branch. The subtree formed by an element and their
descendants is always the same, wherever the element appears in the tree. For example,
a capitulo element can contain elements of type seccion or articulo as children or
descendants. But an element of these two types could never have a capitulo element
inside.

Every element type has an associated level in the hierarchy, which is the lowest
tree level where the element can appear in a top-down tree traversal (the depth of the
node). A capitulo element is therefore from level 3, a seccion element from level
4, and elements of articulo type are from level 5; elements of level 8 may contain
elements from levels 4 and higher, but the inverse inclusion is not possible.

During the generation of the output document in figure 2.8, the hierarchy is queried
to close semantic elements of equal or higher levels before opening new ones. Thus, when
a new capitulo begins, all articulo, seccion and capitulo elements open up to this
point, are closed before opening this new capitulo.

0 doc
%N

1 libro titulo capitulo seccion articulo disposicior

2 titulo capitulo seccion articulo

3 capitulo seccion articulo

4 seccion articulo

5 articulo

Figure 2.10: Inclusion hierarchy between semantic elements in a Spanish rule. Partial representation
(the tree is completely expanded in its leftmost branch).

Vocabulary mapping

The fragment of the vocabulary mapping used in this example is in table 2.1. The
semantic elements created are capitulo and articulo. A capitulo element starts
where the string Capitulo appears in the input document, while articulo elements are
recognised by the presence of the Articulo string.

2.4.4 The extraction algorithm
The algorithm behaviour simulates the way a human being recognises a document

logical structure during reading. Implicit knowledge about the desired structure enables
a reader to extract a document structure from its text, while reading. Some vocabulary

DOCUMENTS IN DIGITAL LIBRARIES 29

Text vocabulary | DTD element

Capitulo capitulo

Articulo articulo

Table 2.1: Fragment extracted from the vocabulary mapping of Spanish rules, used during the ap-
plication of the transformation algorithm to the input document in figure 2.7.

in the text indicates when a new element begins (thus, ending another one). For ex-
ample, a reader knows a chapter is finished because there is a new chapter that starts.
That allows the reader to construct in his/her mind a logical structure of the document
(how many chapters the book has, how many sections there are in every chapter, etc.).
Linear traversal of the source preserves the order of the text in the output document.

There are two information elements that give information about the target document
class logical structure and how to apply it:

1. The mapping of vocabulary in source content to markup in the output repre-
sentative (mapping of document content domain ontology to system ontology),
V.

2. The inclusion hierarchy between semantic components (grammar expressing the
semantic component inclusions), h.

Definition 2.1 The extraction algorithm is a function 6 : D X V x H — STR, where

D: set of XML well-formed documents

V: set of vocabulary-mappings

H: set of hierarchies
o STR: set of XML semantically-tagged documents.
Each application of the algorithm is given by 6(d, v, h) = str, where:

e d: a document from D, where terms from the vocabulary v are found

v: the vocabulary-mapping between keywords in d and markup in the output docu-
ment

e h: the containment hierarchy between elements in the output document

str: the output document, marked according to d, v and h.

Conjecture 2.1 In each application of the algorithm, d, v and h are matching entries
in the sense that: vocabulary in d and v are the same, and element types in v and h are
the same.

A mismatching between d and v would cause the algorithm to transfer the source do-
cument as it is to the output. A mismatch between v and h would cause the algorithm
to end in an abnormal state.

30 Proposal for content-based semantic logic structure capture

Creation of target tree

Types of nodes
The output document copy is well-structured and can be represented by a tree, as was
explained in section 2.2.1.

There are two types of nodes in the output document tree:

e Semantic nodes (or elements). These are nodes created from content. They are
internal nodes in the tree.

o Formatting nodes. These nodes are created using source markup. They are leaves
in the document tree.
If the source document has redundant markup, it can still be said that these nodes
are either leaves, or placed at the bottom levels of the tree in such a way that any
ancestor of a semantic element can be a formatting node. In a top-down look at
the output tree, the lowest levels in the output tree come from the input markup
and the top level elements are generated from the document content. From now
on, an optimistic view will be taken and they will be referred to as leaves®

Creation of nodes
The generation of internal nodes is done from vocabulary in the input document. The
generation of leaves in the target tree is done according to the following criteria:

e Leaves generated by a combination of knowledge from the content and markup.
These are in most cases element titles. Each text fragment, that will be placed in
a leaf in the output, is enclosed by a non delimited number of open and close tags.
Open tags precede the text, forming a sequence of consecutive tags. By contrast,
matching close tags can be found interspersed with text; the last of them marks
the end of the output element.

o Leaves imported from the origin. These nodes have text where there is no keyword
that could guide the element generation. We can therefore presume that the
tagging enclosing such text was placed there on a presentation criteria, and that
it could be worth preserving this lowest level of fragmentation. So, it is written
with no modification to the output.

Example 10. Figure 2.9 is the output tree obtained by the application of the algorithm
to the example in part 2.4.3. Internal nodes (in blue in the figure) are semantic
elements; leaves coloured in red are obtained by using information from the input content
and markup, and uncoloured leaves are formatting elements transferred from the input
document. [

8In an ideal situation, there is no redundant markup in the input document. That is, there
are no fragments of content -with no keywords to guide element generation- surrounded by sev-
eral levels of tags. For example, there are no paragraphs with the aspect <p><p><p> This is a
paragraph.</p></p></p>.

DOCUMENTS IN DIGITAL LIBRARIES 31

Creation of the target text

The target document is a structured document. Document content is transferred as it
comes from the source. Concerning markup, the algorithm opens a new element in the
target document in the following cases:

When it encounters a keyword from v in the input content. The equivalent element
is open in the output document. In this case, it creates a semantic element. For
example, a new capitulo element is created in the example in part 2.4.3 when
the keyword Capitulo is found in the text.

input vocabulary mapping output
<any-tag> keywordl text ... keywordl T1 <T1> keywordl text ...

When it finds a piece of text in the input after an input tag, and there is no
keyword in the text. This is a presentation element, that will be transferred
untouched to the output. This is, for example, the case of paragraphs.

input output

<any-tag> text <any-tag> text ...

Elements are closed in the output document when:

A new semantic element is open. For example, the start of a new chapter implies
the end of the previous one. The closing tag will precede the input tag of the new
element.

input vocabulary mapping output
<any-tag> keywordl text ... keywordl T1 </T1><T1> keywordl text ...

The closing tag of a presentation element is found.

input output
..</any-tag> ...</any-tag>

Algorithm functioning

The algorithm (in figure 2.11) is designed to work on top of another application (an
XML parser in the implementation) that provides it with inputs, containing pieces of
text from the source document. As there is no direct control of the algorithm on how
the words sent to it are created, the algorithm tries to generalise and considers the
possibility of receiving a content keyword fragmented in several pieces.

32 Proposal for content-based semantic logic structure capture

Inputs to the algorithm come from the application it is implemented on top of.
The input alphabet received from the application is a collection of events: STARTDOC,
ENDDOC, STARTTAG, ENDTAG, TEXT.

STARTTAG, ENDTAG, TEXT events are accompanied by a string that is the element
name or text recognised by the application. STARTDOC and ENDDOC are events that
come alone, without additional information.

Reactions to inputs are explained below:

e STARTDOC: A STARTDOC in the source document provokes the opening of the
target document. It can be a simple action like that, or any kind of action to be
done every time a new document is created (for example, inserting a header at
the start of the document).

e ENDDOC: The end of the source document advises the algorithm that it has to
close the target document. Before closing the file, all open elements in the output
not yet closed, are closed in an ordered fashion. This guarantees that the algorithm
ends correctly and that the file it creates is also correct?.

e STARTTAG: An open tag in the source document is not by itself sufficient to take
a decision on what to write on the target document. Actually, the source tag may
be a tag to preserve in the target (it opens a “formatting” element) or a tag to be
ignored when writing to the target (the element in the source open with this tag
contains keywords in its text, that will actually guide the markup in the output).
It is not possible to know what kind of tag we are on at the moment, until we
advance to its enclosed text. So, the tag is kept as a candidate to be preserved or
to be ignored.

e ENDTAG: When we get to a close tag in the source, what to do with it depends
on what we have previously done with its corresponding open tag. If we have
written its partner tag to the output, we will also write this closing one. If we
have ignored the open tag, the closing tag is also ignored.

e The text (TEXT) is the crucial information to decide how to markup the target
document. Every time a piece of text is obtained from the source document, a
decision is taken by examining a portion of input text. This text can be the string
received, or a string composed by concatenating this one with other text fragments
received before. At the moment, it is enough to continue with the explanation
to know that there is a text fragment to be analysed; the selection of text to be
examined will be explained later. There are three possibilities: the input has the
start of some keyword, the input contains a complete keyword and the input does
not have any keyword or any start of keyword.

— If the current item is the start of some keyword (a keyword in v does not solely
have to map one of the tokens returned by the parser to the application),
this fragment is kept, to verify, in the next event, if it completes the keyword
or not.

9XML well-formed and “semantically” valid.

DOCUMENTS IN DIGITAL LIBRARIES 33

switch input do
STARTDOC: opens the output document
ENDDOC: ends the output document
STARTAG: keeps the tag until text is found
ENDTAG: if the tag closes an element with no content
then ignores it
or else
if it closes a formatting element
then closes the element in the output
or else ignores the tag
fi
TEXT: s = string to analyse®
switch s do
start of keyword: keeps it till the next input comes®;
complete keyword: opens a semantic element in the output;
no-keyword: if it is at the start of a formatting element
then
opens the element in the output
or else /* inside text of an element */
writes s to the output
fi
end

“s can be the string received with the input, or be the result of concatenating the input string with
a start of keyword kept from the previous iteration.

bIf the next input is also text, it will be concatenated with this string to obtain the string s to be
analysed in that iteration.

Figure 2.11: Structure extraction algorithm evolution at every input event.

— If the input contains a complete keyword, it marks the beginning of a semantic
element which is open in the target and the input text is written. If there
are elements of equal or lower levels than the one just opened in the target
document, they are closed before starting this one.

— The last possibility is a text fragment that does not contain any keyword, and
nor is it possible to start one. This may be due to one of two exclusive reasons:
it is at the beginning of an element to transfer to the target document as it
is, or the text is in the middle of one element content. If it is the beginning
of a formatting element, the element is opened and the content is written. If
it is text in the middle of the element, it is just written to the target.

The string to be examined in every iteration is either the input text, or formed by
the concatenation of the input text to some start of keyword kept from previous
iterations.

Proposition 2.1 The scanning algorithm always ends.

Proof: The sequential traversal of the input document guarantees that its end will
always be reached.

34 Proposal for content-based semantic logic structure capture

Proposition 2.2 The output document, h, is well-formed and its logical structure is
semantically correct.

Proof: Well-formedness is obtained by construction: semantic elements are guaranteed
to be opened and closed in the correct order, since the start of a semantic element is
always preceded by the closing of all semantic elements of equal or lower level. Correct
nesting is guaranteed because the track of open elements in the target is done using a
LIFO structure (stack). At the end of the execution, all elements not yet closed, are
closed.

Lemma 2.1 At the end of the document, all elements will be closed.

Proof: Elements not yet closed in the target document when the end of the source
document is found are kept in the open (target) elements stack. The algorithm does
not end until this stack is empty.

Proposition 2.3 Non-semantic elements are always placed at the bottom tree levels.

Proof: For elements directly imported from the source, it is self-proving: such elements
are opened and closed as they appear in the source. Given that the source is well-formed,
there is a guarantee that they will be closed before another element starts. For elements
obtained from the content and source markup, the argument is: an element of this kind
starts with a sequence of open tags in the source document. Well-formedness in the
source ensures that the end of all elements is found; thus, the end of the element created
in the target is found when the outer tag in the source is closed. Moreover, as this is
the last element open in the target (the last one entering the open elements stack), it
will be correctly closed.

A detailed version of the algorithm

The version of the algorithm, where complex sentences are expanded, is on pages 35
to 36. Here, concepts such as keeping a variable mean that data structures are used.

The main algorithm loop continues until the end of the input document is found.
At this moment, the output document is closed in a correct manner (closing all input
tags) and the algorithm ends. The code shows action in each iteration.

Two data structures are used to keep the memory in evolution. A stack ORIGEN tracks
what has been done with open tags in the source. This is useful to know what to
do with matching closing tags. If the open tag was ignored, it will be ignored. If the
matching open tag was translated -because it was associated to a presentation element-,
the closing tag will also be closed in the target document.

A stack ABIERTOS keeps track of open elements in the target document. This stack
can be inspected when a semantic element is to be opened, to know if there are elements
to close before opening the current one. Every time a new semantic element starts in
the output, all elements of equal or inferior level are popped from the stack and written
to the output. Correct nesting in the output is guaranteed by the way of introducing
and taking elements from the stack.

DOCUMENTS IN DIGITAL LIBRARIES 35

Algorithm 1 Structure extraction algorithm.
InpuTs: SourceDoc: D, DTDmapping: V, DTDhierarchy: H
OutpuTs: TargetDoc: STR

while there are inputs from SourceDoc do
switch input do
BEGINDOC:

open(target)
write-header(target)
searching-keyword <« false

ENDDOC:
while not empty(ABIERTOS) do
ele « pop(ABIERTOS)
close(ele)
end while

STARTTAG:
push(ORIGEN, 'candidata’)

ENDTAG:

if top(ORIGEN) = 'candidata’ then {empty element}
ele «+ pop(ORIGEN) {ignore empty elements}
else
if top(ORIGEN) # 'ignorada’ then {it closes a formatting element}
close(pop(ABIERTOS)) {close the element in the output}
else {top(ORIGEN) = ’ignorada’}
ele < pop(ORIGEN) {ignore the closing tag}
if top(ORIGEN) # ‘ignorada’ then {it marks the end of a semi-semantic (title) element}
write(pop(ABIERTOS))
end if
end if
end if

TEXT:

if searching-keyword then

s < concat(keycandidate,text)
else

s < text
end if

if startkeyword(s) then
searching-keyword < true
split(s,s1,keycandidate) {keycandidate = start of some keyword}
if s1 is not null then
write(s1) {it is certain that the text fragment preceeding the possible start of the semantic element
belongs to a previous element}
end if
end if
if completekeyword(s) then
split(s,s1,keycandidate)
if s1 then
write(s1) {fragment text before the candidate start of semantic element belongs to some other
element with certainty}
end if {replace the top sequence of ‘candidata’ in ORIGEN by ’ignorada’}

36 Proposal for content-based semantic logic structure capture

while top(ORIGEN)="candidata’ do
ele « pop(ORIGEN)
push(AUXILIAR, ‘ignorada’)
end while
while not(empty(AUXILIAR) do
push(ORIGEN, pop(AUXILIAR))
end while{candidate tags have been ignored}
outputtag < eqtag(keycandidate,DTDmapping) {obtain the equivalent tag from the vocabulary map-
ping}
if in(outputtag, ABIERTOS) then
while top(ABIERTOS) < outputtag do {close hierarchically lower or equal elements}
ele < pop(ABIERTOS)
close(ele)
end while
end if
open(outputtag)
push(ABIERTOS, outputtag)
write(keycandidate)
searching-keyword < false
keycandidate < null
end if

if notkeyword(s) then
if top(ORIGEN)='candidata’ then {start of a formatting element}
while top(ORIGEN) = 'candidata’ do
push(AUXILIAR, pop(ORIGEN))
end while
while not(empty(AUXILIAR)) do
ele + pop(AUXILIAR)
push(ABIERTOS, ele.tag)
open(ele.tag)
end while{candidate tags are open in the target document in an ordered manner: text can be written}
write(s)
searching-keyword <« false
keycandidate < null
else {in the middle of the text of some element}
write(s)
end if
end if

end switch
end while

Algorithm evolution on an example

The document in figure 2.12 is a very simple document extracted from a document in
the prototype that will be presented in chapter 5, that has been input to the algorithm
(the example has been simplified to be included here). The evolution of the creation of
the target document copy and stacks is shown. Every state shows the output document,
the content of the stack that keeps track of the tags open in the output (ABIERTOS)
and the content of the stack that keeps tags found in the input until document content
allows a decision to be taken to ignore or to transfer them (ORIGEN).

Transitions through states are labelled with the input event and the associated string
received from the parser. Some transitions have a note on the right (in bold italic) to

DOCUMENTS IN DIGITAL LIBRARIES 37

indicate decision factors that complement information in the input event and text. The
evolution can be followed in annexe A.

<doc>

<p>Ley 1.</p>

<h4><a>CAPITULO I. DEL REFERENDUM.</h4>

<p><a>Articulo Primero.</p>

<p> Texto del articulo primero.</p>

<p><a>Articulo Segundo.</p>

<p>Texto del articulo segundo, previo a una disposicidn</p>
<p>Disposicién final.</p>

<p>Texto de esta disposicidn.</p>

</doc>

Figure 2.12: Source document for the algorithm evolution example.

2.5 Application of the content-based semantic structure ex-
traction to legal documents

Documents in the digital library used in this prototype are Spanish rules, jurispru-
dence, and other documents that complete this information. The grammars of these
classes can be found in the chapter that describes the prototype (chapter 5). The
extraction algorithm is used here to obtain the semantic representative of official do-
cuments, coming from public Web servers. The obtained document representative are
XML documents, where the structure (and, therefore, the DTD) agrees with the seman-
tic structure of the documents. The example in subsection 2.4.3 shows the application
of the algorithm to a Spanish rule. The grammar for Spanish rules is in figure 2.4 and
the containment hierarchy derived from this grammar is the one in figure 2.10.

2.6 Discussion

The majority of work related with documents logical structure is concerned with
discovering the grammar associated to a class of documents. This is a different problem
from the one of discovering the logical structure of an instance of the class. Two works
that can be included in this last category are those from Smith and Lopez [102] and Lim
and Ng. [83], commented in subsection 2.2.2. The utility proposed in [83] discovers
the containment hierarchy in HTML elements. Smith and Lopez use content cues to
infer the existence of “concepts” inside a structured document; these concepts represent
semantic fragments in the document. The important goal in this case is to discover the
concepts, as opposed to Lim and Ng., who already know what the elements are and
focus on the hierarchy.

The algorithm presented in this chapter extracts the semantic logical structure of

38 Discussion

a document instance, using the target DTD to do so; it is not the discovery of a class
grammar. The knowledge of the input document copy is that it has a logical structure,
that nesting levels in markup are correct, and that there are content keywords that
signal the start of semantic elements. There is no knowledge of the types of elements
in the input: if they can be ignored, they are; and when they cannot be ignored they
are simply transmitted to the output with no further analysis of these tags. This is a
difference from [83], where knowledge of the input DTD guides the algorithm evolution.
On the other hand, the semantic element limits in this algorithm are determined by the
start of a new semantic element, which can be done on the basis of the presence of some
vocabulary in the content. The vocabulary is well-defined and the abstract documents
treated are well-structured: semantic element limits are accurately determined by the
presence of this vocabulary. This determines a completely different way of working from
[102]: first, there is no knowledge of divisions in the input document copy (as in [83]),
and second, there is no need to explore inside input regions that have a good guiding
vocabulary.

The algorithm in section 2.4 simulates the way a human being recognises the struc-
ture in this type of documents: during a sequential reading, a document part ends where
another part begins. It aims to extract the semantic logical structure of a document
instance. The input is a tagged document. No attempt is made to obtain the grammar
of a class, as there is one already. Neither is it the aim of this thesis to transform DTDs;
in this case,the input DTD should be available, and that is not the case either. The
advantage of the proposal here is that knowledge of the input document structure is
minimal: basically, that it is a well-nested tagged document. The algorithm profits from
knowledge of the abstract document class general structure to guide the extraction of
the instance logical structure: the output grammar inclusion rules serve to determine
the inclusion hierarchy between semantic elements, and the vocabulary mapping of the
document class allows their limits to be recognised.

One of the advantages of having a semantically tagged document copy is to be able
to dissociate the presentation from the document content, associating a stylesheet to
the document class that will be applied to the document at the very last moment of
interaction with the user (Interface service in subsection 4.2.3 of chapter 4).

It is not possible to obtain a general algorithm that extracts the semantic structure
of any document. Lack of knowledge of tagging and inclusion hierarchy in document
copies input to the algorithm forces some decisions to be taken that restrict the al-
gorithm’s generality; decisions taken have been influenced by the prototype domain
and the origin of documents used in the prototype. The fact that the initial data to
the prototype implementation were HTML pages from different servers was considered
at several points. Semi-formatting elements are the consequence of realising that se-
mantic element titles were always formatted differently from the rest of the element.
The nesting of semantic elements has not been considered. There were two exclusive
possibilities:

e To allow it: to recognise semantic elements that start inside another one, with
no sorrounding tagging; this would suppose a risk of confusing a citation of ano-
ther document element with the start of a semantic element inside the current
document, which would be an error.

DOCUMENTS IN DIGITAL LIBRARIES 39

e Not to recognise semantic elements that start inside an element content (not
tagged around).

Documents in the prototype frequently use the same vocabulary to cite a document
element and to mark the start of a document element inside the current document; this
fact was decisive for choosing the first possibility.

Another consideration is that part of the format tagging in input documents should
also appear in the output documents. This is the case of paragraph subdivisions. This
means that the prior elimination of all input document markup cannot be considered
before applying the algorithm. In that case, the paragraphing divisions would have
been lost, as they are not semantic. Moreover, this level of division is frequently used
in citations (indeed, it is widely used in legal documents). Tables and figures -that
are not considered in this thesis, but should be in future work- are also the same
case as paragraphs; their divisioning cannot be extracted by text semantic recognition
algorithms, which makes them better for preserving as they are in the inputs.

Possibilities to expand the algorithm’s range of application are in documents with
more flexible language variations to mark the start of semantic elements and in do-
cuments not tagged at all. An increase in language flexibility means a need for an
elaborated analysis of document content. These processes should be used at the mo-
ment the vocabulary mapping is done, and should adapt, as is already the case, to the
target document class vocabulary peculiarities.

The case of documents with no tagging is a simplification with respect to documents
now considered: it is enough to recognise the start of elements, without worrying about
preserving tags or not. Considerations to be made about it are the same as those
explained some paragraphs before when justifying the decision taken not to consider an
elimination of all markup in input documents before application of the algorithm.

The main advantage of the proposed algorithm is that it allows a document digital
copy to be obtained that is “formatted” in such a way that its logical structure is an
exact digital copy of the abstract document logical structure. The semantics inherent
in the abstract document entity is also in the digital copy. But preserving semantics is
not only important for itself. The semantic structure is used in citations; therefore, it
is extremely beneficial to have this structure available in the digital copy to address the
internal document fragments cited, which, in some cases, are also the fragments affected
by the modifications presented in the next chapter.

40

Discussion

Relationships between
documents

Contents

3.1 Classes of relationships between documents in digital li-
braries Lo e e e e e e e e e e e e 42
3.2 Links o i i e e e e e e e e e e 44
3.21 Linkgraphs 44
3.3 Linking with standards for structured documents 46
331 XLink 47
3.3.2 Addressing internal document fragments: XPointer, XPath. . 48
3.4 Document versions ettt 49
3.5 Linking and versioning in the legal domain 50
3.5.1 Relationships L oL 50
3.5.2 Versioning L L oL 51
3.6 Modelling of citations and modifications with typed links . 52
3.6.1 The relationships modelled 52
3.6.2 The resulting link graph 53
3.7 A proposal to generate document versions using links 55
3.7.1 The output versiontree 59
3.7.2 Versioning graphs oL 62
3.7.3 The document version generation process 62
3.74 Node versioning L. 63
3.7.5 Input and output documents in version generation 68
3.7.6 Modelling the graph with a links database 68
3.8 Application to legal documents 69
3.9 Discussion o v ittt i e e e e e e e e e e e 70

41

42 Classes of relationships between documents in digital libraries

This chapter deals with relationships between documents and how these relations
can be exploited to obtain advanced digital library functionalities. The objectives of the
chapter are: to show how it is possible to model citations and modifications between
documents as links, and to show how to exploit these relations. Two ways to exploit
them are devised: to query the links in order to ask user questions about relations, and
to generate document versions due to modifications that update document content.

Relationships between documents can have varied causes and meanings: they can be
semantic and/or, for example, they can be explicit links. The relationships considered
in this thesis derive from references in documents to other documents. In all cases,
relationships can be represented by a link graph, where the resources are the related
items and the links represent the relationships. If there are heterogeneous relationships,
links can have type that represent the nature of the relationship [108]. The more general
use of this graph has been the creation of hypertext that users can navigate through
[39]. But the graph can be used with more purposes; for example, relationships can
be queried [49], as is done in this thesis. Moreover, when working with structured
documents, resources in the link can be document fragments, which allows relationships
to be represented accurately to indicate solely the fragment that is really affected by
the relationship.

Besides just querying relationships, there is another interesting problem related to
working with documents: wversions of documents. Document versions are variations of
the same abstract document, which may affect the document logical structure (this con-
cept was presented in chapter 2). Versions of the same document are obviously related
[93, 121], which leads to the problem of expressing these relationships and maintaining
them [34, 38, 101]. In this thesis the problem is considered in a different manner: ins-
tead of maintaining versions, or discovering the relationships between them (comparing
documents to find if they are the same copy of a document) [36], they are generated.
The idea is that versions are due, in many cases, to modifications made to previous
versions (they are called historical versions), which in the end is just another type of
relationship. So, if it is possible to query relationships and to work with the associated
link graph, it must be possible to generate versions with a traversal of this graph. The
algorithm that does this traversal, generating new versions, is presented in section 3.7.

Finally, the manner to store the link graph is presented: a link database (which is one
of the architectural components presented in chapter 4). Associated XML standards,
XLink [119] and XPointer [116], provide the tools to model a link graph with flexibility:
multidirectionality, the degree of the graph, etc. and also seems the most convenient
way to do so when documents are modelled with XML, as this continues to guarantee
the interoperability inherent in XML data using links.

3.1 Classes of relationships between documents in digital
libraries

Documents may be related for many reasons: two or more documents may be created
by the same author, they may have the same subject, a document may cite another
document or documents, a document contains an explicit link to another document,

RELATIONSHIPS BETWEEN DOCUMENTS 43

etc. These relationships constitute an important piece of information that may in some
cases be as important as the documents themselves [52].

Taxonomies to classify relationships are various, depending on the author’s interest
[108]. Most of them come from the area of hypertext [92, 47, 4]. From this work
point of view, it is interesting to differentiate relationships because of the nature of the
relationship and how it can be detected. Thus, two or more documents can be related:

e Because there are semantic relationships between them. This is the case when
documents share some metainformation (author, subject, etc.), or when they are
included in the same catalogues, with keyword linking [68], etc. This type of
relationship may not be evident even for humans (for example, the criteria used
during cataloguing may be as various and complicated as cataloguers themselves)
and discovering them can be an arduous process, usually based on some kind of
document classification process [67, 68, 108, 71, 46, 23, 21].

e Because there are references in a document to another document (the first one
cites the second one). The relationship is clear for a human being -who directly
detects it during document reading-, but not for software applications, which -at
least at the moment- are not able to process such references correctly. They can
be as difficult to detect as natural language expressions can be complex. This kind
of relationships has been studied mostly in the Reference linking domain [67, 68,
31, 20], an area that deals with links between documents derived from citations
between them, mostly citation linking between electronic journals [31, 68]; these
links improve electronic journals, for example, by sharing objects (such as figures)
from different sources. Another good example of documents where citations are
very frequent and may be the crucial information to access documents whose
reading allows a correct interpretation of the citing text are legal documents [121];
in this environment, it is impossible to understand a (tribunal) sentence if the text
of the rule (or rules) and jurisprudence that justify decisions in the sentence is
not available. Citations give the clues to obtain them and complete the reader
information, who obtains a semantically complete document by assembling all
document contents (his/her information about the sentence is complete).

e Because there are ezplicit links from one document to another, embedded in the
document by its author during document creation. This is the case of HTML
link tags, that are included inside the document. They may represent semantic
relationships, but the difference with the first group is that here the document
comes with relationships explicited inside, in contrast to previous cases, where it
is necessary to analyse the document to detect the existence of such relationships.
The semantics of the relationship that the author took into consideration when
inserting the link has been lost, thus only the information about the fact that the
two documents are related is all that can be seen from the document, but not why
they are related.

There is a fourth group of relationships that completes this classification: struc-
tural relationships [108]. They relate pieces of content whose aggregation results in a
structured or composite document [109, 68]. The aggregated pieces can be complete do-
cuments or elements taken from structured documents; in this last case the relationship

44 Links

is the containment hierarchy reflected in the document tree (see section 2.2 of chapter
2).

All these relationships can be exploited in several ways. One of the most popular is
the creation of navigational hypertext, where related documents or objects are linked
to make a new document that can be read in a discontinual manner [39, 26].

3.2 Links

Relationships between documents can be modeled as links. The most popular links
between documents are those present in hypertext, created for navigational purposes:
the user starts his/her navigation in a document, from which he/she can pass to other
document following links in the current one, and this process can go on following links
in documents. In hypertext, a link has the following properties [108]:

e It has (specifies) a source and destination.

e It is used to activate (specify) a navigation action at the source which consequently
reaches the target.

e It represents some relationship (semantics) between the source and destination.
3.2.1 Link graphs

The set of relationships between documents modeled as links results in a link graph,
where the links can be directed, and also typed'. Vertices in the link graph are the
documents linked and the edges or arcs are the links [39].

Citation and explicit links are directed: they have an origin (the document that cites
or holds the link) and a target (the document cited or pointed to by the link). Semantic
links can be directed or not, depending on the nature of the relationship. Vertices in
the matching graph are connected by arcs that go from the origin of the link to the
target of the link. The type of a link is the label of the associated arc in the graph.
Hypertext graphs [39] are the most popular (there is an example in figure 3.1).

Selecting a subset of links of a certain type results in a partial graph with the same
nodes and only a subset of the original arcs. The degree of a link vertex is the degree
of the associated node in the graph: the number of arcs (links) that have the node as
an endpoint.

Example 11. Revision links [93, 47] can be arcs from a document to its revision
(version), or from the revision to the original document; directed arcs between the two
vertex documents show simultaneously the relationship and the time ordering sequence
of document versions (time ordering is implicit in the direction of the typed arc). O

!The type of a link is a label that indicates the nature of the relation between the linked nodes.

RELATIONSHIPS BETWEEN DOCUMENTS 45

i}

>
7

AEMN
=

0

Figure 3.1: An example of a navigational graph in hypertext. Document A links to documents B
and C. These two documents have links to D, which links in turn to A. A navigation
starting at A could traverse B (or C), pass through D and finish by returning to A.

Linking structured documents: granularity in the link graph

Structured documents introduce a vision of a document that is not the vision of single,
indivisible units; a structured document is a set of nodes (document fragments) that
are structured in an inclusion hierarchy represented by a tree of nodes (see chapter 2).
Structured documents have the advantage that linking internal document fragments is
facilitated by the availability of the document structure.

This vision of the document gives rise to a link graph with more granularity than
when referring just to a complete document [53, 29| -as the number of nodes in the
graph is greater than in one where the documents are considered to be the minimun
unit-, and where the hierarchy allows different subsets of the same document tree, made
up of the set of nodes that form a document portion, to be selected by using query
language expressions [40, 115]. Document trees that represent the inclusion hierarchy
in structured documents are partial graphs that contribute to the typed link graph
with structural links. Links can be queried [49] and manipulated to obtain composite
documents [109, 103]. Moreover, the hierarchy in structured documents can also be
queried [1, 2, 49, 50].

Example 12. Annotations are typical examples of links that affect document fragments.
For example, annotations made to pieces of theatre are commonly related to some
concrete scene or act and not to the whole work (in which case they would not be
considered annotations, but comments on the work). O

The following definition for link graphs, to which the algorithms presented thereafter
apply, takes into account the considerations about granularity in structured documents.

Definition 3.1 In the context of structured documents, and restricted to relationships
that result in directed links, a link graph is a labelled directed graph G = (N, E) composed
of two finite sets: a set of nodes N and a set of arcs E. Nodes in N are document
fragments. Each arc u = ((i,7),t) € E is a tuple where:

46 Linking with standards for structured documents

Linking Electronic Journals:
L essons from the Open Journal ...

... (see [1])...

Steve Hitchcock.
[1] S. Hitckcock. Linking Electronic Journals: citation
Lessons from the Open Journal Project. D-Li
Magazine, December 1998. [s

Figure 3.2: Citation linking: document on the left cites the one on the right. The direction of the
arcs illustrates the direction of citations.

e (i,7) is an ordered pair of nodes where i is the origin of the link and j is the target
of the link,

o i, the label of the arc, is the type of the link.

Each arc u corresponds to a typed link.

Example 13. Citation linking is mostly concerned with linking on-line journal articles.
In this domain, bibliographic citations are the most important type of link worth ma-
naging. Figure 3.2 shows a simple link graph where each node represents a document.
The arc between them has the following semantics: two documents are linked if one of
them cites the second one (thus the citation label). The arc is directed, meaning that
the document pointed to by the arc (the link’s target) is the one cited, while the other
(the link’s origin) is the one that cites. O

3.3 Linking with standards for structured documents

XML has associated standards that allow relationships between documents to be
modelled. Relationships are modelled as links, represented as XML documents. These
standards have capabilities that supersede traditional hypertext links (namely, HTML
links).

Linking with XML includes rules to link resources (XLink) and to address internal
fragments inside linking resources (XPointer)?.

The XML Linking Language (XLink) [119] allows elements to be inserted into
XML documents to create and describe links between resources. In XLink , a link is a
relationship between two or more resources or portions of resources, made explicit by an
XLink linking element. This does not map with the notion of arc in the linking graph
introduced in section 3.2. Indeed, an “XML link” (zlink) is the union of one or several
arcs that have “something” (the semantics of the relationship) in common.

XLink allows traditional unidirectional links embedded inside a document, but also
more complex links. This means that with XLink it is possible:

2They are not yet stable W3C recommendations.

RELATIONSHIPS BETWEEN DOCUMENTS 47

T~

Paco home page

"This is a link to Paco’s page*

txml

s.xml

Figure 3.3: A simple link.

e To assert linking relationships between more than two resources (n-ary links)
e To associate metadata with a link

e To create link databases that reside in a location separate from the linked re-
sources.

Xlinks are a means to model graph information: vertices are resources (documents,
images, etc.), arcs in the graph are arcs inside an xlink, arc labels are modelled with
role attributes and other metadata about arcs or vertices can be joined as (resources
or arc) attributes.

3.3.1 XLink

The version of XLink referred to in this section is the one used for the implementation
of this thesis prototype: the working draft is dated February, 21st, 2000 [119].

There are two main types of xlinks: simple links and extended links. Simple links
offer a short form for a common kind of link: the two-ended inline link. The source link
vertex is in the document where the link resides, while the target vertex is a remote
resource. They are similar to the well-known HTML link elements (a elements).

Example 14. The simple link below corresponds to the link in figure 3.3. The source
link content is the content of the linking element, and the link target is designated by
the x1ink:href attribute value.

<simplelink xlink:type="simple" xlink:href="http://www.bla.bla/paco.html">
This is a link to Paco’s page
</simplelink>

O

Extended links offer full XLink functionality, such as out-of-line, multidirectional
links and links that have more than two participating resources (n-ary links). They
can be inline or out-of-line. They are the only ones that can be used with n-ary links
and to link resources found in external documents (for example, resources found in
documents that cannot be written to include the inline link). Extended links are the
most interesting ones, as they allow linking graph structures to be expressed in as
complex a manner as desired (which cannot be done with simple links or HTML links)
and to traverse the link in whatever direction is desired in each link resolution.

48 Linking with standards for structured documents

sl.xml s2.xml

s3.xml s4.xml

Figure 3.4: An extended link.

Xlink element attributes can come from a set of attributes specified in the standard
or they may be created by link authors. XLink provides attributes to indicate the type
of an xlink element, its role in the relationship and to address participating resources
(href)?. For extended links -that can associate N resources and an arbitrary number
of arcs (see figure 3.4)-, there is a special type of element to represent an arc between
two given nodes. Elements inside an extended link are merely the nodes of the graph;
arcs between these elements have to be represented to completely describe the links
graph. These arcs are represented with elements that present the value arc in the type
attribute, thus indicating that the element content is not a node but an arc.

3.3.2 Addressing internal document fragments: XPointer, XPath.

While XLink addresses documents, XPointer [116] addresses internal fragments (a
point, a set of nodes, or an interval) of XML documents. That is, internal document
locators for portions of documents are constructed with XPointer. Inside an x1link:href
attribute, the XPointer is the argument to the xpointer () function, always placed after
the document URI. The character '#’ marks the separation between the document URI
and the XPointer.

XPointer is built on top of the XML Path Language (XPath). Many XPointers
are location paths, built from location steps. Each location step specifies a point in
the targeted document, generally relative to some other point, such as the start of the
document or another location step. This reference point is called the contert node.
In general, a location step has three parts: the axis, the node test, and an optional
predicate.

azis::node-test[predicate]

The azxis tells us in what direction to search from the context node. The node-test
tells us which nodes to consider along the axis. The predicate is a boolean expression
that tests each node in the node-set. Only nodes that comply with the three conditions
at the same time are selected.

3More attributes can be found in the XLink specification.

RELATIONSHIPS BETWEEN DOCUMENTS 49

Example 15. The addressing of document elements can be done with XPath location
paths, as in the example in figure 3.5, where the XPointer addresses the first element
articulo inside the first element disposicion of document 113-1986.xml. There are
two location steps in this example:

1. descendant::disposicion[1]

The axis in the example selects all descendant nodes of the context node. The
node-set indicates that only descendants of type disposicion should be consid-
ered. The predicate tells us to select the first element disposicion from all
descendants.

2. articulo[1]

In this location step there is no axis; by default, all children of the current context
node (the first element disposicion from all descendants) are considered. Among
them, elements of type articulo are considered. Again, the first one is selected.

113-1986.xml#xpointer(descendant::disposicion[1]/articulo[1])
[

: L XPath :

document URL XPointer

Figure 3.5: Value of an xlink:href attribute. Internal locator is an XPointer that has an XPath inside.
The path addresses the first element articulo inside the first element disposicion of the
document /13-1986.xml.

3.4 Document versions

Document versions are presented as follows: given an abstract document, D, there
can be several versions of the document, corresponding to modifications applied to D.
All versions of D have a high degree of content similarity, but never one hundred per
cent similarity. The document version problem could be stated as follows: “given an
abstract document D and the collection of versions of D (also abstract entities), is it
possible to access any version of D, allowing at the same time for users to ignore (or
not) the existence of several versions of D depending on their preferences?”.

DeRose [47| distinguishes two kinds of versioning:

e Historical versions, which correspond to modifications to document content in
time. Historical versions may also suffer variations in the logical structure, but
share a significant percentage of document content (and logical structure).

e Translation versions, that share the logical structure, but have significantly diffe-
rent content.

Historical versions pose some interesting questions: Is it suitable to keep all versions?
How to model the modifications? How to detect them? The answer to these questions

50 Linking and versioning in the legal domain

depends greatly on the objective of the system implemented in the context in which
it works. Most of the effort related to document versioning is concerned with the
simultaneous maintenance of versions in the document database. Three approaches
have been used for this purpose:

1. To link related versions. These links were named revision links by Parunak in 1990
[93]. Two databases are kept simultaneously: the document database and the link
database. This approach has been followed by Wilson [121] and Choquette et al.
[38]. The main problem with this approach is to keep the revision links database
[34, 38, 101] up to date.

2. To consider different stamps of the database and to compare them in order to
detect changes that reflect the fact that an object has been versioned [34]. This
solution is used with object databases, and therefore can be considered when
modelling documents as objects. In this approach the link database disappears
and document changes are represented indirectly as the difference between two
database states [36]. It is applicable to historical versions, but not to translation
versions.

3. A third approach comes from the area of semistructured data. Chawathe et al.
[36, 35] model changes to hierarchically structured data (which is the case of
structured documents) as changes to nodes in the document tree. They represent
changes as annotations (attributes) to the affected nodes, facilitating queries about
its “history”. The detection of versions is done by tree comparisons. In contrast to
the previous ones, this is the first solution where document structure is considered,
thereby associating changes to document fragments instead of to whole documents.

This idea of annotating document nodes with attributes that contain information
about these changes can be found in some public servers [79], where document
elements are qualified with attributes that indicate they have been modified later.

3.5 Linking and versioning in the legal domain

Legal information has some special characteristics that makes it well-suited for illus-
trating the importance that linking between documents may have. It is also a domain
where document versioning emerges as a crucial problem; good access to document ver-
sions facilitates specialists’ work, while no access to these versions can be the obstacle
that makes such work impossible.

3.5.1 Relationships

Legal documents are intensely related. Besides semantic relationships (documents
of the same category, with the same court provenance, etc.), there are many citations
between documents. Any document may contain several citations to previous rules,
jurisprudence, etc. and, in the other direction, it can be referenced in many other
documents. For example, some rules are indeed a collection of amendments to previous
rules; every amendment is a reference to the modified rule.

RELATIONSHIPS BETWEEN DOCUMENTS 51

Access to the information that provides these relationships can be valuable for any
lawyer [121], for example during the preparation of a case. To interpret a tribunal
sentence it is necessary, in addition, to have the text of the rules that guided the
decision cited in the sentence. It is worth noting that exploiting these relationships in
both senses is a requisite: it is as important to know about the jurisprudence related
to a certain rule as to know which rules are related to a given sentence. That is, it is a
requisite for the legal information graph to be traversable in both path directions.

Modelling relationships

The evolution of the manner of modelling relationships for legal documents is parallel
to the evolution of standards related to structured documents. Solutions prior to the
emergence of XML kept the content, structure and relationships in separate databases.
Document structure was modelled as structural links |3, 38]. Solutions based on SGML
or XML do not need to look at structural links, which are implicit in the document
tagging. Most of these solutions choose to model relationships within one of the docu-
ments involved [65, 56]; this choice is influenced, if not in all in most cases, by the use
of HTML hypertext, where links are explicitly typed [79].

Hypertext has been generally accepted as an ideal model for these documents [3, 62],
where relationships are represented by hyperlinks. The user navigates through these
hyperlinks to obtain related documents in each navigation step.

3.56.2 Versioning

Another particularity of legal documents is that these documents (for example, rules)
are the object of several partial historical modifications. That is, a given rule can be
the target of a temporal sequence of amendments that result in different versions of the
document valid during the period of time between two modifications. Once more, to
be able to access the version of a document as it was at a certain moment is crucial
for analysing some other documents [121]. For example, to analyse a sentence, it is
necessary to read the rules that justify it as they were at the moment the sentence was
made; niether previous versions of the rule, nor later versions can be used.

The document versioning problem has been treated in legislative digital libraries in
three ways:

1. Maintaining simultaneously all versions as individual documents in system
databases [38, 101]. Versions of the same document are linked by revision links.
Its main difficulty is to keep these links up to date, as well as links that affect
documents (which may, in consequence, affect all the versions of the involved
document).

2. Modelling modifications as attributes. This solution is, however, compatible with
the previous solution. These attributes are considered as “links”, whose resolution
(obtaining the link’s target) is left to the user [56]. Its main aim is to facilitate
queries about the “history” of a document (changes made to it): the user can know
the document has been changed and where to find the changes; however, it is up
to the user to obtain the versions if this is his/her wish.

52 Modelling of citations and modifications with typed links

3. Keeping the rules that allow the generation of versions of documents [13]. For
every version there are associated rules that allow it to be generated automatically
at the user’s request. This approach coincides with the one in this thesis as far as
the goal is concerned, but differs in the way versions are obtained; a particularised
set of rules for each version has the advantage of its precision and efficiency, but
the disadvantage that every version’s set of rules has to be specified independently.
Versions cannot be generated unless the rules have already been specified, even if
all the necessary pieces are in the library. A more general method, such as the
one presented in section 3.7, to automatically infer the rules for generation of
new versions allows this to be done, taking advantage of the relationship graph.

3.6 Modelling of citations and modifications with typed
links

3.6.1 The relationships modelled

There are two types of relationships between documents that are dealt with in
this thesis: those that do not modify any of the documents that participate in the
relationship, and those that do modify some of the participating documents. A precision
follows:

e (litations between documents are a type of relationship due to the fact that a
document “cites” another. This type of relation between two documents does not
modify any of the linked documents.

e Modifications between documents relate a document that is modified with a second
document that contains the modification. The application of modifications to a
document result in a new version of the document. Modifications to a document
can consist of additions of new text, substitutions of some text by another text or
the deletion of some content. It can all be reduced to substitutions: an addition
is the replacement of an empty text fragment by the text to be added, a deletion
is the replacement of a non-empty text fragment by an empty text. They will all
be referred to from now on without distinction as “modifications”.

Citation relationships can be recognised by the presence in a part of the document
text of a citation or reference in the text of a document A to some portion of some other
document B. A and B are related documents. The reference can be merely a citation in
A to some portion of B, or a reference to some portion of B indicating how to modify
the portion referenced. These cases where modifications are extracted from document
content have the property that modifications are always “geographically” close to a
citation that designates the target of the modification that follows. There are two
heterogeneous links (a citation and a modification) that share the target, but which
have different origins.

Moreover, the citation to a document element implies that the element and all
subelements included inside it are affected by the relationship (for example, a citation to

RELATIONSHIPS BETWEEN DOCUMENTS 53

the first section of this chapter includes all subelements of the first section: paragraphs,
figures, tables, ...). Access to document fragments is a necessity for the link graph
obtained from these relationships to have the same precision (granularity) as in the
citation texts. In the link graph, the implied documents (or fragments) are the nodes,
while relationships between them are typed links. The graph structure is explained in
the next subsection.

3.6.2 The resulting link graph

Links

A link is a directed arc from an origin (or source) vertex to a target vertex. A typed
link is a labelled directed arc from an origin vertex to a target vertex. The origin is
the document (or document fragment) that contains the citation or modification, and
the target is the document (or fragment) which is cited or modified. An example can
be seen in figure 3.6. The link type expresses the nature of the relationship (citation,
modification) and is represented in the arc label.

Ley 13/1986 Real Decreto-Ley 7/1982
Z

- %

—— A
Disposicion S\,\bs,““,’ -]
_=- Articulo 2

A

Articulo 2

SOURCE document TARGET document

Figure 3.6: An example of typed link. The source document (Ley 13/1986) has an (disposicién
1/articulo 1) element that replaces the first articulo element in the target document Real
Decreto-Ley 7/1982. Link vertices are document fragments (elements of type articulo)
instead of complete documents.

With this consideration, a typed link is considered a tuple < v,,v¢,t > where:
® 9, is the node set at the origin of the link
e v; is the target node set of the link

e { is the type of the link

Link vertices

The relationships considered (citations and modifications) are more granular than re-
lating two documents. This is specially important with modifications, where the rela-
tionship, in general, only affects a document fragment and not the document as a whole
(the example in figure 3.6 relates document fragments).

54 Modelling of citations and modifications with typed links

In structured documents, the logical structure reflects the division of the document
in fragments; the portion of the document inside which a citation is located can be
referred to by its position relative to the logical document structure, and the same
statement can be made for the cited (or modified) document fragment.

However, it is also true that, taking the document logical structure into considera-
tion, the majority of links involve several nodes in every vertex of the link. Citations
and modifications may affect one or more nodes in the document tree, thus affecting a
node-set. For example, a citation to a definition can involve the definition element
itself and all the paragraphs that together form the definition. There is a mixed vision
of the document as a tree of nodes related by hierarchical relationships and a set of
nodes. In this way, link vertices are node-sets that can be located by their position in
the document tree. In general, node sets can be represented by the root node in the
subtree formed by each node set.

The graph

Combining document trees with the set of typed links between document fragments
(node sets) -with the consideration that node sets are subtrees that are unambiguously
determined by the position of their root node- result in a labelled graph G where the
vertices are document nodes, and arcs are labelled depending on the semantics of the
relationship between them:

e Arcs from the document tree represent the hierarchical relationships between
nodes inherent to the document logical structure. These are structural arcs and
are not labelled in the examples shown below, but are drown in bold.

e Arcs that represent a citation in the origin to the target have the label citation.
They represent citation links (they are drawn with dash-dotted lines in figures).

e Arcs associated to a modification link are labelled modification.

Graph cardinality

Vertices can be simultaneously the source and target of several links. It is normal
that a document participates in several heterogeneous links -either because it contains
modifications to several documents or different fragments of a document, or because
it is cited from several points, or it is the target of various modifications, etc-, and
that these links relate it to various other documents. This is also true for document
fragments: a document fragment can be cited several times or it can be modified from
several sources. Figure 3.7 shows a document (or fragment) A that participates in three
heterogeneous links, being the target of the three: B and C are supposed to replace A
in new versions, and D merely cites it. Figure 3.18 shows another example of multiple
cardinality, where the target node-set is affected by various modification links. This
figure corresponds to a portion of the graph shown in figure 3.8.

Example 16. Articles from the most important Spanish rule ('La Constitucion’) are
cited in hundreds of documents. They are the target of as many citation relationships
as citations to them can be found. O

RELATIONSHIPS BETWEEN DOCUMENTS 55

C/}Q ”b,;

substitution
(@]

]

Figure 3.7: A link graph with 3 heterogeneous links. One of the vertices, A, is endpoint of three
different links.

Example 17. Figure 3.8 shows a graph with all three types of relationships. There
are four documents with root in D, P, M and N respectively. The tree structure
corresponds to structural links (not labelled). The subtree of D with root in ds is cited
(citation link ¢1) in M and modified by the subtree with root in mgy (modification link
m1). It is also cited in P (citation link c3) and modified (link mg). Element ds in
D is cited (citation link c3) inside po content. The subelement dal of dy in D is also
the target of a modification (me) and citation (cz) that only affects this node. do; is
affected by its own modification (mgy) and by modifications m; and m3z. O

Partial graphs

Three partial graphs can be obtained (see figure 3.9), depending on the type of link
(operation) considered:

e The forest formed by document trees, where hierarchical relationships between
document fragments (logical structure) are represented. Paths in these trees allow
individual fragments (node-sets) to be addressed. This is the structural graph.

e The citations graph obtained by considering node-sets and relationships that do
not modify any of them. This graph can be used for navigational purposes.

e The modifications graph obtained by considering document nodes, structural arcs
(arcs in the document tree) and modification arcs.

A modification to a document fragment can be expressed in terms of a reference to
the root node of the affected fragment. Considering the hierarchical relationship
between nodes expressed in the document tree, it can be said that a change to a
node is indeed a change to the element and all its descendants (including the leaves
that hold the document content). This property is used in the version generation
algorithm explained in subsection 3.7.3, that extracts the subgraph needed for
each document version generation from the modification graph.

3.7 A proposal to generate document versions using links

This section presents a proposal to generate historical document versions, using the
modifications graph obtained when modelling modifications together with document

56 A proposal to generate document versions using links

D
A‘(.._ [m
) i g e .
LT N E e
M .- P 4 S Ca< ¢ -
/],., T e 1d21 d22 N3N Oy
. T - - - ‘A ******* = \\ ~ N \-.
\mi’,’ 2 e ml T TSNS
R ;N RN P "
| m21 Ic v m 37 :4\\.. ﬁ_/\\
Lo /2 N2 ~LJip0 L pl s ‘p2!
/ \ ~.) 77
/ N\ S : /\ : 3.'7//7
/ N u\ w‘ pll pl2 ! oy
. S N (S ,
¢ A - /7
ni; 2 3 - Py
N Sl 5____,..— -7 s ’
————— citation T~ T e e
—-—-- modification e T Ll -
Figure 3.8: Link graph with heterogeneous links: structural, citation, modification.
/If\
dl ~ d2 d3
M d21 d22
ml m2
P
m21 - R
PO pl P2,
A P P2
nl n2 n3

(a) Structural graph.

RELATIONSHIPS BETWEEN DOCUMENTS 57

c == !
M ,1 -7 :'*//,\ N'\ \C\ c
A o dz | T
mT ! N0
o TZ / \'\\ N, R
L e \‘\\: ﬁ_/\\
/o2 PO pl P2,
) L
: /\ 7
; N pll pl2 /
,j/l\ ‘
i on2 n3 e
7\ ‘/'
N -
----- citation \\-s.__\‘- C_5____’ -
(b) Citation graph.
D
/I\;\ [m
dl /7 g2 e e A
M L '7’1,*/,\ e
_— —=TT 0 dgl d22
L e il S
ml .~ m2 "~ \ s, -
: | : 1 ‘\' m3\ P ‘\.'.
: m21 : "-., m ~ . . 4\ R
77777777 \ 2 ~ \ApO 7opl o (p2;
\ '\.. ! 1 .77
A'\, \"\ : /\ ! .~-’4
N \ s pll pl2: e
/J\;\“ S -
nl Lng: Ln73: Jte
\\\\\\\ m5 e -

~—-- modification
(c) Modification graph.

Figure 3.9: Partial graphs obtained selecting links by type criteria from the graph in figure 3.8.

58 A proposal to generate document versions using links

structure as typed links. A subgraph will be used for the generation of each individual
document version, called the versioning graph.

There are three main aspects related to document versions that can be considered:
detecting changes, representing changes and querying changes. Detecting changes can
be done by comparing documents [36] or from citations inside documents [121, 68]; the
approach used in this thesis is the second one: versions are due to modifications de-
tectable from citations. There are two possibilities to represent changes aside from the
one chosen in this thesis: storing all versions caused by a change and linking them [38]
and representing changes as annotations [36, 35]. The problems caused by storing all
versions have been commented in section 3.4, and moreover, this approach presupposes
that someone has taken care of generating the different version. This fact is not always
guaranteed, which is the case when modifications that cause different versions to appear
come from citations: the documents that should be used to obtain every version are
available, but the different versions must be composed by users following the modifi-
cations and applying them. As for representing changes as annotations, this facilitates
queries about the history of a document, but it is not the most appropiate choice to
facilitate version generation. The information about relationships does not appear as
a link that can make part of a graph, but as attributes of nodes. In the end, these
attributes express a relationship between two nodes. So, the decision in this thesis has
been to model this type of relationship as any other type of relationship: with typed
links, and to generate versions exploiting the relationship graph.

So, the aim of the proposal presented in this section is to be able to offer a copy
of a document in its state at a certain date. Every version of a document should show
the resulting document version after applying all modifications made to the document
in the time interval from document creation and requested version date to the original
version. The presumption is that the initial version of the document is available, as well
as documents that hold modifications to it. Also, it is proposed to “store” modifications
in a link database that contains the information about the relationships graph that
involves all documents needed. Obtaining document versions from modifications should
be done on demand, by applying modifications expressed in links to the original versions.

The proposed algorithm -subsection 3.7.3- works on structured documents, in which
modifications concern document fragments whose limits can be specified in terms of
the document structure. Another characteristic is that modifications are commonly
included in some other document, but are not available as complete documents. That
is, a document is modified by the replacement of some of its fragments by fragments
coming from other documents. With structured documents, it is feasible to have a
modifications graph whose vertices are node sets -as explained in section 3.6.2- that
allows the version generation to be tackled as a graph problem. Modifications to be
applied are filtered from the total set of modifications using request parameters (for
historical versions the filter criteria is the date).

From the architectural point of view, the algorithm explained here is implemented
as a method of the document management service, and the scenario where it fits is the
version generation scenario in chapter 4. Figure 3.10 shows documents that participate
in this process. At the user’s request, documents and links are combined to create a
virtual document: the required version. This one is obtained by applying modifications
to a document copy already in the collection: the source document, D. Modifications to

RELATIONSHIPS BETWEEN DOCUMENTS 59

Virtual
document

Base documents %UkS\
/\ 11 12 Im
| | |

Source "Modifiers" D-D1 D-D2) D-Dm)
document
(D)
Lo ; ;
o I |
[I

Figure 3.10: Documents in the version generation process. Inputs documents are a document to
modify and modifier documents.

D are extracted from some other documents: the modifiers.
3.7.1 The output version tree

A document is considered as a tree with elements. The output document, produced
as a result of the update process, belongs to the same document class as the original
version, but may have a somewhat different logical structure.

The tree is basically the same as the initial one, where some nodes have been re-
placed, deleted or inserted. Nodes in the source document not affected by any modifi-
cation (nodes that are not the target of a link) remain untouched in the output version.
Structural links and modification links are used to produce the new graph.

Example 18. An example extracted from the legal documents library illustrates the
problem.
Input documents to the updating process are the rules shown in figure 3.11:

e A source document, 102-1980.xml, whose first element articulo has to be replaced.
Its source text is in figure 3.11(a).

e A modifier document, 113-1986.xm1, which contains the element that will replace
the first element articulo in 102-2980.xml. The replacing element is the first
articulo inside the first element disposicion. The source text 3.11(b).

The output document of the modification process -which can be seen in figure
3.11(c)- is a new version of the source document, where the first node-set that cons-
titutes the element articulo has been replaced by the first element articulo inside the
first element disposicion in document 113-1986.xml and the rest is unchanged. Figure
3.12 shows the effect of the process in the document tree. The link that models the
modification can be seen in figure 3.13. O

60

A proposal to generate document versions using links

<?xml version="1.0" encoding="1SO—8859—1"?>

<doc>

<articulo id="al"><title>Articulo Primero. </title>

<p>El referendum en sus distintas modalidades, se celebrard de
acuerdo con las condiciones y procedimientos regulados en la
presente Ley Orgénica.</p>

< /articulo>

<articulo id="a2"><title>Articulo Segundo. </title>

<p>Uno. La autorizacién para la convocatoria de consultas populares
por via de referendum en cualquiera de sus modalidades, es competencia
exclusiva del Estado.</p>

< /articulo>

</doc>

(a) Source document for the example: [02-1980.zml

<?xml version="1.0" encoding="ISO—8859—1"7>
<doc>
<p>Ley 13/1986, de 14 de Abril de 1986, de Fomento y Coordinacién
General de la Investigacién Cientifica y Técnica</p>
<p>Don Juan Carlos I,Rey de Espafia.</p>
<disposicion id="da"><title>DISPOSICIONES ADICIONALES. </title>
<p><a>Undécima.

1. Quedan modificados los articulos 1.°,4.° y 8.° de la Ley
Orgénica 2/1980, de 30 de abril , que quedaran redactados en la
forma siguiente:</p>
<articulo id="dalll"><title>Articulo 1.</title>
<p>Con la denominacién de Instituto de Astrofisica de Canarias se crea
un Consorcio Publico de Gestién, cuya finalidad es la investigacién
astrofisica .</p>
<p>El Instituto de Astrofisica de Canarias estard integrado por la
Administracién del Estado, la Comunidad Auténoma de Canarias la
Universidad de La Laguna y el Consejo Superior de Investigaciones
Cientificas .</p>
< /articulo>
<articulo id="dall2"><title>Articulo 4.</title>
<p>El Consejo Rector estara integrado por el Ministro de Educaciény
Ciencia, que actuard como Presidente; un Vocal en representaciéon de la
Administracion del Estado, que sera nombrado a propuesta del
Ministerio de la Presidencia, y tres Vocales mas en representacion de
cada una de las restantes Administraciones piblicas y Organismos que
se relacionan en el articulo 1.° Formara parte del Consejo Rector,
asimismo, el Director del Instituto , que serd miembro nato.</p>
< /articulo>
< /disposicion>
</doc>

(b) Modifier document for the example: 118-1986.zml

RELATIONSHIPS BETWEEN DOCUMENTS

<?xml version="1.0" encoding="1SO0—8859—1"7>

<doc>

<articulo id="dalll"><title>Articulo 1.</title>

<p>Con la denominacién de Instituto de Astrofisica de Canarias se crea
un Consorcio Publico de Gestién, cuya finalidad es la investigacion
astrofisica .</p>

<p>El Instituto de Astrofisica de Canarias estard integrado por la
Administracién del Estado, la Comunidad Auténoma de Canarias la
Universidad de La Laguna y el Consejo Superior de Investigaciones
Cientificas .</p>

< /articulo>

<articulo id="a2"><title>Articulo Segundo. </title>

<p>Uno. La autorizacion para la convocatoria de consultas populares
por via de referendum en cualquiera de sus modalidades, es competencia
exclusiva del Estado.</p>

< /articulo>

</doc>

(c) Modified document for the example: new version of [02-1980.zml

Figure 3.11: Version generation. Input and output documents.

102-1980.xml SOURCE DOCUMENT: 113-1986.xml MODIFIER DOCUM EN'ﬁ
(Document to modify) doc
n n disposicion|

n articulg}

i| Articulo Primero. El referendum.|.

“F— Node-set to substitute

|
|

|

|

|

|

|

1

|

articulg} .
|

|

|

|

|

|

|

|

i

..organica. ~
[Articulo 1. Con la denominacion El Instituto |
<vevenee INVEStiGACION . Investigaciones | !
cientifica. Cientificas. !
|
Node-set that |
substitutes |

Articulo 1. Con la denominacion ElInstituto

I
<ievneennn iNVEStigacion .. Investigaciones Node-set substituted i
cientifica. Cientificas. |
I
I
I

Figure 3.12: Element substitution, based on links. The first element articulo in the source (lo2-
1980.xml) document is substituted by the first element articulo inside first element
disposicion of the modifier document. The result is a new version of document /o2-
1980.xml.

61

62 A proposal to generate document versions using links

(o] [t | [p] L]
"Substitution”

Articulo Primero. El referendum... Articulo 1. Con la denominacion El Instituto

U | n Lr
organica. cientifica. Cientificas.

TARGET ORIGIN

(to be replaced) (replacing node)

Figure 3.13: “Substitution” link. The ORIGIN will replace the TARGET when generating a new source
document version. The ORIGIN is a subtree of the source document made up of the
element articulo and all its descendants. The TARGET is the subtree in the modifier
document tree whose root is the first element articulo inside the first disposicion.

3.7.2 Versioning graphs

Every document version is the result of resolving a versioning graph obtained from
the modification graph. There are no loops in the modifications graph: no document
can modify a later document, and in consequence there will be no loops in the versioning
graph.

The versioning graph associated to the requested document version is obtained with:

1. The tree, T, of the document version available in the document database. This
version is the source document for the versioning process.

2. The set of modification links, M, that reach some node in 7.

3. Modification links that reach some source node of links in M should also join M.

Modification links in the versioning graph have a priority attribute: the date of
the link (the date when the modification was stated). This priority attribute will be
used to resolve conflicts such as that found when a node is affected by more than one
modification.

3.7.3 The document version generation process

The document version generation algorithm operates by resolving links during the
versioning graph traversal. The algorithm 2 generates the version of a document D,
applying modifications to it that match the filter criteria expressed by the priority
argument -the date-. Only modifications previous to that date are applied to D.

The document version generation algorithm deals with the source document tree in
a recursive manner, beginning at the root node and treating its descendants in the same
manner till there are no more nodes to consider. Every new call to recursion supposes a
descent on the document tree (more granularity in the document fragments considered).

When the algorithm reaches a node, this can be in one of two possible categories:

e It is a node affected by a substitution. That is, it is the root of some modification
link’s target. A modification to a given node in a structured document affects the
node and all its descendants (for example, figure 3.12 shows that to substitute the
first element articulo of document 102-1980.xml by a new one, means to replace
the whole subtree with the root in this element).

RELATIONSHIPS BETWEEN DOCUMENTS 63

Figure 3.14: Versioning graph.

e It is not affected by modifications. There are no modification links that reach it.
The recursion stops when:

1. The node to be dealt with is empty: all document nodes have already been visited
(including document content). This case is reached when the recursion path to
the current node includes nodes that are not modified.

2. The node is modified. With modification, the process finishes, as all its descen-
dants have been modified with it.

The recursive call takes place when the node is neither empty, nor a link target.
Such nodes must be copied as they are in the source and recursion must continue on
their descendants, as they could be affected by some modification.

Example 19. Document D in figure 3.14 is composed of three elements (di, do,d3);
element ds is itself formed by two other elements (da1,d22). Document P contains two
modifications to D, whose application gives as result a new version of D:

e Element p; (with its descendants p1; and pi2) replaces element dy in D. This is
modification m;.

e Element py replaces element d3 in D. This modification is called m.

The version generation algorithm starts with node D. A modification to this node
would suppose a replacement of the whole document by another document or document
fragment. As this node is not affected by any modification, the algorithm continues
exploring the possibility that its descendants -e1, e3 and e3- are themselves the object of
some modification.Node e; remains untouched. es is replaced by p; and its descendants
while es is replaced by po, thereby completing the recursion. [J

3.7.4 Node versioning

To resolve a modification link is to apply the modification expressed by it. That is,
to replace the target vertex content by the source vertex content. When the current
node is affected by some modification, there can be several situations to consider:

The versioning of each node can be in one of the following three situations:

A proposal to generate document versions using links

e Simple case.
The node is affected by a unique modification link, /. Treatment of the node limits
to resolve [, that is, to substitute the node by I’s origin.

e Transitive modifications.
There is a sequence of historical modifications: the origin node of some modifica-
tion is itself the target of other modifications (it is modified somewhere else). This
situation is shown in figure 3.15. The resolution implies an ordered traversal of
the sequence of transitive links, where modifications are applied in a time ordered
manner.

modify modify

Figure 3.15: Transitive modifications.

Given two links e; and eg involved in a transitivity, two subcases can be distin-
guished, depending on the link date criteria:

— e1, C ey (e1 modifies a portion of ex’s source) and ey is more recent than
€9.
e should be applied, but e; should be applied first on the source vertex of
ez. The diagram in figure 3.16 shows the situation when ej, C eyg.

e
e‘]SOURCE e‘ITARGET
%OURCE e%’ARGET

Figure 3.16: Transitive modifications. e1, C eay.

Example 20. The example in figure 3.17 shows a fragment of the versioning
graph used to generate a new version of document D. The substitution of
the subtree with root in node ds implies replacing it with the subtree formed
by node po; but as this should be substituted by node ng, ds is, in the end,
substituted by ne. O

— ey, C egy (the same figure as the previous case) and ey is more recent than
e1.
This situation is impossible: a document cannot modify a later document.

e Modifications overlapping.
In this case the conflict is due to the fact that a node set is the target of several
modifications (n-arity in the node). There are several subcases to consider:

— All modifications apply exactly to the same node set. That is, they address the
same node (root node for the node set). This is the case seen in figure 3.18.
The conflict is resolved by applying the priority criteria to the modifications.
Only the most recent is applied.

RELATIONSHIPS BETWEEN DOCUMENTS 65

D

d1 LT 1 A — 4.
d21 d22
p
PO pl ;;3?:
N pll pl2 :
— 1
nl nz| n3 o

—--—- modification

Figure 3.17: Transitive modification in version generation.

Figure 3.18: Exact overlapping; all targets match.

— There is an inclusion of two or more link targets. All links address the same
document (see figure 3.19), but different overlapping fragments.
If two links e; and es, are considered, there are two possibilities:
1. e1, C ey, and ey is more recent than e;.
The target of e; is included in eo’s target. The link that affects the bigger
fragment (eg) applies because it is the more recent and the conflict is

resolved.
62\'ARGET
e:I'I'ARGET
I
e:ISOURCE
)
ezSOURCE

Figure 3.19: Modifications overlapping. e1, C ea,.

Example 21. An example of such a situation would be a theatre piece
to which the author first changes scene X and later decides to change the
whole act that contains the scene previously modified. A replacement of
the act supposes a “refusal” of the first change. [J

66 A proposal to generate document versions using links

Example 22. In figure 3.20 there is another fragment of the versioning
graph extracted from figure 3.9(c). The modification to de; is ignored
and only the one that applies to do is used. OJ

D
dl - d2 . d3
| I
| I
/T — :'d21‘, d22 :
ml \// TZ s ml \‘-\
I I -
o M
|
\
N %\
/I\‘~
nl n2 in3
—— modification

Figure 3.20: Modifications overlapping.

2. e1, C ey, and ey is more recent than es.
The difference with the previous case is the date.
There is a possible incoherence, depending on how the modifications
were created :

* In the first case, the modification represented by e; was stated with-
out knowledge of the existence of a previous modification (the one
represented by es). If the application of es changes the logical struc-
ture of the target document, e; cannot be applied. This is an inco-
herent situation.

*x The second situation is when the modification represented by e; was
stated with knowledge of the existence of a previous modification
(the one represented by ez). In such a case, the modification stated
in e; considers the new logical structure caused by the application
of es and both modifications are applicable.

The difference between these two cases comes from the creation condi-
tions that cannot be controlled or detected by an automatic engine. In
consequence, the case where e, C ez, and e; is more recent than eg is
considered as an anomaly and is not treated by the version generation
algorithm.

The algorithm

Algorithm 2 versions a document copy D, applying to it all modification links in the
range from D’s date to the date argument. The recursion for each node is shown
in algorithm 3. The empty tree implies the end of recursion directly. In lines 2
through 5 all links with the target in the current node are selected and the cases of
coincident overlapping are resolved: Op is the node-set that should replace it. If there

RELATIONSHIPS BETWEEN DOCUMENTS 67

is no inclusion overlapping, the current node can be substituted by Op, (the result of
applying its own transitive modifications to Or). Before substituting a node by the
link’s origin (Op,), this origin is updated -in case it has suffered any modification itself-.
Then, Oy, is ready to replace the current node (77). If there is inclusion overlapping
in modifications between the current node and its descendants, the two possibilities
explained on page 65 are dealt with: more recent modifications to its descendants
cannot be dealt with and are output in a list of conflicts that cannot be resolved by
the algorithm, while modifications later than the one that affects the current node are
cancelled. The induction case (nodes output untouched) supposes recursion calls from
lines 18 through 20.

Algorithm 2 Algorithm for modifications. Document treatment.
Inputs: D: document, date: criteria

Outputs: A new version of D. A list of conflictive node couples.

1: Let d be the root node of D

2: Modify(d,date)

Algorithm 3 Algorithm for modifications. Node treatment.
Function Modify(n : node, date : criteria)

1: if n is not null then

2: if n is the target vertex of some modification link then {n is the root of some node set in a link’s
target}

3 Let My be the list of modification arcs with n in the target’s root

4 Let L be the link in ML with more recent date attribute

5: Let Or be the origin node of link L

6: Let Mp be the list of descendants of n that are the target in some modification link

7: if Mp is empty then {There is no inclusion overlapping}

8 n < Modify(Or,date) {Treat transitive modifications before applying Or,}

9: else {There is inclusion overlapping between n and its descendants}
10: if there is some node ¢ in Mp with a modification date more recent than L's date then
11: Mark n with an Abnormal actualizations conflict flag and do not version n
12: Add the pair (n,c) to the list of conflicts
13: else {All modifications to children of n are previous to L and, thereby, cancelled by L}
14: n < Modify(OLr,date)
15: end if
16: end if
17: else {n is kept untouched. Its descendants may, however, be affected by some modification}
18: for all ¢ « child(n) do
19: Mod:i fy(c, date)
20: end for
21: end if

22: end if

68 A proposal to generate document versions using links

3.7.5 Input and output documents in version generation

Input documents to the transformation process are documents from system
databases, of some of the document types allowed in the system. Links come from
the links database. Thus, input data to the document generation process are:

1. A document to update (the source document)
2. A set of documents with the modifications that update the source document

3. A set of links that represent the modifications: they relate the source document
with modifier documents

Source Modifier
document documents

Document generatio Links related to source documj

Document]
version

Figure 3.21: Data in the generation process

The source document and modifier documents can be of different types (conform to
different DTDs). Indeed, the class of input documents does not modify the process for
obtaining an updated version.

3.7.6 Modelling the graph with a links database

Link fields and semantics

A link can be modelled as a record that contains several fields. The link composition
derives from the requirements to the links:

e Links must be able to address internal document fragments.
e The links database should accept queries about linking information.

e Links can be queried multidirectionally. A citation or modification can be ex-
ploited in both link directions. For example, it can be asked What documents
modify this document? or What documents are modified by this document?.

RELATIONSHIPS BETWEEN DOCUMENTS 69

There is n-arity in the graph: a node can participate in more than one link. For
example, the algorithm in section 3.7 needs to access the set of nodes that modify
a given node.

The links database must be accessible separately from the documents: to query
this database, it must not be necessary to enter the documents. This condition is
necessary to exploit multidirectionality and n-arity.

Fields corresponding to the link’s origin are:

Document identifier: logical document identifier (see chapters 2 and 4).
Physical location. Address of the available document digital copy.
Internal locator in the document, identifying the citing or modifying fragment.

Link type: any (citation, modification).

The type of the link is modelled on the source node: for links considered in this
work (citations and modifications placed in some document), their type comes in
fact from the content of the source link vertex. That is, it is natural to express
the type beside the source node, as it is this node which influences the link type.

Document type. It is the class the document belongs to. The document class
can influence link types (an example can be seen in the prototype).

Document date. In the case where several modification links with different
origins share the target (document and internal fragment), the date is the criteria
to decide which one applies.

Concerning the Link’s target, the fields are:

Document identifier (the same as for the origin)
Physical location (the same as for the origin)

Internal locator in the document (idem)

Representation with XLink

XML offers a solution that complies with all the requirements posed to the link records
database: out-of-line link databases that can be accessed separately from linked do-
cuments, extended links to model multiplicity and multidirectionality, and XPointer to
address internal document fragments.

3.8

Application to legal documents

Citations are very common in the legal text domain, where documents contain many
references to previous rules or jurisprudence. Rules and decrees enumerate modifica-
tions to well-delimited parts of other documents, as well as citing the document that is

70 Discussion

modified and the fragment affected by the modification. The results are new versions
of cited documents.

For example, the Spanish rule Ley 13/1986, cites the fourth articulo of the Ley
11/1977 -

A los efectos de su gestidén econdmico-financiera los Organismos a que se
refiere el articulo 13 de la presente Ley se entendran incluidos en el
apartado b) del parrafo primero del articulo 4 de la Ley 11/1977,
General Presupuestaria, de 4 de enero.

The same document (Ley 13/1986) includes a modification to the Ley Orgdnica
2/1980:

[...] Quedan modificados los articulos 1°, 2°, 4° y
8° de la Ley Orgénica 2/1980, de [...] que quedaran
redactados en la forma siguiente:

Articulo 1.

Con la denominacién de Instituto de Astrofisica de Canarias se crea un
Consorcio Piblico de Gestidn, cuya [...] y el Consejo Superior
de Investigaciones Cientificas.

Articulo 4.
E1l Consejo Rector [...]

The new version of the Ley Orgdnica 2/1980 can be obtained by applying the mo-
difications in Ley 13/1986 to it, using algorithm 2 (the result of this application is the
document shown in figure 3.11(c)).

3.9 Discussion

One of the most popular ways to model relationships is hypertext. Links express
relationships and a navigational graph is obtained. Navigation actions traverse the
graph from link sources to targets, and the number of links that share the same source
node introduce complexity in this traversal. Linked resources are documents, and the
achievement of more granularity requires evolution to systems and standards able to
work with structured documents (for example, XML).

The typed link graph considered in this work is not a navigational one, and linked
entities are document fragments. One difference with the traditional hypertext is the
types of relationship considered and the use made of the graph. The citation subgraph
could be the equivalent to the traditional hypertext graph: a citation is a link to a
cited information piece that could allow navigation. But the modifications graph can
be exploited in a more interesting way than navigation that would not finally manage
to provide the expected help to the navigator user, who risks getting lost inside the
navigation graph [92]. The modification graph can be used to provide users with desired
documents, freeing them from the navigation and composition task necessary to obtain

RELATIONSHIPS BETWEEN DOCUMENTS 71

a document version from a navigational hypergraph. Different traversals can be used
to query the graph about relationships.

Relationships are not a problem exclusive to textual documents, but these do have
an interesting peculiarity: modifications are mostly expressed inside documents that are
themselves a semantic unit that should not be fragmented. This means that elements
involved in a modification relationship are not first class entities (they are not documents
most of the times, and they are not even files, but fragments); this is also a difference
with software updates, where updates expand complete files [41]. The second interesting
quality is that it is possible to extract the relationship from a document text, while
paying attention to the target document structure. Elements implied in modifications
do not need identifiers to address them; they can be addressed by their position in the
document tree. Node-sets involved in a relationship can be addressed by the position of
their root node in the document tree. That is, it is possible to work with any structured
document, to manipulate any structure, without depending on fragment identifiers,
which are more human dependant.

Some types of relationships dealt with in this thesis -citations and modifications-
are embedded inside document content and affect document fragments. That puts the
link graph obtained in this work in a granularity level higher than that considered in
traditional hypertext or object versioning, where the links always related first class en-
tities. To link pieces instead of complete entities allows a further step to be taken in the
precision of the links, and to proceed to the generation of versions, which is impossible
without this granularity. Modifications are “geographically” close to a citation that de-
signates the target of the modification that follows. There are two links (a citation and
a modification) that share the target, but have different origins; two heterogeneous links
are close. The integrity of documents that contain modifications is untouched: they are
never fragmented to obtain individual entities that could be directly inserted in a new
document, neither their content, structure or attributes is touched. Relationships are
independent information and are kept aside.

Besides relationships, versions have been considered in this chapter. There are three
main aspects of interest related to document versions:

1. Detecting changes. There are two possible ways to do this: from citation detection,
or comparing versions. In this thesis, the assumption is that not all versions are
available, while documents that contain modifications are more certainly present.
That leaves detecting changes from citations as the only possibility to detect
modifications in this thesis.

2. Representing changes. There are three ways to represent changes:

e To store all versions caused by a change.
e To represent changes as annotations (attributes) to affected nodes.
e To represent changes as links.

3. Querying changes. The way to operate here is dependent on the choice made for
representing changes.

72 Discussion

e If versions are first class objects, the only way to query changes is to search for
differences between versions. It would be a file or tree (in case of availability
of the document structure) comparison.

e If changes are represented as annotations, to query them is to query an-
notations. In the case of structured documents, that means to query node
attributes.

e [f changes are represented by independent links, to query changes is to query
links, which is the same as querying any document.

The solution of maintaining all versions simultaneously has shown to have its main
difficulty in links maintenance [38, 101]. The solution that represents changes as node
attributes uses a document tree representation: it works with structured documents.
It is a solution whose aim is to query the history of nodes in documents. The aim of
querying the changes takes relevance over the desire to access document versions: to
know the history of a node can be done by querying its attributes [36, 35].

Conversely, the approach chosen in this thesis is to maintain links separately from
document content. This has several benefits: relationships can be exploited bidirec-
tionally (the graph can be traversed in several directions), documents that participate
in the relationship are not touched (the structural forest graph and document contents
are not modified by representing relationships, as would an insertion of linking elements
inside documents), the problem of maintaining revision links disappears, and the pro-
cess of version generation is simplified (it can be based on a document tree, considering
modifications as links that reach this tree).

The algorithm presented in this chapter generates a new version of a structured
document, using the information about the historical modifications it has suffered. The
versioning algorithm always works with the logical structure using a traversal graph
algorithm. The versioning graph used to generate a document version uses links that
reach the document that is the basis of the traversal. The complexity in this version
generation process comes from the number of links that reach a target, which is different
from navigation, where the complexity is due to the multiplicity in the source.

The problem of maintaining revision links detected in [38, 101] disappears when
versions are automatically generated. The generation of versions proposed in this the-
sis goes a step further than a composition of documents made by following the rules
expressed in some type of “structural” link between the frame document and the compo-
sing ones [109, 8]. Here, the composition rules are deduced from non-structural semantic
links (modification links).

We are only aware of one proposal to automatically generate document versions; it
was recently proposed in [13]|. They indicate the possibility of keeping rules to automat-
ically generate document versions. The version generation algorithm presented in this
chapter does not use rules that indicate how to generate versions, but the information
it uses is the relationship information stored in links. It is the link graph traversal that
allows versions to be generated, with variable parameters (such as the version date).

The application of the versioning algorithm proposed in section 3.7 is limited when
a document is the target of several incoherent historical modifications: modifications
are made without considering modifications that were previously made. In this case,

RELATIONSHIPS BETWEEN DOCUMENTS 73

there is no way to decide which one should apply and the algorithm leaves this situation
as an unresolved conflict, that should be presented to the user for decision.

A complete automatic treatment of links could consist of an automatic detection
of citations, which would allow the document identifiers and document fragment paths
to be generated automatically from citations. There are experiences of generating do-
cument identifiers from citations [31]. The main problem with this detection is the
variability of the citation language. Up to the moment, only in areas where the lan-
guage used is rigid (as legal domain language is), has it been possible to obtain some
kind of automatic recognition [121]; these results should be expanded to adapt them for
work with structured documents (to generate document fragment paths).

74

Discussion

Link-oriented architecture

Contents
4.1 Protocols and architectures in digital libraries 76
4.1.1 Basic reference model for a digital library 7
4.1.2 Citation-linking architecture 78
4.1.3 Document manipulation architecture 79
4.1.4 Query and retrieval protocols 80
4.1.5 Multi-service oriented protocols 81
4.2 A proposal for linking-oriented services 83
4.2.1 Overview e e e e 83
4.2.2 A brief presentation of some scenarios 86
4.2.3 System services e 88
4.24 Servicesinteraction. 91
4.2.5 Services interfaceso oL 94
4.2.6 System componentso 98
4.2.7 Components interaction 101
4.2.8 Data architecture Lo 104
4.2.9 System qualities oL Lo 107
4.3 Discussion o v it i h it i e e e e e e e e e e 109

75

76 Protocols and architectures in digital libraries

This chapter focuses on the digital library architecture that allows linking functio-
nalities to be obtained. This architecture (and protocol) integrates these functionalities
with "classical" functionalities in digital libraries (querying, document retrieval and
browsing), proving that link-oriented functionalities can be integrated in a digital li-
brary without affecting the operation of existing functionalities.

Digital libraries offer their users functionalities that allow them to exploit the infor-
mation held in these systems. Tasks needed to acheive the correct completion of users’s
requests are the responsibility of the system. Digital library architectures should facili-
tate the distribution of tasks among cooperating services (or components in the imple-
mentation phase) in order to achieve the architectural properties specified by software
engineering guidelines (open architecture, federation, integrability and interoperability)
that in this particular type of system, which is the digital library, are particularly critical,
due to the way digital libraries are, in most cases, built: integrating legacy, heteroge-
neous data and systems to get a single digital library that offers users an integrated
view.

If minimal functionalities in a library (retrieving, querying, and browsing) are con-
sidered, a reference model can be obtained for digital libraries, which can be found
in any of these systems. Three models are given special attention in this thesis: the
reference model for basic services, a model for reference linking, and an architecture for
document manipulation.

Integration of collections and cooperation of services requires the use of a protocol
that controls the interaction among participating services. Several protocols have been
defined expressly for use in digital libraries. The more classical are Information Retrieval
protocols, based on a client/server model, such as Z39.50. However, these protocols are
for situations of collection distribution and their main aim is to facilitate queries among
remote collections. More recent protocols are designed with the aim of integrating
the system operation, distributed among various services. Besides querying and data
retrieval other functionalities are considered, which results in service-oriented protocols.
Examples are Dienst and protocols defined in the Stanford Digital Library Project, both
defined for use in digital library environments.

The link-oriented architecture proposed, which deals with linking integration, con-
sists of the services architecture and their interaction (through their interfaces) protocol.
This first abstract functional view of the library as a set of services is translated to a
development view where the services are implemented by a set of components that
interact by mutual invocation.

The prototype presented in chapter 5 is an implementation of linking-oriented
services, based on the components architecture shown in subsection 4.2.6.

4.1 Protocols and architectures in digital libraries

Digital libraries may offer a variety of functionalities [88, 90, 89, 10, 11|, that are
commonly implemented by a set of separate (but cooperating) services. In any case,
the functionalities offered influence the system architecture. The aim of generating new
documents through document manipulation and relationships derived from citations

LINK-ORIENTED ARCHITECTURE 7

between documents, means special attention must be given to the following references:
a reference model for basic services in digital libraries (presented in subsection 4.1.1), a
reference architecture for citation linking (explained in subsection 4.1.2), and a proposed
architecture for document manipulation (shown in subsection 4.1.3).

Interaction between services is controlled by high-level protocols specially designed
for use with digital libraries. Two of the most complete examples of such protocols are
described in this section. The first one is Dienst [43], the protocol defined in Cornell
for the NCSTRL and the ERCIM Technical Reports digital libraries . The second set
of protocols are part of the Stanford Digital Libraries project [104|. These protocols
are described in terms of their services and interfaces in Dienst, and, in the Stanford
project, their components and interfaces. But the existence of these service-oriented
protocols does not mean that no other (lower level) protocols can be used in digital
libraries. Components that implement these services interact using protocols such as
HTTP [44], protocols that are part of CORBA [63, 122], and Information Retrieval
protocols -such as 739.50- [104, 9]. Z39.50 is an Information Retrieval protocol that
considers services for retrieval and querying and that has inspired some design decisions
(mostly, in semantic issues) in later digital library protocols.

4.1.1 Basic reference model for a digital library

Basic functionalities in digital libraries are searching documents, retrieving docu-
ments and browsing in library collections. Users can exploit them through user interface
services that facilitate their interaction with the library system. These functionalities
should always be present, whether or not the library is distributed, there is heteroge-
neity, and whatever additional characteristics the library has or services are offered.
The set of services responsible for providing these functionalities is:

e Repository services, which provide access to repositories in the library (document
retrieval).

e User interface services, that provide users with an interface to the rest of the
services (and data) in the library.

e Search services, that enable documents in the library to be searched and to get
the collection of document identifiers that match the query.

e Naming services, associating user meaningful names to digital objects, allow users
to access intellectual works (instead of digital objects) [10]. This service introduces
a level of abstraction for the physical implementation of (abstract) documents as
digital files.

These basic functionalities result in the reference model of figure 4.1. In the most
basic digital library the user interface service interacts with all the rest. It transmits
retrieval requests to the repository services, it passes user queries to search services and
it uses the naming service to obtain the mapping from intellectual work identifiers to
digital object addresses.

This model is expanded in every different library according to its particular needs.
Heterogeneity provokes the presence of Translation services [98, 100, 91]. Distribution

78 Protocols and architectures in digital libraries

User Interface

Figure 4.1: Basic services in digital libraries.

also influences the architecture of digital libraries in the sense that new services -that
look after the distribution of queries and the redirection of data and messages- integrate
the system [45, 122, 22, 61].

Some examples where these basic functionalities can be found are the Networked
Computer Science Technical Reports Library (NCSTRL) [44], the Ercim Technical Re-
ference Digital Library [22], or the Networked Digital Library of Theses and Dissertations
(NDLTD) [95].

Implementation of this set of services in every particular library results in a set of
components in each library. They include software components (or agents), as well as
data repositories. Data that qualify other data and data about the system (metadata)
are included in the design of the data architecture. Collection services are offered by
Collection Interface agents [24], also, user interface services are, in most cases, imple-
mented by a User Interface agent |24, 11]|. In any case, variations are possible and the
rest of this chapter introduction focuses on protocols that are used as the basis for these
architectures, as well as on two models (subsections 4.1.2 and 4.1.3) that were found
to be useful for guiding the design steps in the architecture modelization.

4.1.2 Citation-linking architecture

There is a reference architecture to which almost all systems that provide citation
linking for journal articles conform [31]. This model deals mainly with the resolution
of citations to equivalent document identifiers, and with the resolution of document
identifiers to physical objects in the collections. The components architecture (in figure
4.2) is centred on three types of databases, used to resolve citations. The provider of
the information (Publisher) supplies metadata about each work, that is stored in the
Location database; the provider also updates the collections. The Location database
holds the mapping of work identifiers to physical locators (URLs), and is used during
the resolution of the identifier. The Reference database contains metadata which, at the
very least, correspond to the information in a conventional citation, and that are used
for resolution of identifiers. The Content database contains the documents, which will
be effectively retrieved after the resolution of the identifier. The Client component is a
generic one that represents any application able to provide documents to users or other
software clients.

The services provided are the ones that allow documents to be retrieved. They

LINK-ORIENTED ARCHITECTURE 79

Publisher

Reference database

e —
__

FETVETT

Figure 4.2: A components model for reference linking in journal articles.

include -with reference to the services in figure 4.1- the Repository services (for access
to records in collections) and Naming services (to resolve identifiers). Naming services
are unavoidable in reference linking, as is the way to allow the abstraction from physical
implementation at the same time as mapping citations to digital object addresses.

Data flow between components is also shown in figure 4.2. The citation is sent
by the client to the Reference database, which answers with a list of work identifiers
that match the citation. The client sends the identifiers of interest to the Location
database, which sends a list of URLs (physical addresses) that match the document
identifier. Finally, access to document content can be achieved directly through the
physical identifier (the URL).

Naming services, in most cases, follow conventions expressed in the Digital Object
Identifier (DOI) |94] for their metadata (this standard is presented in chapter 2).

4.1.3 Document manipulation architecture

Arnold-Moore et al. [15] propose an architecture to deal with document manipula-
tion. The model is defined to suit the functional requirements of a system that treats
documents. These requirements are of four types:

e Data definition: semantic and structural constraints on data can be obtained from
documents or -if available- from a document class definition.

e Data retrieval: access and querying of documents, which means access to entire
documents, individual elements, element attributes and their values, document
content and document metadata.

e Data manipulation: retrieving and arbitrary reuse of data elements, as well as
generation of new data.

e Document management: this includes support for versioning and document com-
position. Document versioning facilitates access to all versions of a given do-

80 Protocols and architectures in digital libraries

client applications

workflow query
manager engine

/
\

\
/

version document
manager manager

Figure 4.3: An architecture for a document management system; version manipulation has a dedi-
cated component.

cument, distinguishing between the different versions. This requisite affects the
identifiers, that can be different in different versions but similar enough to in-
fer that two document objects are versions of the same document. Document
composition consists of obtaining new documents from fragments retrieved from
other documents. Composite documents can be containers for data that is shared
by multiple documents, where changes in shared data have to be automatically
reflected in the composite document.

These functional requirements result in the component architecture seen in figure
4.3. A workflow manager administers and directs the automated workflow. A wersion
manager deals with versions and variants of documents. A query engine resolves con-
tent, structure, and metadata queries. A document manager provides security, access
control, check-in and check-out, and composite document support. An XML engine
provides document parsing and validation, tree manipulation, and document structure
comparison; this component is used by all the others. All components form a block that
client applications interact with.

If comparing with services in the basic reference model of subsection 4.1.1, Search
service is implemented by the Query engine, while Naming and Repository services
are implemented simultaneously by the Version manager and the Document manager
components.

4.1.4 Query and retrieval protocols

Query oriented protocols are application level protocols that govern the interaction
between a client and a server. They are created to facilitate information retrieval tasks.
For this reason, they have been used in digital libraries to achieve interoperability when
accessing heterogeneous information sources. Their main contribution is to provide
semantic interoperability in attributes used for data description and query languages,
which continues to be an open problem in digital libraries outside this protocol influence.

LINK-ORIENTED ARCHITECTURE 81

These protocols only govern interaction between actuating agents', not dealing with
the architecture of digital libraries. The most representative of them is the ANSI/NISO
Z39.50 protocol [124]. The latest version dates from 1995. Its initial purpose was to
facilitate access to bibliographic catalogues; it was later expanded to deal with other
databases than just bibliographic records, such as document collections. The model
architecture used by Z39.50 is the client/server model, where a client (origin) requests
some services from a server (target). Z39.50 only rules the dialogue between them;
it does not specify anything about the data structure, their organisation, the kind of
metadata used, etc. Thus, one of the roles of the server and client applications is to
translate from local data representation and semantic to Z39.50 criteria.

This protocol is used by the client to query and retrieve records from the server.
The interaction is modelled as the exchange of a set of messages that invokes one of a
set of facilities defined by the protocol. Some of the most representative are:

e Initialization Facility, to fix the dialogue parameters.

Termination Facility, to end the dialogue session.

Search Facility, to query the server databases.

Retrieval Facility, to retrieve records from the server.

Ezplain Facility, to query the metadata database in the server.
4.1.5 Multi-service oriented protocols

Later protocols for digital libraries than Information Retrieval protocols consider
the need for advanced functionalities that complete basic digital library services.

Dienst

Dienst [43] is the architecture and protocol used by the Networked Computer Science
Technical Reports Library [82], and the basis for the Cornell Reference Architecture for
Distributed Digital Libraries (CRADDL) [77]. Dienst defines a set of services and the
interaction between them. The set of services specified by Dienst can be seen in figure
4.4:

e User interface services, that provide a human-friendly gateway to the information
obtained from other services. User interface services interact with other services
and deal with the correct evolution of operations.

e Repository services, that store and provide access to documents, according to the
Dienst document model.

e Inder services, that provide search capabilities, accepting a query and returning
a list of identifiers, corresponding to documents that match the query. They need
access to repository services, to extract indexing information.

!The term agent is used here in its most general sense: any individual application able to execute
some task.

82 Protocols and architectures in digital libraries

User Interface

get
collection
information

Figure 4.4: The NCSTRL services model.

e (Collection services, that define and enable access to digital library collections.

e Meta services, that provide information about collections and services in the li-
brary.

e Naming services, that resolve URNs? to one or more physical collections.

Stanford InfoBus

The Stanford Digital Libraries project aims to develop a set of service protocols to allow
heterogeneous information resources and services to cooperate. It does not focus on a
particular digital library, but tries to deal with a general model of services. Protocols
and functionalities are proposed to allow such heterogeneous services to interact. A
collection of services that can interact in a digital library is defined and protocols are
designed on the basis of these services. The set of services considered in the Stanford
Digital Libraries project is mainly:

e Resource discovery services, such as GLOSS [64].

User interface services. Two examples of this type of services are DLITE [105]
and SenseMaker [17].

Information processing services. For example, document summarisation services.

Search services.

Translation services.

The set of protocols that rule the interaction between these services is referred to
collectively as the Stanford InfoBus. They are divided in five service layers [98]:

e Protocols for managing items and collection (SDLIP). The SDLIP protocol allows
users to access information source collections, to search and retrieve records. This
protocol facilitates access to the collections and searching them.

*URN (Uniform Resource Name) is a type of persistent, location-independent identifier that serve
to locate an object within a namespace. It is different with the popular type URL (Uniform Resource
Locator), that provides a non-persistent means to uniquely identify an object within a namespace.

LINK-ORIENTED ARCHITECTURE 83

e Protocols for search (STARTS). The aim, in this case, is to facilitate the choice
of the best sources for querying, as well as merging the query results from these
sources.

e Protocols for managing metadata (SMA).

e Other service oriented protocols: rule payment (UPAI) and management of rights
and obligations (FIRM).

4.2 A proposal for linking-oriented services

The aim of this proposal is to provide a solution for link-oriented services, and to
show how they integrate with the rest of the functionalities in the system. Link detec-
tion, queries about relations and document version generation, the three most important
novelties in terms of services offered by digital libraries, require special attention to be
given to linking aspects when designing services to provide these functionalities. These
services are not classical in digital libraries, but can be integrated with other digital
library services. The service model is used to introduce the architecture, as it is a
model whose flexibility is proved (see, in part 4.1.5, how it facilitates integration of
new functionalities with existing ones: basic services are present in all the propositions,
while advanced services vary). The basic services model (subsection 4.1.1) is taken as
the basis for the link-oriented proposal: link services are integrated with services in it.
Citation linking services (subsection 4.1.2) have been included under the denomination
of “Link detection”. This naming is more precise and it is necessary to differentiate this
functionality from other link-related services. The version problem is dealt with here in
terms of version generation, as opposed to version management; the relationships with
the architecture commented in subsection 4.1.3 will be discussed in section 4.3.

Services are described in scenarios in section 4.2.2, and the integration of the resul-
ting services with other services is also addressed during the presentation. The result
is a division of tasks among a set of services accessible through their interfaces that
interact to achieve the desired functionalities.

The resulting architecture and corresponding protocol is described in terms of a set
of views that show the system functionality, data flow and data architecture. A set of
functional requirements guide the different steps in the design, and are the basis for the
definition of a set of scenarios helpful for the design. Qualities of the system which also
guide the design process are summarised at the end of the proposition (part 4.2.9).

421 Overview

The system described allows relationships between documents to be exploited in
order to:

e Query relationships between documents.

e Generate document versions.

84 A proposal for linking-oriented services

The system also considers relation detection as one of the desirable steps to automate
the complete link treatment:

1. Detecting relations between documents.

2. Exploiting relations. Some examples are the searches for articles cited in another
one, to search how many articles cite a given work, statistical treatements done
on this information, etc.

Additional services are present in the system to show how services that exploit
relationships integrate with other digital library services. The ones chosen are basic
services in digital libraries: retrieving documents from library collections, and querying
documents in collections. Finally, services that allow the system to function correctly
are also included: administration services.

Users’ view

Requirements for a system depend on the type of user considered. A digital library can
have 'normal’ users that access the system to get information and data, administrators
that are concerned with the correct functioning of the system, and authors that insert
new documents in the library collections.

User requirements

This type of user gets information from the library, but he/she never modifies either
the library databases or the library functioning. What such a user can do in the library
is:

e To retrieve documents from the system, specifying the identifier of the desired
document.

e To obtain a list of documents that reference a given document (to query relation-
ships).

e To retrieve “versions” of documents, specifying parameters that allow the desired
version to be selected.

e To search by keyword in document collections. What the user will get in this
operation is the list of document identifiers that match the query.

Other user related functionalities that could complete this list will be commented
in section 4.3, within future possibilities to improve the system.

Administrator requirements

The administrator is the only user that can modify system functionalities or para-
meters that affect the whole library. That is, the administrator is able:

e To insert new services and components in the system.
e To increase the range of document types supported by the library.

Author requirements
Authors are users that cannot modify the library operation, but can modify its
databases. They require functionalities

LINK-ORIENTED ARCHITECTURE 85

e To insert new documents in library collections.
e To extract relations between documents, and add this information to the library.

e To insert new collections.

Data

The digital library contains documents that are manipulated and presented to the user.
Together with documents in system databases, data that express relations between them
become crucial in the system. In this way, there are two types of data:

e Documents. They are the potential initial point of a sequence of modifications.
e Links. They express relations between documents (citations, modifications).

A more precise distinction can be made concerning documents. There are two types
of document that the system manipulates:

e Permanent (or stable) documents. These are documents of which there is a
digital copy stored in system repositories.

e Virtual documents. These documents are generated by the system on demand,
and are not stored in any database®.

They are types of documents that are generated by the system, by using its
services. This category includes:

— Versions of stable documents
— References to documents

— Query answers

The list of permanent data in the system is completed with the following data:

Links

The links that express relationships between documents are stable data but they are
generated within the system. This differentiates them from documents in the system
that come from external sources.

Metadata

Metadata describe the system, and data in the system. There are mainly three

types:
e Document metadata. Each document has an associated set of data that describes
it.

e (Collection metadata. Description of library collections: types of documents in the
collection, etc.

e System metadata. These are data that describe the system composition as services
and collections.

3This does not clash with the possibility of allowing users to create their own local databases to store
the documents that interest them. System databases would not be interfered with in such a situation
by user’s local ones.

86 A proposal for linking-oriented services

Functionalities

The enumeration of required system functionalities in this section is the cue for the
definition of some scenarios that will show how the system architecture emerges:

e Document retrieval

Keyword searching

e Querying about relations

Link generation

Document version generation

Updating collections
4.2.2 A brief presentation of some scenarios

Keyword searching

In this scenario a user wants to query the library to know what documents contain a
term X. When the query enters the system, it is redirected to all repositories that make
up the library (if the user query language is not the same as that used by every collection
in the system a previous step of query translation is mandatory before forwarding it*).
The result from every collection is a list of document identifiers that will be returned
to the user, as can be seen in figure 4.5.

idl: id list

Figure 4.5: Keyword searching; a first draft of the scenario.

Querying about relations

In this scenario the user makes a query; from the user’s perspective there is no difference
between this situation and searching by keywords. Considering the internal library
functioning, this is similar, but with the following difference: the result of the query this

*Heterogeneity in query languages is a possibility that is considered in the services model, but which
does not receive special attention in this thesis. It is present in the model to show how this characteristic
would not affect the rest of the design.

LINK-ORIENTED ARCHITECTURE 87

time is not a set of document identifiers, but a set of links. The document identifiers (or
whatever other information the user wants) is extracted from the link result set before
returning it to the user. Task evolution can be seen in figure 4.6.

II: link list
Extract identifiers,

idl: id list

Figure 4.6: Querying about relations; a first draft of the scenario.

Inserting new documents

Authors can insert new documents in the library. The author indicates the collection
where he/she wants to insert the document. If the document passes a validation process,
it is translated to an interoperable format understood by the library community and
the obtained copy joins the adequate repository (database).

[Request document insertic%

Verify insertion data
Translate document

v
dt: doc
[translated]

[Insert document in repositoﬁy

Figure 4.7: Insertion of new documents; a first draft of the scenario.

Link generation

This scenario depicts the situation where a document D has been introduced into the
library collections, but its associated links have not yet been generated. A process of
analysis of the document is required to detect links with their origin in the document.
The process consists of the extraction of citations in the document to other documents

88 A proposal for linking-oriented services

that give the clue for the citation relationships, that can also involve modification rela-
tionships. This process returns a set of links with origin in the input document, that
can be inserted into the library link databases. The evolution can be seen in figure 4.8.

cl: citation list

Resolve citations,

II: link list

i

Insert in links database)

Figure 4.8: Link generation; a first draft of the scenario.

Document version generation

Given a document D that has been the object of some historical modifications, a user
may want to retrieve the document, at the state it was in at a certain moment. For
example, he/she may want the document as it was before any modification was made,
or the document with all modifications applied to it. These preferences are expressed
as parameters that the system receives with the request.

When the user accesses the system he/she asks to get a copy of D, and specifies
the preferences concerning the application of modifications. This request is processed
by the system that retrieves the document in its original form -with no modifications
applied to it-. From user preferences the system generates a query that is used to search
links that modify the document, matching the user’s preferences. Once the collection
of matching links is available, they are processed in order to resolve them and apply the
modifications they express to the original copy of D. This modification processing results
in a new version of D, that can be returned to the user. These steps are summarised in
figure 4.9.

4.2.3 System services

Scenarios presented in part 4.2.2 prove a need in the system for services able to
provide:

e q user interface

e access to document collections

LINK-ORIENTED ARCHITECTURE 89

Query ks
I [l
1 1
d: doc I: link list

v
d: doc
[updated]

Figure 4.9: Document version generation; a first draft of the scenario.

o query facilities

o document manipulation

e updating capabilities that make the inclusion of new documents and links possible
e translation (for queries and documents)

e a way to designate abstract document entities, in a manner independent from the
location and the way the document copy is stored

o administration capabilities in the system

o facilities to incorporate new categories of documents, data, and services to the
library.

Services presentation

From previous needs, the services emerge naturally:

1. Document management service

This service allows documents in the system to be manipulated. It allows new
documents to be composed from document fragments, as well as documents to
be modified or processed in any way. That is, every functionality that requires
document manipulation has to pass through this service.

2. Search services

Search services offer query capabilities in the system. They are able to process
a query and return adequate results. There are two main subcategories inside
search services: services to search documents, and services to search links.

90

A proposal for linking-oriented services

e Document search. Its normal operation returns a list of document identifiers
that match the input query.

e Link search. This returns a collection of links that match the query. It is
also able to return fragments of links (for example, the target identifier), if
it is specified in the query.

3. Link generation services

Link generation services are able to analyse an input document and return a
collection of links whose origin is in the input document.

. User interface services

These services allow the user to query the system, to ask the system to execute
tasks and to see (and probably, analyse) results.

. Translation services

These services provide translation between external ontologies and system ontolo-
gies. They transform all queries to a canonical model, as well as documents in the
system. These services are necessary to get a common model for data that allows
the system services to operate on data. All documents and queries in the sys-
tem are normalised using these services, in order to achieve data interoperability.
There are two kinds of translation services:

e Query Translator. This service translates a query from the user front-end
language to the system query language. It is only used if this kind of hete-
rogeneity is present.

e Document Translator. This service translates input documents to an in-
teroperable document schema and format. It is crucial for later document
manipulation and composition to count on a common model and format
for documents. Without such a common model it would be impossible to
achieve any type of functionality that requires document manipulation and
composition.

. Administration services

These services provide knowledge of system collections and methods to work with
the system, as well as functionalities to manage it.

. Customization services

A library that evolves over time, with openness, needs customization services that
allow new types of documents, as well as new services, to be incorporated into the
system.

. Repository services

These services provide access to system databases. They allow records ("records"
is used in a general

manner to designate any type of data present in the system), in their most basic
form, to be retrieved by using their identifiers. As mentioned in the proposal’s

LINK-ORIENTED ARCHITECTURE 91

overview, there are two main types of data in the system and, consequently, there
are matching services to work with the two types of repositories:

o Document Repository. This service provides access to document databases.

e Link Repository. Through this service, the link database can be accessed.

9. Updating service

This service provides authors with the facilities to add new documents to the
library, as well as to invoke the generation of new data by the system (generation
of links).

10. Naming service

This service allows documents to be designated by logical identifiers instead of
physical identifiers. The naming service is used to obtain necessary matching
between the logical identifier and the physical identifiers of documents’ digital
copies.

4.2.4 Services interaction

Services interaction is presented in terms of scenarios described in section 4.2.2. Two
views are shown: uses view and data flow between services. A global view of services
interaction can be seen in figure 4.15, while data flow between services is shown in
figure 4.16.

Keyword searching

The scenario is revisited: a user wants to search documents that contain a term X. The
user accesses a user interface service that allows queries to be entered in a user friendly
front-end language. The user interface service redirects the query to search services in
the system. It is up to a query translation service to translate this front-end query into
its native equivalent for each selected collection (this step is only needed in case there
is heterogeneity in query languages in the system). After the queries have been issued,
the user receives back a set of results. The user interface then unifies these results and
constructs an integrated view that is presented to the user. Services interaction for this
scenario can be seen in figure 4.10.

Querying about relations

The user that wants to know about relationships makes a query that comes to the system
through the user interface service, which passes it to the link search service. It is the
responsibility of query translation services to translate the query into an equivalent
query understood by the system. The result of the query is a collection of links, from
which the information of interest is obtained.

Inserting new documents

The insertion of new documents requires updating services that allow new documents to
be inserted, validating all the insertion process. Every document that joins the system

92 A proposal for linking-oriented services

Document Search

translate
query (translated

Query Translation Query Translation

(a) “Uses” view. (b) Data flow.

Figure 4.10: Services interaction (use and data flow) for keyword searching scenario.

User Interface

0.
o©,
EX
%
2
2
%

Query Translation

translate

ISEN

ranslated

query

Links Search

(a) “Uses” view. (b) Data flow.

Figure 4.11: Services interaction (use and data flow) for querying links scenario.

has to be translated to a normalised standard, which is the one services in the system
are able to manipulate and query; this task is assumed by translation services. The end
of a correct operation of this type is the insertion of the document in a database, using
repository Services.

Links generation

Generating links is a task for updating services, as this generation implies updating the
library link databases. It is up to this service to invoke services to find out the links in
the input document (Link detection services), to validate the correctness of generated
links -making use of administration services- and, if it is all correct, to require the
repository service to insert the links in the link database.

Document version generation

The user request for the updated version of document D is passed by user interface
services to a document management service that translates the request into a set of
queries and actions that result in the composition of the required document. The
generation of a version requires: to access the original copy of the document which

LINK-ORIENTED ARCHITECTURE 93

Administration

Administration

Document Repository Document Repository

document
document (translated

(b) Data flow.

- translate documel i
Document Translation Updating

(a) “Uses” view.

Figure 4.12: Services interaction (use and data flow) for inserting documents scenario.

Administration

Administration

Link Repository

Link Repository

sl

detect relations

Updating

Updating

(a) “Uses” view. (b) Data flow.

Figure 4.13: Services interaction (use and data flow) for links generation scenario.

94 A proposal for linking-oriented services

’
SSolye o,
C. g

obtain documents
User Interface

Document management

Links Search

Links Search

(a) “Uses” view. (b) Data flow.

Figure 4.14: Services interaction (use and data flow) for document version generation scenario.

does not have modifications (repository services), to query the links database (search
services) to know which documents modify it, and to compose document fragments to
get the desired version (this task is assumed by the document management service).
Finally, the required version passes to the user interface service to be presented to the
user. This evolution can be followed in figure 4.14.

A global view of the services interaction is shown in figure 4.15. This figure is a uses

view. A service S1 is said to interact with another service S2 if it uses service S2 at
some moment during its functioning. Data flow between services follows what has been
seen in the explanation of the scenarios. For example, the user interface service and the
document access service exchange requests (from user interface to document access) and
documents (from document access to the user interface). Figure 4.16 shows a global
view of this flow.

4.2.5 Services interfaces

Service methods allow other services to invoke them. The following list includes
methods that are relevant to cover needs derived from required functionalities.

User Interface service

e GetDocument
Returns a document (content) for presentation to the user. It receives the docu-
ment identifier as input.

e Search

Search in library collections. It receives the user query as input. This method
permits documents, links or whatever other type of data is available in the library
for queries to be searched.

LINK-ORIENTED ARCHITECTURE 95

P
GSo/Ve o
c
- It

locate databases, etc.
Administration

update system metadata

get document

detect relations

- translate documen .
Document Translation)<=—— (_Updating

Figure 4.15: Services interaction. Global view.

O Lp,
) o P
\&g\&\d Seajy
Y % o
] document system metadata
User Interface - Document management Administration
2 %
%,
%, g
Document Search 2 g
|
o +|
% query g

e (translatedﬁ\

Document Repository

T
Q
2 17
& & —
< &/ (Customization
% 1S
z
i - % %
Links Search Link Repository Qo, E
lng .
e
document
-

- document)
Document Transation document (translated Updating

Figure 4.16: Data flow between services. Global view.

96 A proposal for linking-oriented services

e BrowseCollection

Allows the library collections to be browsed.

Document Management service

e GetVersion

It returns a document version, in the conditions (moment, etc.) expressed by the
user. It receives the document identifier and the criteria that distinguishes the
required version from other versions of the same document as input. If necessary,
this method generates the version by composition of documents.

¢ GetRelatedInformation

This takes a document identifier and attributes that characterize the desired re-
lationships as input. It generates a dossier with related information.

Repository service

e Insert

This takes a document (or link collection) as input and inserts it in the repository.

e GetDoc

This returns a document, whose identifier it receives within the parameters.

Naming service

e CreateName

This takes an instance (location) of an object or service as input and returns a
unique name. The newly created unique name and resolution are stored in the
name service.

e ResolveName

This takes a unique name as input and returns the set of instances (locations) for
that name.

Search Documents service

e SubmitQuery

This searches the document database, with the query received in the input argu-
ment. The result is a list of identifiers corresponding to the set of documents that

match the query.

Links Search service

e SubmitQuery

This returns links in the system that match the criteria in the input. The criteria
are specified as a sequence of pairs (attribute, value).

LINK-ORIENTED ARCHITECTURE 97

Links Detection service

GenerateLinks

This receives a document and its identifier. It generates a collection of links
obtained from the input document (links whose origin is in the document). The
identifier is necessary to be included in the links.

System Administration service

ListServices

This lists services in the system, with a mode to access them.

ListServiceMethods

This lists methods available for a service and a mode to access them.

ListCollections

This lists collections in the system and a mode to access them.

ListDocumentTypes

This lists types of documents supported in the system.

DocTypeOntMapping

This returns a description of the mapping between the vocabulary used inside the
text of a selected document type and the equivalent ontology in the system.
SearchToolsMapping

This returns a description of the mapping between the query language used in
system services and the private query language for every search tool.

Customization service

InsertService

This is used to incorporate new services into the system.

InsertCollection

This is useful for incorporating new collections into the system.

InsertDocType

This allows new document categories to be inserted in the system.

Query Translation service

Translate

This translates a query from the system query language to the private search tool
languages.

98 A proposal for linking-oriented services

Document Translation service

e Translate

This translates an input document in an external format to an internal system
format. It uses the document class ontology mapping to carry out the translation.

4.2.6 System components

The development phase causes the services in the previous section to be implemented
by a set of components (in figures 4.17 and 4.18). These components interact with
each other in order to successfully achieve system functionalities. Components assume
a series of well-defined tasks, in a way that promotes system scalability and modularity.

The presentation of components obeys the following criteria: first, there are compo-
nents that are involved in link related functionalities -as they implement tasks that are
the main interest in this thesis-; second, there are other components that complete the
system in the sense that they are necessary for any digital library in order to be able to
function, interact with the user, and maintain coherence in the system data and system
functionality.

“Link” components

e Document Server

This component is responsible for serving documents and everything that may
be needed to postprocess them (associated links, associated metadata) before
presentation to the user. It is a crucial element in the system: it knows what to
do in order to obtain all types of documents® in the system. The user request
passes through this element, as it is able to analyse it and decide the steps needed
to successfully serve the request.

This element implements or invokes the following services: Document Manage-
ment, Search, and Repository.

e Links search engine

This searches the links database. It represents (abstraction) the engine that
queries the links database. It is a wrapper to this engine that allows peculia-
rities (such as, for example, the query syntax) to be abstracted from particular
engines.

This element implements the Link Search service and uses Translation services to
translate queries.

e Links generator

This generates links from document content. It takes the input document and
analyses its content in order to detect citations, and it creates a link collection that
can be inserted in the link library collections. It implements the Link Detection
service.

® Document in a general sense: documents from databases, documents generated on demand, answers
to user queries, ...

LINK-ORIENTED ARCHITECTURE 99

e Document Translator

This translates documents from non-system formats to an equivalent normalised
copy that the system is able to manipulate in subsequent operations. This com-
ponent participates in the insertion process of any document in the library, before
any other operation can be done on the document.

It implements the Translation service.

Other components

There are more components in the system that interact with those presented above.
These components (or similar ones) are present in most digital libraries, and their pre-
sence here shows how link related components can smoothly integrate a digital library.

e Document query engine

This is a proxy for the document search engine, that effectively indexes and
searches document collections. This component receives a query and returns a
collection of document identifiers that match the query. It implements the Docu-
ment Search service. If needed, it uses the Translation service to translate queries.

e Query translators
They translate queries from the system language to local ones. This type of
component appears in libraries with language heterogeneity. They implement
Translation services.

e User Interface

This component offers the interface which allows the user to interact with the
system. It offers the user query forms and transforms results coming from other
components to present them to the user in a friendly manner. This component
interacts with the Document Server, to which it forwards user requests and from
which it receives results.

It implements User Interface service.

e Database Update agent

This component includes all functionalities that suppose any kind of updating in
the system. That is, it is the one that begins the document insertion process, as
well as link generation.

It implements the Updating service.

e Customizer

This component permits the system to be customized by adding new services and
document types.

It implements Customization services.

The following components are databases, all of which are accessed through Reposi-
tory service methods:

100 A proposal for linking-oriented services

e System metadata repository

Metadata about the system. It is also accessed through Administration services.
It will be queried by other system components to obtain metadata about the
System.

e Document repositories

Document collections encapsulate document databases, metadata related to these
databases and methods that allow access to both. Also, methods for updating the
database.

e Link repository

The link collections encapsulate the links database, its metadata, and the methods
to access their information.

GetDocument()
QueryDocuments()

GetReferences() ’—‘ QueryMetadata()
User Interface Document server

System metadata repository

Customizer

Insert()

[S—
Link repository
_

Translate()

S0

Figure 4.17: Components interaction. "Calls" view.

Equivalences between services and components

The services presented in section 4.2.3 are implemented as a collaboration between the
components in this section. This part is an overview of this equivalence -even if not
exhaustive-, where only mappings that are not evident are mentioned.

The Document Management service is obtained by the interaction between the Do-
cument Server component -that carries out document transformations-, the Document
Repository -which provides the documents that will be the target of transformations-,
the Link Search Engine -that selects links that will be used for document manipulation,
and the Link Repository where the links are stored.

LINK-ORIENTED ARCHITECTURE 101

The Repository service is directly mapped to Document Repository components,
Link repository and System Metadata Repository components.

The Naming service is implemented as a collaboration between Document Reposi-
tory, System Metadata Repository and Document Search engine. The Document Reposi-
tory is necessary as the resolution of document identifiers is in fact a query to document
metadata, executed by the Document Search engine. The resolution of identifiers for
collections and other elements, such as system components, is done by querying the
System Metadata Repository.

Search services involve the Document Search engine and Document Repository on
the one hand, and the Link Search engine and Link Repository on the other hand.

Link detection services imply the action of the Link generator component, that will
write its outputs to the Link Repository.

Document Translation services involve the Document Translator that operates on
documents to generate new document representatives, the System Metadata Repository,
from where the ontology mapping for the class of the document that is the object of
each translation can be obtained, and the Document Repository database where the
generated representative document copy is stored.

4.2.7 Components interaction

Components interaction can be presented in terms of scenarios in part 4.2.2, as
has been done with services. Only scenarios where links are specially relevant are
commented on, in order to keep this chapter from becoming too extensive.

Querying about relations

In this scenario, a user asks the library for information about documents related to a
certain document D which he/she specifies in the request. The result will be a list of
document identifiers that are related to D, in the way the user specified in the request.

The user makes the request through the User Interface component. This invokes
the Document Server document access methods, passing the document identifier and
relation filtering criteria in the call parameters.

The Document Server invokes the Link Search engine by passing a query within
the parameters where criteria about links are included. Return data from this query
is a collection of links that match the query, which the Document Server will process
to select the information that will be used for presentation to the user: document
identifiers, link types. This collection of information is returned to the User Interface
as a digital document that can be manipulated to adequate it for best user presentation.

To summarise, components involved in this scenario are: User Interface, Document
Server, Link Search Engine, and Link Repository. Data exchanged between these com-
ponents can also be seen in figure 4.19. Queries pass from the Document Server through
the Link Search engine; the inverse traversal is done by data that match the query. And
the Document Server returns documents to the User Interface component.

102 A proposal for linking-oriented services

document system metadata
2=

User Interface

System metadata repository

metadata

document ids

Document repository

Documents query engine
S
N

&
o

documents

Customizer

Link repository
_

Database update agent

document (external forma
Document Translator
document (translated)
— T

Figure 4.18: Data flow between components.

document

-—
User Interface Document server

GetReferences()

User Interface

Document server

Links Search engine

Link search engine

[S—
Link repository
—_ =

(a) “Calls” view. (b) Data flow.

Figure 4.19: Components interaction (use and data flow) for querying relations scenario.

LINK-ORIENTED ARCHITECTURE 103

Link generation

In this scenario a Database Update agent starts the interaction, requesting detection
and generation of links with origin in a given document D from the Link Generator.
This generation supposes the location of the available copy of D and access to it, in the
Document repository. Analysis of the content of D is carried out by the Link Generator,
which obtains a collection of links ready to be inserted in the link repository. The final
insertion of links in the library system is done in the Link Repository, whose insertion
methods are called by the Link Generator.

To summarise, components involved in this scenario are: Database Update agent,
Link Generator, Document Repository, and Link Repository. Data exchanged by these
components can also be seen in figure 4.20. The document to be analysed is retrieved
by the Link Generator from the Document Repository. Generated links are passed from
the Link Generator to the Link repository when calling the latter’s insertion method.

Document repository

Document repository

documents

=

GetDocument()

Links generator

_
Link repository 000/)7
_ =
\%27
s
Database update agent

————— Inset0
Link repository
—_ =

S0
Database update agent

(a) “Calls” view. (b) Data flow.

Figure 4.20: Components interaction (use and data flow) for link generation scenario.

Document version generation

In this scenario a user requests a document D, at the state it was in at a certain moment,
which the user also specifies in his/her request. The user makes this request through
the User Interface component, which invokes the Document Server document access
methods, passing the document identifier and version criteria in the parameters. The
Document Server breaks down the query into a set of subqueries and actions, some
of which are achieved by calling some other system component methods. To get the
requested document version involves the following steps:

1. Location of the document copy that will be used as the base document to which
modifications that allow the requested version to be obtained will be applied, and
retrieving it from the concerned repository.

2. Querying the link databases about links related to the input document (in fact,
the query is a search for links that express modifications to the base document).

104 A proposal for linking-oriented services

This querying is done by calls to the Link Search engine, that will return the
collection of links that modify the base document.

3. The application of modifications expressed in links to the base document. This
is a process of document composition expressed as a transformation of the base
document, carried out by the Document Server.

4. Returning the resulting document to the User Interface, which will present it to
the user.

GetDocument()

document
-

Document repository
_

Link search engine

Link repository Link repository

(a) “Calls” view. (b) Data flow.

Figure 4.21: Components interaction (use and data flow) for document version generation scenario.

To sum up, the components involved in this scenario are: User Interface, Docu-
ment Server, Link Search Engine, Document Repository and Link Repository. Data
exchanged between these components can also be seen in figure 4.21. Queries pass
from the Document Server through the Link Search engine; the inverse traversal is done
by the information extracted from links that match the query. The Document Server
gets documents from Document repository components, and returns digital documents
resulting from the operation to the User Interface component.

4.2.8 Data architecture

The set of data used in the library is made up of two main groups: data that make
up the basic library documents -that the user will access at some time- and metadata
-used during system operation, but never seen by the user- about these data: links that
express relations between documents, and data that describe documents. There are also
metadata about the system itself that are used for correct functioning.

System metadata

System metadata are deduced from services needs.
Document Management services manipulate document and generate new ones from
stable documents (and links) in library collections. To get access to them they need:

LINK-ORIENTED ARCHITECTURE 105

e information about the location of document and link repositories
e information about the link structure (fields), to formulate queries on links

e to know the equivalence between document identifiers and the location of their
digital copies. This equivalence is provided by the Naming service.

The User Interface service provides users with documents, formatted in a friendly
way, as well as with interfaces to use system services. It “translates” user requests to
the invocation of convenient methods to other system services. Thus, it needs:

e to know what services are in the system and the methods that it can invoke. It
needs information about Search and Document Manipulation services.

Search services allow queries about documents or links to be made. What these
services need is:

e in case of language heterogeneity, the location of translators that will translate
the query and method that allows it to be done.

The Link Detection service analyses documents in order to create links, expressed
in a canonical model, that other system services are able to understand. So, it needs:

e to know where the link repositories are

e information that helps it to find the equivalence between citations detected in
document content and categories (types) of documents in the system

e the structure (information fields) of links, to be able to generate links that apply
to this structure

e information that helps the mapping to be done between manners to characterize
a document fragment in natural language used in document content and their
equivalent description in the internal system.

The Document Translation service obtains a document representative in a format
that system services are able to manipulate, from copies in external formats. To carry
out this translation, it needs:

e to know the mapping between ways to characterize document fragments in input
document formats and characterization for content fragments in the system model.

Query Translation services work with query languages and attribute models. A
detailed description of what such a service would need can be found in [16].

Administration and Customization services keep metadata about the system and
allow new categories of data and services to be introduced in the library. For this, they
need:

e to know about system services and components

e to access metadata about each repository

106 A proposal for linking-oriented services

In conclusion, metadata in the system are:

e A list of system services, their location and their methods.

‘ Service name ‘ Service category ‘ Location ‘ Service methods ‘

‘ <name value> ‘ <cat. value> ‘ <loc. value> ‘ m ‘ ma ‘ ‘ My ‘

e A list of document classes in the system.

e For each document class: the equivalence between input domain ontology expres-
sions used to cite it and the system ontology way to address it. This information
is used by the Link Detection service to obtain Logical Document Identifiers from
citations.

‘ Document class ‘ Term or expression used in citations ‘

‘ <class value> ‘ el ‘ es ‘ ‘ en ‘

e For each class of document: mapping between input domain way to characterize its
fragments and the equivalent system manner to do so. This information is used by
the Document Translation service to obtain a document representative in a system
format that guarantees interoperability and the possibility of manipulating and
accessing document fragments in a correct manner.

‘ Element name ‘ List of equivalent expressions ‘

‘ <name value> ‘ el ‘ e2 ‘ ‘ en ‘

e For each repository: metadata about documents in the repository (classes in the
repository).

e The structure of links.

Document architecture

A document is an aggregation of three information elements: document content, meta-
data that describe it, and document links (shown in figure 4.22).

Document content.

Document content is stored in a digital copy of the document, whose logical structure
reflects the abstract document entity semantic structure (which has been the object of
a detailed explanation in chapter 2).

Document metadata.

Every document in the system is designated by a unique identifier that distinguishes
it from other documents in the library universe. The advantages of such an identifier
are several, but for these linking oriented services, the main advantages that have been
critical in the decision to use such an identifier instead of a physical locator are as
follows:

LINK-ORIENTED ARCHITECTURE 107

Document
content

Document
links

Document
metadata

Figure 4.22: Documents are the aggregation of three information elements: content, metadata and
links.

e It is possible to deduce a Logical Document Identifier from citations in document
content, but it will never be possible to deduce physical addresses from citations.
This property is the one that citation detection is based on.

e Links detected from citations will therefore be between abstract document entities,
and never between physical copies of the document.

e A logical identifier abstracts documents and their versions from their physical copy
location. It describes the abstract entity that a document is, which is helpful when
expressing requests such as “get version of document D, in its state at moment t”,
where document D is designated by its logical identifier.

The document logical identifier follows the criteria used in the DOI standard [94],
taking into account that the local part of the identifier is created based on the document
class, the document identifier inside it, and -if necessary- the version discriminator.

Example 23. Take the following identifier:
urn:thisthesisprototypedomain:collectionl/D1-13-1980

This identifier designates a document inside the namespace for this thesis prototype,
belonging to collectionl inside it, and designated inside this collection by D1-13-1980.
O

Every document identifier resolves to a document representative. For every such abs-
tract document there is a set of metadata that describe it, used for the resolution, and
shown in table 4.1.

Links.
Links are explained in detail in chapter 3; that is why there is no detailed description
here.

4.2.9 System qualities

The architecture presented up to now achieves some properties, some of which can be
found in general software architecture guidelines [18], while others are directly inherited

108 A proposal for linking-oriented services

‘ Field Field description

Document Logical Identifier

Document Physical address | Address of the digital copy stored in the library databases.

Type of document Class the document belongs to.
Document date Date of the version the stored document copy corresponds to.
Title A document description, readable by a human being.

Table 4.1: Logical Document Identifiers.

from requirements specified by Arms [10] for digital libraries, or some digital library
architecture designs [45, 25].

The architecture for linking services integration is therefore thought to be extensible
and scalable, which means it allows for new services and elements to be easily added
to the system. A service-oriented architecture design -as this one is- results, in all
ways, in an open architecture (library functionality is available in the form of distinct
functional units or services, each of which publishes its operational semantics through
its access methods, which makes it feasible to easily add or delete new elements without
affecting existing semantics). Additional properties of service-oriented design are that
the resulting system is able to integrate new functionality through the implementation
of additional services which interact with existing services, that is, federation is achieved
in terms of services autonomy. One more guideline in this architecture design is strictly
restricted to the digital library domain. An important issue in digital libraries is that
“users of the library want intellectual works” (Arms 1995), which means that the library
is responsible for managing the mapping between such abstract entities and the digital
document it holds. This property is the one that resulted in the need for document
metadata and document naming services.

Some more quality attributes of the system in this chapter follow:

e Modifiability. Changes would be located in services (and components in the imple-
mentation phase), such that they would never result in important modifications
to the library.

o Interoperability in data is achieved by the use of a standard format for all data
exchanged by library services, as well as for all data and documents that come
into the library databases.

o Integrability of its components, that integrate through their interfaces. High in-
teroperability would be achieved by implementing the system with middle-ware
designed for this goal.

o Conceptual integrity. All services that provide similar functionalities do so in a
similar way. For example, all search services have a similar operation: they get
the request, they translate it -if necessary-, they perform it on indexes, and they
return results -which they have previously filtered and normalised-.

LINK-ORIENTED ARCHITECTURE 109

4.3 Discussion

The architecture and interaction protocol is defined in terms of “services”, following
the most extended model to design digital library architectures [11, 45, 104] and to
characterize their functionalities and the distribution of tasks. It is one of the goals
in this thesis that the proposal made for linking-oriented services accomplish smooth
integration with other digital library services; so, following the services model shows
the feasibility of this integration more easily.

The services that make up the main contribution of this chapter are related to
links and document manipulation. Other services are included as they are used; more
information about them can be found in the references [10, 77, 98]. Basic services
are considered in all models and architectures presented, as well as in all protocols.
Additional services and protocols are dependent on the library’s aim; for example, pay-
ment services are meaningless in a digital library that offers free access to its resources.
Metadata importance is not ignored in any of the commented references: the Stanford
Digital Library project dedicates special protocols to managing metadata, Dienst in-
cludes services to access them, and Z39.50 has an Explain facility which is only used
to query metadata. To provide an open architecture (that allows integration of addi-
tional services without affecting existing services operation) is common to all, except
to the document manipulation architecture presented in part 4.1.3; this is conceived
as a software unit not to be broken down nor to be allowed to expand to additional
functionalities, in order to prevent the cost of support and maintenance due to the use
of independent products that interact through interfaces. Therefore, this is the reason
for the inexistence of an open protocol associated to it. This establishes a difference
with this chapter’s proposal, which has integrability and openness as an initial requisite
to make the integration of link-oriented services in legacy libraries possible, as well as
the future integration of other link-oriented services that could complement these ones,
which places it closer in its properties’ requisites to the rest of the models commented
in section 4.1.

Moreover, as for the possibility of finding a general protocol for document mani-
pulation, this is a very variable field, where “manipulate” can mean different things in
different libraries: to split documents, to compose new documents, to obtain new copies
in different formats, to create indexes, to create new documents, etc. With this wide
range of possibilities it seems very difficult at the moment to reach a normalisation that
makes the definition of such a protocol possible.

As for the software architecture, we have chosen, from the available views to des-
cribe it [18], those we think reflect more accurately the working method followed. The
definition of a set of services implies the characterization of a set of interfaces that
make these services available for use by the rest of the system; this leads to the choice
of the “uses” view. On the other hand, considering that digital libraries are indeed
sets of services that provide access to enormous collections of information, data that
contains this information (documents and results from system operations) are decisive
when designing a system of this nature; thus the choice of the “data flow” view.

The first view of the library as a set of services changes to become a set of compo-
nents, the collaboration of which implement these services in the implementation phase.
Interaction between these components will be looked at again in the chapter about the

110 Discussion

prototype (chapter 5). In any case, the evolution from services to any other software
implementation is not a major problem [32].

Research in reference linking in the journal articles domain has been active over
recent years. This has resulted in the emergence of proposals for “link services”, dedi-
cated to detecting links from article content [67]. These services are included in this
chapter linking proposal (they are necessary to achieve a complete or almost complete
automation of work with links), under the denomination of “Link detection”. This na-
ming is more precise and it is necessary to differentiate this functionality from other
link-related services. On the other hand, it is possible to find works that present “link
services” with different meanings: services dedicated to keeping links updated consis-
tently with changes in the location of physical resources [97], or services that facilitate
the manual creation of links to users [32]. There is also the problem of the persistence of
identifiers in changing libraries. The proposed solution is some type of persistent identi-
fier, whose resolution provides the physical address of the desired resource [31, 94]. This
is the solution described as Naming service, which deals with the document identifiers
presented in the data architecture subsection (4.2.8).

Document versions are one of the most interesting problems in digital libraries,
about which there are not many references. From all the bibliography on the subject,
the only reference that proposes an architecture for a system that deals with document
versions is the proposition by Arnold Moore et al. [13], presented in subsection 4.1.3.
They argue that an advantage of their system is the efficiency achieved due to the fact
that all document manipulation variations are included in a single block of software.
The integration of services contributed in this thesis with other services is one of the
desired qualities that guides the design of this proposal; this objective places efficiency
on a second level of importance with respect to the provision of a set of interfaces for
manipulation services that really facilitate their integration with other digital library
services.

Every abstract document entity maps into an aggregation of three information ob-
jects: metadata that describe the document, the document content, and links related
to the document. The reference linking model and NCSTRL’s data model associate
an identifier (handler or DOI) to each document entity, whose resolution returns the
addresses of all physical copies of the document available. Metadata that describe the
document and help in naming the resolution are part of the document architecture. The
document content may come from any of the document digital copies that correspond
to different formats. Links are not included as part of document information, as clear
separation of links and document content is a more recent reality than would seem
likely: There seem to be very few implementations where links are considered aside
from the documents they complement. This is due to the little attention dedicated
to the exploitation of semantic links, which is related to the other reason that caused
links and content to be mixed: most efforts have been dedicated to the creation and
maintenance of navigational hypertext. Given that this hypertext is implemented as
HTML documents, it is evident that it is an imposition to include links -manually, in
most cases- in document content, losing the semantics of the relationship they represent
in the insertion process.

An alternative way to model relationships would be to do it in document metadata.

LINK-ORIENTED ARCHITECTURE 111

This is, for example, the possibility offered by the element Relation of the Dublin
Core standard [23]. This possibility is not used in this thesis to facilitate the creation
of temporal documents: digital documents that flow in the system may vary (same
content and different links, depending on the use given to the document). For example,
different versions of the same abstract document entity at different moments, share the
content (original content to which modifications apply), but differ in links (commonly,
modifications applied to a document at a moment %, later than ¢, include modifications
valid in ¢, plus those done in the time interval [t4,%,]). Additional reasons that justify
this decision on links are given in chapter 3.

It has been decided not to store virtual documents for several reasons: first, it is not
the aim of this thesis to show incremental updates of digital libraries; second, even if
such a possibility were to be considered, there is evidence (see references [38, 15]) to show
that such a policy can bring with it several problems, in terms of volume of documents
in the collection, validation of documents that should make up the collections, and
manipulation of versions. In particular, for the manipulation of versions, a completely
different policy has been chosen: to store the links that facilitate its generation, which
can additionally be useful for other aims (such as querying relationships), thus avoiding
the mentioned problems.

As has been said, services considered are link-related and basic services used by
them. More functionalities could complete the library and thus may expand services:
to allow users to add new links, to allow users to detect relationships (for example, by
comparing documents), etc. The interaction with users is a means of improving digital
libraries, that that can take advantage of the user’s knowledge to supersede system
limitations.

The proposed architecture is extensible and independent from the actual tools used
in the prototype. For example, the Link Search engine caches the peculiarities of the
engine that will be effectively used in prototyping. Consequently, it also opens the door
to dealing with software heterogeneity if this should become a reality in the library (it
acts as a wrapper). Moreover, the proposal could be extended to deal with a case of
distribution: component interaction is defined in terms of method invocations, which
do not change their interfaces in any way by the fact of being distributed or not; coming
back to the links example, the distribution of link databases would be cached by the
Link Search engine. This component could deal with the distribution of queries and the
integration of results, with transparency to other components in the system.

112 Discussion

The

prototype

Contents
5.1 Component interfaces ¢« v v vt vt v vt v vt o 114
5.2 A revision of the scenarios 117
5.2.1 Document Retrieval 118
5.2.2 Get Document Version 118
5.2.3 Querying relationshipso 121
5.24 Document searcho 121
5.3 The document databases 121
5.3.1 Classes of documents in the legal information library 121
5.3.2 Translating documents L. 125
5.4 Relationships and links in the prototype 127
5.4.1 Mapping of link fields to XLink attributes 127
5.4.2 The influence of document type on document relationships . 128
543 Anexample 129
55 Versiongenerationot v i i 133
5.5.1 Data types in the generation process 133
5.5.2 Complete substitution algorithm 134
5.6 Discussiont it i i i ittt e e e e e 135

113

114 Component interfaces

The prototype for this thesis works on a database of legislative documents. It
implements some of the components proposed in the chapter about the architecture
(chapter 4). Work has focused on components and methods related with algorithms
shown in chapters 2 and 3. Emphasis is given to aspects related to obtaining document
copies on which structure is correctly reflected. Other aspects that receive special
attention are the modelization of relations as links, the use of XML and associated
standards for this aim, and finally, the experimentation of version generation on legal
documents.

The domain chosen for the prototype is legislative digital libraries. Legislative docu-
ments are highly structured, intensively related and rules suffer amendments that result
in new versions of the amended rules. Moreover, access to relationships (for example,
to obtain all jurisprudence related with a given rule) is important for specialists who
use these documents, as well as access to all versions of a document (for example, to
understand a tribunal sentence it is necessary to get access to the text of involved rules,
as they were at the moment the sentence was made). Finally, in legislative documents,
modifications are embedded inside other documents, so that the document to be modi-
fied is cited and how it should be modified is expressed later. A document can modify
several other documents, and modifications to a given document can come from various
sources.

5.1 Component interfaces

This section presents the interfaces for components! presented in chapter 4. Input
parameters and output data are present for component methods. There is also a revision
of some scenarios presented in chapter 4, implemented with the prototype, where some
components used for the implementation can be seen, which, while not being dealt with
in this thesis, are needed because some components in the prototype are implemented
on them; for example, services that analyse documents, search or manipulate data use
an XML parser. Task evolution, with data flow between components is the presentation
chosen for this revision of the scenarios. Data are the origin of all this work and also the
goal of all system functioning; their availability, interoperability and easy manipulation
are necessary conditions.

Components are implemented as objects. All documents and data exchanged in
the system are XML. Final results are presented to the user via a Web interface; the
transformation from XML to HTML -needed because not all browsers are able to work
with XML data- is the final step in the scenarios.

In the prototype, the type XMLdoc designates a document that suits the definition
given in chapter 4, with three internal elements: the metadata, the content and the
links that affect the document. It is a string that contains three substrings, all XML
data. Types id-list and link-collection are enumerations of items. The list of
identifiers is a string list, where each item is a document identifier. The list of links
contains xlinks, each of them agree with the characteristics shown in chapter 3.

The LDI is the document identifier used to obtain the URL that designates the

'(UML notation)

THE PROTOTYPE 115

physical copy of the document. The library is located in one server, which means that
here the library universe, where the LDI is unique, coincides with the server domain.

The components diagram (in figure 5.1) is shown again, and the interfaces used in
the prototype are as follows:

Document Server

¢ GetDocument(id:LDI):XMLdoc

This receives a document identifier (LDI). It returns the original version -the one
available in the document database- of the document, where the links are those
with their origin in this document.

¢ GetDocument(id:LDI, date:String):XMLdoc

This receives a document identifier (LDI), and the date of the version of the
document requested. It returns the document, where the content is the document
version at that date, and the links are those with their origin in this document.

¢ GetReferences(id:LDI, type:String):XMLdoc

This receives a document identifier and the type of references desired. It returns a
list of links related to document id, all of selected type. The type is one of either
citation, substitution, insertion or deletion.

¢ QueryDocuments(query:String):id-list

This receives a query as input. It returns the collection of document identifiers
that answer the query in the input argument.

GetDocument()
QueryDocuments()
GetReferences()

QueryMetadata()

System metadata repository|

User Interface Document server

Insert()

Link repository
—_

Translate()

S0

Figure 5.1: Components interaction.

116

Component interfaces

Document Search Engine

This component caches the query engine (an XML indexer [54]) as well as the indexes
used by it.

Search(query:String):id-list

This receives a query as input argument. It searches in the document database
for documents that match the query. It returns a list of identifiers corresponding
to the collection of documents that match the query.

Link Search Engine

Search((attribute:String,value:String)-):xlink-collection

This receives a query consisting of a list of link attributes and the matching value
for each attribute. It returns a collection of links in the system that match all the
criteria in the input. The criteria are specified as a sequence of pairs (attribute,
value) -the sequence presupposes an AND operator in the criteria-.

Link Generator

GenerateLinks(id:LDI):xlink-collection

This receives a document identifier in the input argument. It generates a collection
of Xlinks obtained by analysing the input document. All links in the resulting
collection are links with their origin in the document.

System Metadata Collection

ListComponents():String

This needs no argument. It returns a list of components.

ListComponentMethods(component:Name):String

This returns the list of methods available for the specified component.

ListCollections():String

This returns the list of document collections available in the library.

ListDocumentTypes():String

This returns the list of document classes available in library document collections.

DocTypeOntMapping(doc-type:String):Mapdoc

This receives a document class (doc-type) name. It returns an object with two
elements: the description of the mapping between ontologies used in document
content to characterize document elements and system tags used for those ele-
ments, and the hierarchy between elements in that class. This information is used
by the component that carries out the document translation.

THE PROTOTYPE 117

Document Repository

¢ GetDocument(id:LDI):Stream

This receives the identifier of a document. It returns the document digital copy,
as it is in the repository database.

e GetDocMeta(id:LDI):String

This receives the identifier of a document. It returns metadata about that docu-
ment.

e GetDocLinks(id:LDI):String

This receives the identifier of a document. It returns all links with their origin in
the document. To resolve the identifier it uses the Link Search component.

Link Repository
e SearchLinks(Query:String):link-list

This receives a query and returns the list of links that match the query.

Document Translator

e Translate(in InputDocument:String, out OutputDocument:String, in
OntologyMapping:MapDoc)

This receives an input document and the ontology mapping needed to translate
the input document to an equivalent document with the same content but different
logical structure.

5.2 A revision of the scenarios

This revision of scenarios presented in the chapter about the architecture (chapter
4) considers components in the system that are not designed by this prototype, but
which are external applications needed for functioning. Some of these applications (or
components) were cached in chapter 4 under services, as is the case of Search ser-
vices, which hide external search engines used to index library collections of documents.
This revision is centred on the interaction between components, and activity diagrams,
that show task evolution in the system, with data flow between components. Another
difference with the presentation of scenarios made in chapter 4 is that here the type
(or format) of data or documents that system components exchange during operation
receives more attention. For example, it can be seen that the format used to achieve
data interoperability in system services (components in the prototype) operation is the
XML standard and its associated standards.

The scenarios considered are those implemented in the prototype: retrieval of a
document (as it is in the document database), retrieval of a version that needs to be
generated, querying relationships, and translating a document.

118 A revision of the scenarios

5.2.1 Document Retrieval

In this scenario (figure 5.2), the retrieval of a document (and associated citation
links with their origin in the document) is shown. This scenario presents an operation
similar to any basic retrieval in a system where documents are presented to the user
in a Web browser. There is a “preservation” of citation links with their origin in the
document, as they can be used for navigation if this is the wish. However, any type of
link (with the document in the origin or in the target) could be retrieved with these
methods, by only allowing a selection criteria on links to be specified.

The user request is passed to the Document Server, which reacts by retrieving the
document version available in the document database, as well as requesting all citation
links with their origin in the document from the Link Search engine. Once the Document
Server has both items, it can send an XMLdoc (content + links) to the User Interface,
which applies a stylesheet to it to obtain the HTML copy the user can see in the browser.

5.2.2 Get Document Version

This scenario (figure 5.3) shows how to retrieve versions of documents. The user
request (that includes the document identifier and date of the desired versions) is passed
to the Document Server, which reacts by retrieving the document version available in
the document database; it also requests the Link Search engine to get all modification
links whose target is in the document that conforms to the date criteria. Once the
Document Server has both items, it generates the updated version applying the links
to the document version obtained (this method follows the algorithm in section 3.7
of chapter 3). The composition of the version may request the recovery of several
other document fragments, steps embedded in the diagram inside the 'Process links
on document’ task. The final step corresponds to the User Interface, which receives the
updated XML document and generates the HTML copy the user can see in the browser.

THE PROTOTYPE 119

XML doc
HTML doc -
<—— | User Interface

stylesheet

XSLT engine
XML parser

.) e —
Links Search engine Document repository
_

_ =
Link repository
—_ =

(a) Components and data flow between components.

User Interface Document Server Link Search Engine

Request Documen)

_—

Get document Query Links|

]
I
) Search links in links databage
|

Attach links to documen}< ******************

dx: XML doc
Process XML dogf<- = ---------q9------------- —_—
[with references]

y

[

(b) Task evolution.

Figure 5.2: Scenario for document retrieval.

120

_—

A revision of the scenarios

User Interface
\

stylesheet

XML doc
_—

HTML doc
-—

W

XSLT engine

Document repository

Link repository

(a) Components and data flow between components.

User Interface Document Server Link Search Engine

Request Documen)

Get document Query Links|

dx: XML doc
Process XML dogf= =~ -----=--q------------~ —_—
[updated]

]
I
) Search links in links databage
|

Process links on documeﬁt< *****************

y

[

(b) Task evolution.

Figure 5.3: Scenario for generation of a document version.

THE PROTOTYPE 121

5.2.3 Querying relationships

Sometimes the desired information is documents that reference another document
(for example, jurisprudence related to a given rule). This functionality is described in
the diagrams in figure 5.4. As when generating versions of documents, a search on links
is needed to obtain the list of documents that are related to a given document. But the
criteria to filter links will be different: this time citation links are the ones of interest.
Another difference is that the document is not needed to answer the query, so it is not
retrieved.

5.2.4 Document search

This method allows documents to be searched (classical queries). An indexer or
search engine queries the documents collection and returns the result to the agent who
has invoked it -in this case, the Document Server-. The indexer is wrapped in the
diagram (figure 5.5) by a generic Document Query Engine, which is an abstraction
of the search engine peculiarities.

5.3 The document databases

Documents used in the prototype are legislative documents. There are four classes
of documents considered: rules, jurisprudence, dossiers and comments. Rules and ju-
risprudence are the most interesting ones from a semantic point of view; these classes
have a very well defined semantic structure, which is, moreover, present in citations
and is -consequently- crucial for link detection and later version generation using link
information. They are, in consequence, the ideal candidates to experiment with the
logical structure capture (document translation). Dossiers and comments do not follow
a fixed semantic structure (their structure may vary from one author to another); for
these documents, where divisions and hierarchical inclusions do not follow rigid rules
a more flexible DTD can be used: for example, the TEI standard [48] provides all the
necessary utilities to model such documents.

A brief description of the logical structures of these classes is in subsection 5.3.1.
The results obtained when translating a database of rules are commented in subsection
5.3.2.

5.3.1 Classes of documents in the legal information library

The legislative digital library hosts four classes of documents:
1. Rules: the Spanish Constitution, laws, regulations and decrees.

2. Jurisprudence: sentences related to rules, because they are stated with a basis
in some of them.

3. Comments about rules or jurisprudence.

122 The document databases

User Interface
\

stylesheet

XML doc
—

HTML doc
-

Document server

XSLT engine

XML parser

i

Links Search engine

Link repository

(a) Components and data flow between com-
ponents.

User Server Document Server Links Search Engine

?

Request referencef

Get links of requested typeg

Search in linsk database

Process XML docf=----------- i
I
I
|
Y

dh: HTML dog

(b) Task evolution.

Figure 5.4: Scenario for querying of relationships.

THE PROTOTYPE 123

Servlet engine

XML doc
—_—

HTML doc
<— | User Interface

Document server

’ I~/
Yis

Document sear ch engine|

Document repository

stylesheet

XSLT engine

(a) Components and data flow between components.

User Interface Document Server Document Query Engine

Process XML doc| <-----------F-----------
I
I
|
y

s

(b) Task evolution.

Figure 5.5: Scenario for searching in documents.

124 The document databases

4. Dossiers that compile references to rules and jurisprudence, classified on some
author’s criteria.

One more class of document (headers) is also in the system, even if it is not intended
to be perceived by final users. These documents contain metadata about base documents
(the four types just described).

Rules are official documents, that always present elements in the set that is explained
below, following the inclusion rules also described below. Thus, a rule may have elements
in the following set:

o denominacion. It is the title of the document.

e czposicion de motivos. It is made up of a sequence of paragraphs between the rule
title and the first element from the subset below.

e [ibro. It can contain any sequence of elements of type titulo, capitulo, seccion or
articulo, in any order. There can be zero or more libro elements in a rule.

e titulo. It can contain any sequence of elements of type capitulo, seccion or articulo,
in any order. There can be zero or more titulo elements in a rule.

e capitulo. It can contain any sequence of elements of type seccion or articulo, in
any order. There can be zero or more capitulo elements in a rule.

e seccion. It can contain any sequence of elements of type articulo, in any order.
There can be zero or more seccion elements in a rule.

e articulo. Any rule must have at least one articulo to be considered a rule. There
can be one or more articulo elements in a rule.

One more element is not explicited by jurists when they describe the semantics of
these documents, but is implicit in any document: the paragraph.

The element ezxposicion de motivos does not have any semantic keywords that allows
its limits to be automatically recognised. It disappears as an element in the class
grammar used in the prototype, to be replaced by the possible appearance of one or
more paragraphs. Rules grammar (figure 5.6) expresses the inclusion hierarchy, that is
also shown in the tree in figure 5.7: all children or descendants of a node are elements
allowed inside that type of element; any ascendant of a type of element may be included
inside it.

Jurisprudence are also official documents, with a fixed structure, but simpler than
that of rules. Ounly a few elements make up that kind of documents, with no relevant
aspects to comment on the inclusion hierarchy, which is shown in figures 5.8 and 5.9.

Metadata (headers) associated to legal documents is composed of fields listed below
and the grammar that describes this class is shown in figure 5.10. The document
identifier, document type and document year are metainformation needed in links, to
be used later by the document version generation algorithm. Bulletins (boletines) is
information considered interesting by jurists. The resulting list of fields is as follows:

o document identifier (1di).

THE PROTOTYPE 125

<norma> == <p>*(<libro>|< titulo >|
< capitulo >|< seccion >|< articulo >)*

< disposicion >*

<libro > = < title >7(< titulo >|< capitulo >|< seccion >|
< articulo >)*
< titulo > = < title >?(< capitulo >|< seccion >|< articulo >)*
< capitulo > = < title >?(< seccion >|< articulo >)T
< seccion > u= < title >? < articulo >T
< articulo > = < title >?<p>T
< disposicion > 1= < title >?7<p>T

Figure 5.6: Grammar for Spanish rules.

0 doc
%N

1 libro titulo capitulo seccion articulo disposicior

2 titulo capitulo seccion articulo

3 capitulo seccion articulo

4 seccion articulo

5 articulo

Figure 5.7: Inclusion hierarchy between elements in Spanish rules. Partial representation (the tree is
completely expanded in its leftmost branch.)

e document class (type).

title of the document (titulo).

year of publication (afio).

bulletins where it appeared (boletines). This field is interesting for rules.

date of the document (fecha).

5.3.2 Translating documents

The translation algorithm in chapter 2 has been tested on a set of Spanish rules,
coming from several public servers. These input documents are marked up with diffe-
rent tags, depending on their origin. For example, while some documents presented a
sequence of tags <center><h3> before the articulo semantic elements, others delimited
such a type of elements with a <p> sequence of tags. A first step consisted of the
elimination of all elements that were not information present in the abstract document

126 The document databases

< jurisprudencia >:= < inicio >< fund — hecho >?7 < fund — derecho >< fallo >
< inicio >n= <p>T
< fund — hecho >:= <p>T
< fund — derecho >:= <p>T

< fallo>:= <p>*

Figure 5.8: Grammar for jurisprudence.

0 jurisprudencia

1 inicio fundamentos de hecho fundamentos de derecho fallo final

Figure 5.9: Inclusion hierarchy between elements in Spanish jurisprudence.

(links, indices, etc.). They were translated to obtain equivalent documents with the
same content but tagged in accordance with the grammar in figure 5.6. This way,
the input set of documents to the translation algorithm complied with the input re-
quirements explained in section 2.4 of chapter 2 (an example of the application on
a document from the prototype was also included in this chapter). The translation
was tested on a set of 1665 documents. From these documents, the algorithm obtained
successful results with 1583 of them; that is, it was able to obtain a semantically tagged
document in 95% of cases. Documents that are not well treated by the translation
algorithm have one of the following characteristics:

e They have tables that are not XML well-formed.
e They have input characters or entities not recognised (&icute;, º, etc.).
e They do not have a root element.

The program does not consider tables and figures, which may need special conside-
ration. It only deals with textual documents.

< cabecera >:: < ldi >< type >< titulo — doc >< ano >< boletines >7
< boletines >:= < boletin >
< boletin >::

< fecha >::

< numero >< fecha >< pgnas >
< dia >< mes >< ano >

Figure 5.10: Grammar for metadata.

THE PROTOTYPE 127

5.4 Relationships and links in the prototype

Legal documents are densely related. Jurisprudence has citations to rules, comments
have citations to any other type of document, and rules cite other rules. An even more
interesting aspect of these documents is that some rules modify other rules, and that
this modification consists of two adjacent information items:

1. A citation to a document to be modified, where the affected fragment is clearly
identified, and which explicitly says that the cited fragment is modified, eliminated
or whether it must undergo an insertion.

2. The fragment that has to be inserted or that will substitute the target of the
modification comes just after the citation.

These characteristics make these documents the ideal databases to experiment with
citation relationships, modifications and version generation. An example is presented
in subsection 5.4.3.

5.4.1 Mapping of link fields to XLink attributes

The mapping of links fields in table 5.1 to XLink fields is direct. The document
identifier and fragment locator are expressed in the xlink:href attribute (the inter-
nal locator is the XPointer). Also, the type of relationship is expressed with the role
(x1link:role) every resource plays in the relationship. These two attributes come from
the XLink specification -which explains the use of the namespace x1link in them-. At-
tributes without prefix namespace are locally defined (local to the library namespace):
document class (doctype) and document date (date).

‘ Link field ‘ XLink attribute ‘

Document ID

Internal locator | xlink:href (*)

Document type | doctype
Date date
Link type xlink:role (*)

Table 5.1: Mapping of link fields to XLink attributes. Attributes with an asterisk are predefined in
the XLink namespace. Attributes with no asterisk have locally defined semantics.

The links DTD reflects the composition of the links explained: every link has an
origin vertex and a target vertex. Each link is represented by an element enlace, that
has three elements: the origin (origen), the target (destino), and the arc (arco) that
connects them.

The element origen is the link’s origin: the resource that contains the citation or
modification. It may be an element or a text fragment inside an element. The element
destino is the resource referenced or affected by a modification or citation: the link’s
target. It may be an element or a text fragment inside an element. The element arco
establishes edges between vertices. Arcs can be of different types, corresponding to the

128 Relationships and links in the prototype

different kinds of relationships between the vertices of the graph. There are as many
different types of arcs as there are different types of relationships.

The attributes for each of these elements are explained in tables 5.2, 5.3 and 5.4.
The link type is derived from the role the origin of the link plays in the relationship;
therefore, the type of the link is expressed in the origin element’s role attribute.

‘ Attribute ‘ Value ‘ Description
xlink:href ? Document ID + fragment locator
xlink:type "locator’ Resource of an extended out-of-line link

xlink:role | (‘citation’ | 'substitution’ | 'insert’ | 'delete’) | Type of link

string ? String inside the origin element. It is the
real origin in citations.

date ? Document date

doctype ? Document class

Table 5.2: Origin attributes. A '?" character means that any string value is accepted.

Attribute Value Description

xlink:href ? Document ID + fragment locator

xlink:type | 'locator’ | Extended out-of-line link

xlink:role | 'target’ | It is the target of the link

string ? String inside the target. It is the real target.
date ? Document date
doctype ? Document type

Table 5.3: Target attributes. A '?' character means that any string value is accepted.

Attribute ‘ Value ‘ Description

xlink:from ? Origin of the arc
xlink:to ? Target of the arc
xlink:type | ’arc’ | It is an arc element

Table 5.4: Arc attributes. A '?" character means that any string value is accepted.

5.4.2 The influence of document type on document relationships

The nature of documents can determine the type of relations permitted between two
documents, by forbidding a certain type of relation between two classes of documents
(for example, documents of class A cannot modify documents of class B).

THE PROTOTYPE 129

Types of documents in the legal information system are

1. Rules

2. Jurisprudence

3. Bibliography

4. Comments, notes, articles and others

The relationship restrictions coming from document classes are as follows:

e Rules can cite and modify other rules.

e Comments, jurisprudence and bibliography can cite, but they cannot modify rules.

e Jurisprudence, bibliography, and other documents can only have citations to do-
cuments of some of these classes.

That is, in the versioning of a rule, only other rules can participate as modifiers.
5.4.3 An example

The example considered was presented in section 3.7 of chapter 3. Input documents
to the updating process are the rules shown in figure 5.11:

e A source document, 102-1980.xm1, whose first element articulo has to be replaced.
Its source text is in figure 5.11(a).

e A modifier document, 113-1986.xm1, which contains the element that will replace
the first element articulo in 102-2980.xml. The replacing element is the first
articulo inside the first element disposicion. The source text for this document is
in figure 5.11(b).

The output document of the modification process -which can be seen in figure
5.11(c)- is a new version of the source document, where the first node-set that cons-
titutes the element articulo has been replaced by the first element articulo inside the
first element disposicion in document 113-1986.xml; the rest is unchanged. Figure
5.12 shows the effect of the process in the document tree. The link that models the
modification can be seen in figure 5.13.

The link for the example -in figure 5.13- is a relation from an ORIGIN (vertex that
replaces) to a TARGET (vertex to be replaced). The XML representation for this link
can be seen in figure 5.14. As already explained, the element ORIGEN corresponds
to the origin link vertex, while the element DESTINO represents the target link vertex.
The element ARCO represents the link between ORIGEN and DESTINO, as required by
XLink?.

A database of xlinks has been used to store the link graph information. The avai-
lability of this information as XML data has been useful for querying the links during

*Mandatory XLink attributes (for example, x1ink:type) do not appear in the figure as they are
defined with default values in the links DTD.

130

Relationships and links in the prototype

<?xml version="1.0" encoding="1SO—8859—1"?>

<doc>

<articulo id="al"><title>Articulo Primero. </title>

<p>El referendum en sus distintas modalidades, se celebrard de
acuerdo con las condiciones y procedimientos regulados en la
presente Ley Orgénica.</p>

< /articulo>

<articulo id="a2"><title>Articulo Segundo. </title>

<p>Uno. La autorizacién para la convocatoria de consultas populares
por via de referendum en cualquiera de sus modalidades, es competencia
exclusiva del Estado.</p>

< /articulo>

</doc>

(a) Source document for the example: [02-1980.zml

<?xml version="1.0" encoding="ISO—8859—1"7>
<doc>
<p>Ley 13/1986, de 14 de Abril de 1986, de Fomento y Coordinacién
General de la Investigacién Cientifica y Técnica</p>
<p>Don Juan Carlos I,Rey de Espafia.</p>
<disposicion id="da"><title>DISPOSICIONES ADICIONALES. </title>
<p><a>Undécima.

1. Quedan modificados los articulos 1.°,4.° y 8.° de la Ley
Orgénica 2/1980, de 30 de abril , que quedaran redactados en la
forma siguiente :</p>
<articulo id="dalll"><title>Articulo 1.</title>
<p>Con la denominacién de Instituto de Astrofisica de Canarias se crea
un Consorcio Publico de Gestién, cuya finalidad es la investigacion
astrofisica .</p>
<p>El Instituto de Astrofisica de Canarias estard integrado por la
Administracién del Estado, la Comunidad Auténoma de Canarias la
Universidad de La Laguna y el Consejo Superior de Investigaciones
Cientificas .</p>
< /articulo>
<articulo id="dall2"><title>Articulo 4.</title>
<p>El Consejo Rector estara integrado por el Ministro de Educacién y
Ciencia, que actuard como Presidente; un Vocal en representaciéon de la
Administracion del Estado, que sera nombrado a propuesta del
Ministerio de la Presidencia, y tres Vocales mas en representacion de
cada una de las restantes Administraciones piblicas y Organismos que
se relacionan en el articulo 1.° Formara parte del Consejo Rector,
asimismo, el Director del Instituto , que serd miembro nato.</p>
< /articulo>
< /disposicion>
</doc>

(b) Modifier document for the example: 113-1986.zml

THE PROTOTYPE 131

<?xml version="1.0" encoding="1S0—8859—1"7>

<doc>

<articulo id="dalll"><title>Articulo 1.</title>

<p>Con la denominacién de Instituto de Astrofisica de Canarias se crea
un Consorcio Piblico de Gestién, cuya finalidad es la investigacién
astrofisica .</p>

<p>El Instituto de Astrofisica de Canarias estard integrado por la
Administracion del Estado, la Comunidad Auténoma de Canarias la
Universidad de La Laguna y el Consejo Superior de Investigaciones
Cientificas .</p>

< /articulo>

<articulo id="a2"><title>Articulo Segundo. </title>

<p>Uno. La autorizacién para la convocatoria de consultas populares
por via de referendum en cualquiera de sus modalidades, es competencia
exclusiva del Estado.</p>

< /articulo>

</doc>

(c) Modified document for the example: new version of [02-1980.zml

Figure 5.11: Version generation. Input and output documents.

102-1980.xml SOURCE DOCUMENT: 113-1986.xml MODIFIER DOCUM EN'ﬁ
(Document to modify) doc
n n disposicion|

n articulg}

i| Articulo Primero. El referendum.|.

“F— Node-set to substitute

|
|

|

|

|

|

|

1

|

articulg} .
|

|

|

|

|

|

|

|

i

..organica. ~
[Articulo 1. Con la denominacion El Instituto |
<vevenee INVEStiGACION . Investigaciones | !
cientifica. Cientificas. !
|
Node-set that |
substitutes |

Articulo 1. Con la denominacion ElInstituto

I
<ievneennn iNVEStigacion .. Investigaciones Node-set substituted i
cientifica. Cientificas. |
I
I
I

Figure 5.12: Element substitution, based on links. The first element articulo in the source (lo2-
1980.xml) document is substituted by the first element articulo inside first element
disposicion of the modifier document. The result is a new version of document /o2-
1980.xml.

132

Relationships and links in the prototype

"Substitution"

Articulo Primero.

El referendum... Articulo 1. Con la t.ienon'.linagi,én El Institqto [

____________________________________ investigacion .. Investigaciones

..organica. cientifica. Cientificas.
TARGET ORIGIN

(to be replaced)

(replacing node)

Figure 5.13: “Substitution” link. The ORIGIN will replace the TARGET when generating a new version
of the source document. The ORIGIN is a subtree of the source document made up of the
element articulo and all its descendants. The TARGET is the subtree in the modifier
document tree whose root is the first element articulo inside the first disposicion,

as can be seen in figure 5.14.

<ENLACE>
<ORIGEN

<DESTINO

<ARCO

</ENLACE>

xlink:href= "113-1986.xml#xpointer(child
xlink:role="substitution"

date= "1981"

doctype= '"norma" />

xlink:href= "102-1980.xml#xpointer(child
xlink:role="target"

date= "1986"

/>

doctype= "norma"

::disposicion[1]/articulo[1])"

::articulo[1])"

xlink:from="substitution" xlink:to="target"

x1link:show="undefined" xlink:actuate=

"undefined"/>

Figure 5.14: Text for the example link.

THE PROTOTYPE 133

Document resolver

Virtual

document

Figure 5.15: Virtual document generation.

the generation process as any other XML data can be queried, thus querying the link
graph.

The type of links has been modeled in the links origin, given that the type of a link
(citation, modification) in legal rules comes, in fact, from the type of citation detected
in the origin document. Also, the citation link and geographically adjacent modification
have the same target, but not the same origin. The origin of the citation link is the
string that “cites” the target, while the origin of the modification link is the node-set
that has to replace the target.

5.5 Version generation

Version generation has been tested on rules, as they are the class where modifications
are relevant.

5.5.1 Data types in the generation process

Two types of databases are involved in virtual document generation. Figure 5.15 is
an extraction from the components architecture in chapter 5, focused on databases used
for virtual document generation -the Document resolver represents the collaboration of
components that generates document versions (virtual documents)-:

e The documents database, that contains documents in the collection. The source
document (the one that is modified) and documents that contain modifications to
it, are inside this database.

o The links database. This database contains links that express modifications bet-
ween documents. Each link maps a portion of a source document to some portion
of some other document holding the target text of the modifications.

134 Version generation

_—————

Articulo 1. Con la denominacién El Instituto
RS | igacion igacione:

Lr
Cientificas.

TARGET ORIGIN

(to be replaced) (replacing node)

Figure 5.16: Elements in link variables. The variable has only one enlace element. This element
has itself two elements: origen - that contains the subtree which is the origin of the
substitution link-, and destino, which has the link target node.

5.56.2 Complete substitution algorithm

To treat a document in order to obtain new versions from substitutions, it is neces-
sary to have information about the modifications that affect the document. Information
about whether a node is affected by a modification is kept on links. This means that
to recognise nodes affected by substitutions, a phase of search on links has to precede
the source document treatment. That is, the complete process that leads to a modified
document has two steps:

1. Links treatment

2. Links application to source document

Step 1: Links treatment

This phase consists of the creation of a links variable that will be used during source
document nodes treatment. The links variable is created from links databases. A search
returns a collection of links that contains links related to the source document.

The algorithm 4 filters the links and retrieves links vertices to insert them in the links
variable. As a result, the variable SUSTITUCIONES contains a list of enlace elements.
There is an example in figure 5.16.

Algorithm 4 Links variable creation

Inputs: SUSTITUCIONES: empty links-list; l:links-collection; D:document
for all links of type “substitution” with origin in D do
recover origin node and create an element origen with it;
recover target node and create an element destino with it;
place both elements in an element enlace;
add this enlace to SUSTITUCIONES;
end for

THE PROTOTYPE 135

Step 2: Links application to document

The algorithm 2 in chapter 3 applies the substitution links to documents. The links
considered are in the variable created in step 1.

5.6 Discussion

The system

This prototype only implements services needed to achieve the main goal: to provide
link-oriented services. Among classical services, retrieval of documents and link search-
ing are implemented. Navigation and document searching would improve the prototype;
a navigational hypertext can be constructed from the citation links graph.

The prototype includes the following components: Document Server, User Interface,
Link Search Engine and Document Translator. They have been implemented as objects
and the user interface is available via a Web interface, controlled by a servlet. The
Document Server implements methods for version generation and document retrieval.
Qualities of the prototype are:

e Portability. Object oriented technology to implement components guarantees
system design independence from underlying platforms. Concerning the imple-
mentation, as most components are Java, the portability is inherited from Java
portability.

e Reusability. Some components in this system can be taken from existing imple-
mentations (that is, search tools and collection access services). Also, components
designed for this system could be reused by other systems; not in a unit granularity
(for example, links cannot be used or searched if there is no links collection), but
without the need to incorporate all the system in order to use some functionalities.

The prototype library is centralised in one server, which simplifies the manipulation
of document identifiers and their resolution. A case of multiplicity of collections or
distribution would be treated in a similar manner (the same components, multiplied),
on the same basis as for the identifiers, but the name services would become more
complicated.

Document translation

Document translation has been tested on a set of legislative documents obtained from
several public servers. Source documents were HTML pages tagged with criteria varying
on server provenance®. Before using them, a step of “cleaning” was needed to adapt them
to the algorithm translation input requirements. The requirement to be well-formed
XML documents was added to the algorithm as the application that implements it
works on an XML parser. The input document copy is analysed sequentially by the
parser, which passes items of type “element”, “text”, etc. to the application, according to
the specifications of the SAX 1.0 API*. Ontologies mapping and hierarchical inclusion

3Procedence were servers of various Spanish ministers
s (http://www.igsap.map.es/cia/dispo/Ibe.htm, http://www.map.es/gobierno/legisla) and the public
server "La Ley” (http://www.laley.net).

* Available at http://www.meggison.com /SAX.

136 Discussion

Restricted vocabulary Restricted syntax variations
Norma, ley, Real decreto "....enelarticulo 1 de la ley 11/1998.."
Jurisprudencia, precedente "....enlaley 11/1998, articulo 1..."
articulo "en la ley 11/1998, articulo primero.."
Ndmero

Figure 5.17: Variations in citations found in Spanish rules. Syntax and vocabulary are rigid. For
example, there are not many variations between the three manners to cite an article
shown in the list to the right.

rules between elements for each document class are input parameters to the translation
method.

Link querying and document version generation

Link querying and version generation are also implemented on an XML parser. Availa-
bility of documents and links in XML, directly provides a language to address document
fragments (XPointer), and another language to manipulate them (XSLT). The tree vi-
sion of XML documents matches the tree model and recursive treatment of documents
carried out for versioning. Version generation has been tested on a set of legislative
documents of rule class, which are the legislative documents where it is easier to find
historical modifications. It works with documents with exact modification overlapping
on a node-set. Partial overlappings have also been tested with success. On the other
hand, transitive modifications require greater flexibility of tools that manipulate XML
than those available at the moment. However, the fast evolution of these tools, with
the progressive stability of XML and associated standards leads to the idea that the
desired flexibility is not far off®.

Citation detection

Modifications in legislative texts are geographically close to citations and can be found
if detecting citations. Linguistic and syntactic rigidity (figure 5.17 shows some exam-
ples of citation variations taken from Spanish rules) in these texts eases the automatic
detection of citation [121] by comparison with other contexts more “flexible” in their lan-
guage structures. That allowed a citation detection to be implemented by recognising
keywords inside text. To detect citation automatically helps automatic link creation.
However, we note that the citation detection problem is not them main goal of this
thesis, and that in the prototype it suffices to show the feasibility to integrate such
components in the system and that -at least in the prototype domain- it is not impos-
sible for that detection to be automated.

5The link database conforms with the XLink Working-Draft of February, 2000, and the Working-
Draft of December 1999 of XPointer. The candidate recommendations that supersede these do not
suppose great changes in the implementation (mainly, a one by one mapping).

Conclusions

Contents
6.1 Contributions . . . ¢ « ¢ v vt i vt e e e e e e e e e 138
6.2 Related work @ @ @ i i i i i it it it it 140
6.3 The prototype and the technology 140
6.4 Futurework @ . it e e e e 141

137

138 Contributions

The area of application of this thesis is digital libraries; structured documents, rela-
tionships between documents and the generation of new documents are the aspects of
main interest. The aim is to be able to exploit relationships between document frag-
ments beyond mere navigational hypertext, and during the work some other goals have
been presented as a necessity to accomplish the main aim. The first requirement is
to dissociate the abstract document entity from its digital copies; this places us in the
right position to distinguish the abstract document structure and identify our first aim:
to obtain a digital copy of the document whose logical structure is an image of the abs-
tract document structure. This goal is also influenced by the fact that the relationships
that are mainly of interest are citations and modifications between documents -with a
special interest in modifications that come close to a citation to the modified document
fragment-. Citations are mostly made in terms of the abstract document structure,
addressing the cited document fragment by its relative position in the document logical
structure tree. That is, there is a second need: to obtain a digital copy of the documents
whose logical structure reflects the abstract document structure.

Once this semantically structured digital copy is available, we can proceed with our
next goal: to query relationships, and to automatically generate historical document
versions. Querying relationships is possible if they are expressed in terms of links, which
-if available in a link database- can be queried like any other document. This database is
in fact the implementation of a link graph with three main types of heterogeneous links:
structural links (in the document logical tree structure), citation links and modification
links. The generation of new documents, and precisely document versions, has been
done with a traversal in this graph, where nodes are document fragments addressed by
their position in the document tree.

6.1 Contributions

Links have been used in this thesis as first class information objects. They have
been taken out of document content and given the relevance they deserve as the owners
of information that allows information to be enriched beyond information found in
document content. We have enriched the services in digital libraries with services to
translate digital document copies to semantically structured copies, and link-oriented
services (services where links are crucial): citation detection and document version
generation. We have gone beyond document composition from links that directly express
composition rules, to an exploitation of the link graph to “deduce” composition rules
that are implicit in the link graph, but which nevertheless need to be recognised.

Special attention is given to document versioning. There are three main aspects of
interest related to document versioning: detecting, representing and querying changes.
The choice for change detection is to detect changes inside document content instead
of comparing documents. The way to represent changes is as links between the mo-
dified document and the modifier document. Querying changes is therefore querying
links. The existence of fragment identifiers is not assumed. The solution is applica-
ble to structured documents, which also allows document fragments to be addressed
unidirectionally, and is not dependent on arbitrary ways to assign identifiers.

CONCLUSIONS 139

It has been taken in account that modifications come mostly as part of some do-
cument content, which means they are in the document databases, and that to isolate
them as first class documents (or individual information pieces) would require a repli-
cation of information and the integrity of the document database to be broken, as these
information pieces cannot be considered as document entities by themselves. The chosen
solution is therefore general: it can also be applied to simpler situations when modifiers
are first class objects.

Every document entity is the compound of three information pieces: metadata that
describe the document entity, the document (content) as it was created by its author(s),
and links related to the document. The advantages of considering these three informa-
tion objects as individual pieces of information are several. First, the content can be
manipulated and queried without affecting metadata and links. Next, metadata and
links can be queried separately from the document content. Moreover, links can be
shared by all documents involved in the expressed relationships: queries and graph
traversals can be made in any direction (from origins to targets and vice-versa).

The algorithm proposed in chapter 2 captures the semantic logical structure of a do-
cument instance, the target class grammar (DTD) being known.

The great advantage of the algorithm is that the generated copy is semantically
tagged and its logical structure is an exact match of the abstract document entity
structure. Not only preserving the semantics is important, even if it is by itself a great
advantage: having the structure in a digital document copy is also decisive to be able to
establish the connection between citations and the structure of the document copy stored
in the database. The algorithm makes a sequential traversal of the input document
copy, recognising semantic elements in the same way as a human does. Moreover, it is
the safest way to analyse a document sequentially whose size is unknown,thus avoiding
having to worry about this attribute. It is not possible to obtain a general algorithm that
works on any document. Lack of knowledge about tagging in input documents and their
inclusion hierarchy means some decisions have to be made that restrict the algorithm
generality; the decisions taken have been influenced by the origin of documents used
in the prototype. The fact that input documents to the prototype implementation
were HTML pages coming from different servers influenced the decision to forbid the
semantic element from nesting inside the HT'ML element content: the input documents
never presented such cases, and by contrast, had variable tag nesting.

The mixed view of a document as both a tree and a set of node sets is emphasised.
Fach set of nodes is addressed by its root and make up vertices in the relationship
graph. These characteristics of structured documents were used to allow all versions of
a document to be stored. The link graph adds to structural relationships between do-
cument fragments’ semantic relationships (citations, modifications). It can be queried,
navigated and subgraphs can be extracted to generate new versions of documents. This
allows to go beyond the explicit expression of rules that guide document composition
to a process where they are calculated during the composition process, which is a graph
traversal whose selection is a recursive traversal of the original document version avai-
lable in the library database.

140 Related work

6.2 Related work

An area where citation relationships are relevant is the reference linking domain.
They coincide in that the relationships considered come from citations inside documents
to documents that can be merely cited, or cited and modified. Citation detecting is a
shared problem (in which some future work in this context is to be done), mainly because
work in the reference linking domain is especially concerned with the extraction of a
document identifier -independent from the document’s physical implementation, but
related to the abstract document entity- from the citation detected in document text.
Citations related to modifications are only in that category (and citations in the legal
domain, which is the area chosen for this thesis prototype always comply with this
property). This thesis also agrees with reference linking works in the importance of
citation links for user navigation. Aside from this advantage, other ways of taking
advantage of the valuable information embedded in links with different goals in mind
are also of interest. The thesis is concerned with access to the internal logical structure,
which is not a general requirement in the reference linking domain. Links between
document fragments are heterogeneous: they contain information about citations, but
also about modifications that are expressed inside document content. The modification
link is not between the citation and the cited document fragment, but between the
modifier document fragment and the modified one (which coincides in this case with
the cited one).

6.3 The prototype and the technology

A prototype has been implemented to test the proposals made. Legislative informa-
tion is semantically structured, densely related, with frequent citations and modifica-
tions inside documents to other documents: for example, rules are frequently modified,
with the result of new versions of modified rules.

The translation of documents (the generation of semantically structured document
copies presented in chapter 2) has been tested on a set of legislative documents obtained
from several public servers; tagging is heterogeneous, varying from one server to another.
Output documents from the document translation process are the base documents whose
fragments make up the vertices of the link graph, from which rule versions have been
generated.

Document version generation and link querying use an XML parser. The availability
of documents and links in XML format provides a language to address document frag-
ments in XML documents (XPath) and a language for document manipulation (XSLT).
Moreover, the XML model of documents as tree structures, adapts perfectly to the hie-
rarchical view of documents necessary for the recursive treatment on version generation.

The implementation of the link database follows the working draft of February
2000 [119] for XLink, and the working draft of December 1999 [116] for XPointer. At
this moment, there are later versions (“candidate recommendations”); but the changes
introduced by these new versions are not relevant enough to suppose more changes than
mere one to one direct attribute translation.

CONCLUSIONS 141

The querying of relationships could be improved in the prototype with an efficient
XML query language, for which there is not yet a standard.

6.4 Future work

The offer of an automatic treatment of relationships would be complete with au-
tomatic detection of citations and automatic generation of document identifiers (docu-
ment plus fragment address) from detected citations. Experiments to generate docu-
ment identifiers [31] in English language documents with journals show that this goal
is closer with every passing day. In the prototype of legislative information, the rigid
structure of this information makes citation detection possible and not too difficult.
The challenge is to generalise it to other structured documents.

The services architecture proposed in chapter 4 can be expanded with more link
oriented services, able to extract additional information from links (for example, sta-
tistical data about citations or relationships). Links gain relevance in digital libraries
-and Internet-, due to the user’s interest in finding “related information”.

The semantic structure capture algorithm cannot work on any input document,
which forces some restrictions to be chosen to impose on them. The algorithm could
gain in flexibility with the use of techniques that help to differentiate the start of an
element from citations to other elements of the same type inside its content.

Also, version generation is limited in cases of conflictive modifications, where an
automated algorithm has no means to distinguish incoherent modifications from those
that should be resolved (see subsection 3.7.3 in chapter 3). The decision taken has
been to leave them unresolved and to return them in a list of conflicts, that could be
used in an interactive dialogue with the user who has asked for the current document
version; the user could help to resolve these cases by indicating which modifications
should be applied: an interaction with the user would expand the possibilities of the
version generation algorithm, and this would find its place inside the user interface
service.

Proposed solutions for documents in digital libraries are expandable to other envi-
ronments with massive document databases, such as Internet, that share many of their
problems and solutions with digital libraries.

142 Future work

Logical structure capture
evolution on an example

TTTTTTTT

143

144

STARTTAG / doc

doc

‘candidata’

ORI GEN

ABI ERTCS

STARTTAG /p

‘candidata’ doc

ORI GEN

ABI ERTOS

TEXT/'Ley 1.

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE

TEXT/’Ley 1.

nokeyword and
start of a formatting element

<doc><p>Ley 1.

P
doc

ABI ERTCS

ENDTAG /p

<doc><p>Ley 1.</p>

STARTTAG / h4

145

146

STARTTAG / h4

<doc><p>Ley 1.</p>

‘candidata’ h4

ORI GEN

doc

ABI ERTOS

STARTTAG/a

<doc><p>Ley 1.</p>

‘candidata’ ha

ORI GEN

doc

ABI ERTOS

TEXT /'CAPITULO I’

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE

TEXT /'CAPITULO I

<doc><p>Ley 1.</p>

‘ignorada’ a

‘ignorada’ ha

ORI GEN

doc

ABI ERTOS

ENDTAG/a

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

"ignorada’

ORI GEN

title
capitulo
doc

ABI ERTOS

TEXT /'DEL REFERENDUM’

147

148

TEXT /'DEL REFERENDUM’

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.

‘ignorada’ ha

ORI GEN

title
capitulo
doc

ABI ERTOS

ENDTAG / h4

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>

capitulo
doc

ABI ERTOS

STARTTAG /p

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE

STARTTAG /p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>

ORI GEN

capitulo
doc

ABI ERTOS

STARTTAG /a

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

<fitle>
‘candidata’ p

ORI GEN

capitulo
doc

ABI ERTOS

TEXT / 'Articulo Primero’

149

150

TEXT / 'Articulo Primero’

completeKeyword

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO 1.

DEL REFERENDUM.
<ftitle>

<articulo><title>
Articulo Primero.

ORI GEN

title
articulo
capitulo

doc

ABI ERTOS

ENDTAG/ a

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO I.

DEL REFERENDUM.

<ftitle>

<articulo><title> - ;

Articulo Primero.

ORI GEN

title
articulo
capitulo
doc

ABI ERTOS

ENDTAG / p

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE

ENDTAG /p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM.
<ftitle>

Articulo Primero.

<ftitle>

articulo

capitulo

STARTTAG / p

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO I.

DEL REFERENDUM.

<[title>

<articulo><title>) . |

Articulo Primero.
<fitle>

ORI GEN

articulo
capitulo
doc

ABI ERTOS

TEXT / 'Texto del articulo primero.’

151

152

TEXT / 'Texto del articulo primero.’

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM.
<[title>
<articulo><title>
Articulo Primero.

<[title><p>

Texto del articulo primero.

P
articulo

capitulo

ENDTAG / p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM.
<[title>
<articulo><titie>
Articulo Primero.

<[title><p>
Texto del articulo primero. ORI GEN
</p>

articulo
capitulo
doc

STARTTAG / p

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE

STARTTAG /p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>

<articulo><title> ‘candidata’ p
Articulo Primero.
<fitle><p>

Texto del articulo primero. ORI GEN
</p>

articulo
capitulo
doc

ABI ERTOS

STARTTAG /a

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

<[title>
il rmere
Articulo Primero.

</title><p>

Texto del articulo primero. ORI GEN
<Ip>

articulo
capitulo
doc

ABI ERTOS

TEXT /Articulo Segundo’

153

154

TEXT /'Articulo Segundo’

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO I -

DEL REFERENDUM.
<[title>

<articulo><title>
Articulo Primero.

<ftitle><p>

Texto del articulo primero. ORI GEN

</p></articulo>
<articulo><title>
Articulo Segundo.

title
articulo
capitulo
doc

ABI ERTOS

ENDTAG/a

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO 1.

DEL REFERENDUM.

<[title>

<a(ticu|0>§title>
Articulo Primero.

</title><p>

Texto del articulo primero. ORI GEN

</p></articulo>
<articulo><title>
Articulo Segundo.

title
articulo
capitulo

doc

ABI ERTOS

ENDTAG / p

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE

ENDTAG / p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I

DEL REFERENDUM.
</title>
<articulo><title>
Articulo Primero.

<[title><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>
Articulo Segundo.
<ftitle>

articulo

capitulo
doc

ABI ERTCS

STARTTAG / p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I

DEL REFERENDUM.
</title>

<ar’ticulo><‘title>
Articulo Primero.

<[title><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>
Articulo Segundo.
<hitle>

articulo

capitulo
doc

ABI ERTOS

TEXT / 'Texto del articulo segundo,
previo a una disposicién’

155

156

TEXT / 'Texto del articulo segundo,
previo a una disposicién’

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM.
<ftitle>
<articulo><title>
Articulo Primero.

<ftitle><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
</title><p>

Texto del articulo segundo|
previo a una)

articulo

capitulo
doc

ABI ERTCS

STARTTAG / p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM.
<ftitle>

<arlt|culo><.t|tle>
Articulo Primero.

<[title><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
<ftitle><p>

Texto del articulo segundo|
previo a una

P
articulo

capitulo
doc

ABI ERTCS

STARTTAG / b

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE 157

STARTTAG /b

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM. ‘candidata’ b
<ltitle>

<arlI|cqu><‘mIe> ‘candidata’ p
Articulo Primero.

<[title><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
</title><p>

Texto del articulo segundo|
previo a una

P
articulo

capitulo
doc

ABI ERTOS

TEXT / 'Disposicion’ (startkeyword)

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO I.

DEL REFERENDUM. ‘candidata’ b
<ftitle>

<arlI|cuI0><.t|tIe> ‘candidata’ p
Articulo Primero.

<[title><p>

Texto del articulo primero. ORI GEN

</p></articulo>

<articulo><title>

Articulo Segundo.

</title><p>

Texto del articulo segundo|
previo a una disposicion

P
articulo
capitulo
doc

ABI ERTOS

TEXT / ‘final’

158

TEXT / final’

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

<[title>
Articulo Primero.

<ftitle><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
<[title><p>

Texto del articulo segundo |
previo a una disposicién
</p></articulo>

</capitulo>
<disposicion><title>
Disposicién final.

title
disposicion|
doc

ABI ERTOS

ENDTAG /b

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO 1.

DEL REFERENDUM.

<[title>

<a(ticu|0>§title>
Articulo Primero.

</title><p>

Texto del articulo primero. ORI GEN

</p></articulo>
<articulo><title>
Articulo Segundo.
<ftitle><p>

Texto del articulo segundo|
previo a una disposicién
</p></articulo>

</capitulo> title
<disposicion><title> disposicion
Disposicién final.

doc

ABI ERTOS

ENDTAG / p

LOGICAL STRUCTURE CAPTURE EVOLUTION ON AN EXAMPLE 159

ENDTAG / p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>
<articulo><title>
Articulo Primero.

<ftitle><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
<[title><p>

Texto del articulo segundo |
previo a una disposicién
</p></articulo>

</capitulo>
<disposicion><title>
Disposicién final.

<[title>

disposicion|
doc

ABI ERTOS

STARTTAG/ p

<doc><p>Ley 1.</p>
<capitulo><title>

CAPITULO 1.

DEL REFERENDUM.

<[title>

<a(t|cu|0>§t|tle>
Articulo Primero.

</title><p>

Texto del articulo primero. ORI GEN

</p></articulo>
<articulo><title>

Articulo Segundo.
<ftitle><p>

Texto del articulo segundo|
previo a una disposicién
</p></articulo>

</capitulo>
<disposicion><title> disposicion
Disposicién final. doc

<[title>

ABI ERTOS

TEXT/ 'Texto de la disposiciéon’

160

TEXT/ 'Texto de la disposicién’

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>
<articulo><title>
Articulo Primero.

<ftitle><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
<[title><p>

Texto del articulo segundo|
previo a una disposicién
</p></articulo>
</capitulo>
<disposicion><title>
Disposicién final.
<fitle><p>

Texto de la disposicion.

p
disposicion|
doc

ABI ERTOS

ENDTAG/ p

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>
<articulo><title>
Articulo Primero.

</title><p>
Texto del articulo primero. ORI GEN
</p></articulo>
<articulo><title>

Articulo Segundo.
<ftitle><p>

Texto del articulo segundo|
previo a una disposicién
</p></articulo>

</capitulo>
<disposicion><title> disposicion
Disposicién final.
<[title><p>
Texto de la disposicion. ABI ERTOS
</p>

doc

ENDTAG/ doc

LOGICAL STRUCTURE CAPTURE

ENDTAG /

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<l[title>

<articulo><title>

Articulo Primero.
<[title><p>

Texto del articulo primero.
</p></articulo>
<articulo><title>

Articulo Segundo.
<[title><p>

Texto del articulo segundo|
previo a una disposicion
</p></articulo>

</capitulo>
<disposicion><title>
Disposicion final.
<[title><p>

Texto de la disposicion.
</p></disposicion>

EVOLUTION ON AN EXAMPLE 161

doc

ORI GEN

doc

ABI ERTCS

ENDDOC

<doc><p>Ley 1.</p>
<capitulo><title>
CAPITULO 1.

DEL REFERENDUM.
<[title>

<articulo><title>

Articulo Primero.
<[title><p>

Texto del articulo primero.
</p></articulo>
<articulo><title>

Articulo Segundo.
<ftitle><p>

Texto del articulo segundo|

previo a una disposicion
</p></articulo>
</capitulo>
<disposicion><title>
Disposicion final.
<[title><p>

Texto de la disposicién.
</p></disposicion>
</doc>

ORI GEN

A

ABI ERTCS

162

Bibliography

[1] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Simeon.
Querying documents in object databases. International Journal on Digital Li-
braries, 1(1), 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query
language for semi-structured data. Internation Journal on Digital Libraries, 1(1),
1997.

[3] Maristella Agosti, Roberto Colotti, and Girolamo Gradenigo. A two-level hyper-
text retrieval model for legal data. In 14th ACM-SIGIR International Conference
on Research and Development in Information Retrieval, pages 316-325, Diparta-
mento di Elettronica e Informatica, Universita’di Padova, October 1991. Chicago,
IL USA.

[4] James Allan. Automatic Hypertext Link Typing. In Hypertext’96, the Seventh
ACM Conference on Hypertext, pages 42-52, 1996.

[5] J. André, R. Furuta, and V. Quint. Structured documents: What and why? In
J. André, R. Furuta, and V. Quint, editors, Structured Documents. Cambridge
University Press, 1989.

[6] Jacques André, D. Decouchant, V. Quint, and Helene Richy. Vers un atelier edi-
torial pour les documents structures. In Congrés AFCET Bureautique, Document,
"Groupware", Multimédia, pages 63-72, Versailles (France), June 1993.

[7] Jacques André, Richard Furuta, and Vincent Quint, editors. Structured docu-
ments, volume 2 of The Cambridge series on Electronic Publishing, Cambridge,
New Rochelle, Melbourne, 1989. Cambridge University Press.

[8] Heimburger Anneli. A Structured Link Document as a new means for composing
and publishing technical customer documentation in extranets and intranets. In
Electronic Publishing’99, 1999.

[9] AQUARELLE. The Information Network on the Cultural Heritage.
http://aqua.inria.fr/Aquarelle/.

[10] William Y. Arms. Key Concepts in the Architecture of the Digital Library. D-Lib
Magazine, July 1995.

163

164

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

William Y. Arms, Christophe Blanchi, and Edward A. Overly. An Architecture
for Information in Digital Libraries. D-Lib Magazine, February 1997.

Timothy Arnold-Moore, Phil Anderson, and Ron Sacks-Davis. Managing a digital
library of legislation. In 2nd ACM International Conference on Digital Libraries,
ACM DL 1997, pages 175-183, Philadelphia, PA, USA, July 1997. ACM Press.

Timothy Arnold-Moore, Michael Fuller, Alan Kent, Ron Sacks-Davis, and Neil
Sharman. Architecture of a content management server for XML document appli-

cations. In 1st International Conference on Web Information Systems Engineering
(WISE 2000), Hong Kong, June 2000.

Timothy Arnold-Moore, Michael Fuller, and Ron Sacks-Davis. Approaches for
structured document management. In Markup Technologies’99, Philadephia, PA,
USA, December 1999.

Timothy Arnold-Moore, Michael Fuller, and Ron Sacks-Davis. System architec-
tures for structured document data. Markup Languages: Theory and Practice,
2(1):15-44, 2000.

M. Baldonado, C. Chang, L. Gravano, and A. Paepcke. The Stanford Digital
Library Metadata Architecture. International Journal of Digital Libraries, 2(1),
February 1997.

Michelle Baldonado, Q. Wang, and Terry Winograd. SenseMaker: An
Information-Exploration Interface Supporting the Contextual Evolution of a
User’s Interests. In Proceedings of the Conference on Human Factors in Com-
puting Systems, CHI’97, pages 11-18, Atlanta, Ga., 1997. ACM Press, New York.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison Wesley, 1998.

Abdel Belaid and Amos David. The use of Information Retrieval Tools in Au-
tomatic Document Modeling and Recognition. In Tenth International Workshop

on Database and Ezpert Systems Applications (DAUD’99), Florence, Italia, pages
522-526, September 1999.

Donna Bergmark. An Architecture for Reference Linking. Presentation of the
Cornell Digital Library Research Group, May 2000.

Mark Bernstein. An apprentice that discovers hypertext links. In N. Streitz,
A. Rizk, and J. André, editors, Hypertext: Concepts, Systems and Applications.,
The Cambridge Series on Electronic Publishing, pages 212-223, November 1990.

S. Biagioni, J.L..Borbinha, R. Ferber, P. Hansen, S. Kapidakis, L.. Kovacs, F. Roos,
and A. M. Vercoustre. The ERCIM Technical Reference Digital Library. In Second
European Conference on Research and Advanced Technology for Digital Libraries,
September 1998.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

BIBLIOGRAPHY 165

Stefania Biagioni, Carlo Carlesi, and Donatella Castelli. Supporting retrieval by
‘relation amog documents‘ in the ERCIM Technical Reference Digital Library. In
11th ERCIM Database Research Group Workshop on Metadata for Web Databases,
May 1998.

William P. Birmigham. An agent-based architecture for digital libraries. D-Lib
Magazine, July 1995.

William P. Birminghan. An Agent-Based Architecture for Digital Libraries. D-Lib
Magazine, July 1995.

William James Blustein. Hypertext Versions of Journal Articles: Computer-aided
linking and realistic human-based evaluation. PhD thesis, University of Western
Ontario, London, Ontario, Canada, 1999.

S. Bonhomme and C. Roisin. Transformations de documents électroniques. Do-
cument Numérique, 1(3), 1997.

Stéphane Bonhomme. Transformation de documents structurés, une combinaison
des approches explicite et automatique. PhD thesis, Université Joseph Fourier
(Grenoble), December 1998.

Tim Bray. Comparison of SGML and XML. World Wide Web Consortium Note
15-December-1997.

Heather Brown. Standards for structured documents. The Computer Journal,
32(6):505-514, December 1989.

Priscilla Caplan and William Y. Arms. Reference Linking for Journal Articles.
D-Lib Magazine, 5(7/8), 1999.

L. A. Carr, W. Hall, and S. Hitchcock. Link Services or Link Agents? In 9th
ACM Conference on Hypertext and Hypermedia, 1998.

Leslie Carr, Wendy Hall, and David De Roure. The evolution of hypertext link
services. ACM Computing Surveys, 31(4), December 1999.

Wojciech Cellary and Geneviéve Jomier. Building an object-oriented databse
system. The story of O,., chapter Consistency of Versions in Object-Oriented
Databases. Number 19 in The Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann, 1992.

Sudarshan S. Chawathe, Serge Abiteboul, and Jennifer Widom. Managing histor-
ical semistructured data. Theory and Practice of Object Systems, 5(3):143-162,
August 1999.

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. SIGMOD
Record (ACM Special Interest Group on Management of Data), 25(2), 1996.

166

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

BIBLIOGRAPHY

N. Chomsky. Three models for the description of language. IRE Transactions on
Information Control, 2(3):113-124, 1956.

Martin Choquette, Daniel Poulin, and Paul Bratley. Compiling Legal Hypertexts.
In Norman Revell and A. Min Tjoa, editors, Database and Expert Systems Appli-
cations, 6th International Conference, DEXA’95, volume 978 of Lecture Notes in
Computer Science, pages 449-458. Springer, September 1995.

Jeff Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9):17-
41, 1987.

V. Cristophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu-
ments to novel query facilities. In ACM SIGMOD Conference on Management of
Data, pages 312-324, 1994.

CVS. Concurrent Versions System. http://www.cvshome.org/docs/manual/.

J. R. Davis. Creating a Networked Computer Science Technical Report Library.
D-Lib Magazine, September 1995.

J. R. Davis and C. Lagoze. A protocol and server for a distributed digital techni-
cal report library. Technical Report TR94-1418, Computer Science Department,
Cornell University, 1994.

J. R. Davis and Carl Lagoze. The Networked Computer Science Technical Report
Library. Technical report, Cornell University, 1996.

James R. Davis and Carl Lagoze. NCSTRL: Design and Deployment of a Globally
Distributed Digital Library, 1999.

Herbert Van de Sompel and Patrick Hochstenbach. Reference linking in a hybrid
library environment. D-Lib Magazine, 5, April 1999.

Steven J. DeRose. Expanding the Notion of Links. In Norman Meyorwitz, edi-
tor, Proceedings of Hypertext’89, pages 249-255, Pittsburgh, PA Baltimore, 1989.
Association for Computing Machinery Press.

Steven J. DeRose and David G. Durand. The TEI Hypertext Guidelines. Com-
puting and the Humanities, 29(3), 1995.

Steven J. DeRose, C.M. Seperberg-McQueen, and Bill Smith. Queries on Links
and Hierarchies. In Proceedings of QL’98 - The Query Languages Workshop |,
Boston, december 1998.

Steven J. DeRose, C.M. Seperberg-McQueen, and Bill Smith. XQuery: A unified
syntax for linking and querying general XML documents. In Proceedings of QL’98
- The Query Languages Workshop , Boston, december 1998.

Jack Doggen. FORMEX V3L Tagging the Laws: SGML Used for Complex Mul-
tilingual Documents. In SGML’96: Celebrating a Decade of SGML, Boston, 1996.

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

BIBLIOGRAPHY 167

Bob DuCharme. Links That Are More Valuable Than the Information They Link?
XML.com, July 1998.

Bob DuCharme. What XLink Can Do for Your Applications. XML Magazine,
Spring 2000.

Jacques Ducloy. DILIB, une plate-forme XML pour la génération de serveurs
WWW et la veille scientifique et technique. MicroBulletin du CNRS, pages 3-9.
http://www.loria.fr/projets/DILIB/dilib-0.2/DOC /index.html.

Eulegis. http://www.eulegis.net.

Nicholas Finke. TEI Extensions for Legal Text. In Text Encoding Initiative Tenth
Anniversary User Conference, Providence, Rhode Island, USA, November 1997.

Edward A. Fox and Robert K. France. Architecture of an Expert System for Com-
posite Document Analysis, Representation, and Retrieval. International Journal
of Approzimate Reasoning, 1(2):151-175, April 1987.

R. Furuta and P. D. Stotts. Object structures in paper documents and hy-
pertexts. In Workshop on Object-Oriented Document Manipulation (WOOD-
MAN’89), Rennes, France, May 1989.

Richard Furuta. Concepts and models for structured documents. In J. André,
R. Furuta, and V. Quint, editors, Structured Documents, pages 7-38. Cambridge
University Press, 1989.

Richard Furuta and P. David Stotts. Specifying structured document transforma-
tions. In J.C. van Vliet, editor, Document Manipulation and Typography, pages
109-120, Nice (France), April 1988.

George H.Brett II. An Integrated System for Distributed Information Services.
D-Lib Magazine, December 1996.

Rosa Maria Di Giorgi and Roberta Nannucci. Hypertext systems for the law. In
Informatique et droit/ Computers and law, Montreal, 1992.

L. Gravano, C.C.K.Chang, H. Garcia-Molina, and A. Paepcke. STARTS. Stanford
Protocol Proposal for Internet Retrieval and Search. In ACM SIGMOD Confer-
ence on Management of Data, 1997.

Luis Gravano, Héctor Garcia-Molina, and Anthony Tomasic. The effectiveness of
GIOSS for the text-database discovery problem. In Proceedings of the International
Conference on Management of Data, May 1994.

Georg Haider, Cecilia Magnusson Sjoberg, Gerald Quirchmay, and Verena Sebald.
The Comparative Part of the Corpus Legis Project - Using SGML for Intelligent
Information Retrieval of Legal Documents. In A. Niku-Lari., editor, EXPERSYS-
96, Artificial Intelligence Applications., Technology Transfer Series, pages 181-
186, 1996.

168

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[83]

BIBLIOGRAPHY

Frans C. Heeman. Granularity in structured documents. Flectronic Publishing,
5(3):143-155, September 1992.

S. Hitchcock, L. Carr, S. Harris, J.M.N. Hey, and W. Hall. Citation Linking:
Improving Access to Online Journals. In Second ACM International Conference
on Digital Libraries, pages 115-122, 1997.

Steve Hitchcock. Linking Electronic Journals: Lessons from the Open Journal
Project. D-Lib Magazine, December 1998.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
gquages, and computation. Addison Wesley, 1979.

T. Hu. New methods for robust and efficient recognition of the logical structures
in documents. PhD thesis, Université de Fribourg, 1994.

Karen Hunter. Adding Value by Adding Links. Journal of Electronic Publishing,
3, March 1998. http://www.press.umich.edu/jep/03-03 /hunter.html.

IFLA Study Group on the Functional Requirements for Bibliographic Recrods.
Functional requirements for bibliographic records. Deutsche Bibliotek, Frankfurt-
am-Main, 1997. http://www.ifla.org/VII/s13/frbr/frbr.pdf.

Indecs Home Page. http://www.indecs.org/.
La infopista juridica. http://www.juridica.com/.

International Organization for Standardization, Geneve. Information Processing -
Text and Office Systems - Standard Generalized Markup Language (SGML) (ISO
8879:1986), 1986.

Eila Kuikka and Martti Penttonen. Tansformation of structured documents with
the use of grammar. In Electronic Publishing, volume 6, pages 373-383, dec 1993.

Carl Lagoze and David Fielding. Defining Collections in Distributed Digital Li-
braries. D-Lib Magazine, November 1998.

La Ley - Web Site. http://www.laley.net.
LEGGIO - Noticias Juridicas. http://www.leggio.com/.
Légifrance. L’essentiel du droit francais. http://www.legifrance.gouv fr.

Legislacién Béasica del Estado - Centro de Informacion Administrativa - MAP -
Espana. http://www.igsap.map.es/cia/dispo/Ibe.htm.

Barry M. Leiner. The NCSTRL Approach to Open architecture for the Confe-
derated Digital Library. D-Lib Magazine, December 1998.

Seung-Jin Lim and Yiu-Kai Ng. WebView: A Tool for Retrieving Internal Struc-
tures and Extracting Information from HTML Documents. In Sixth International
Conference on Database Systems for Advanced Applications (DASFAA), pages
71-78, Hsinchu, Taiwan, April 1999. IEEE Computer Society.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

BIBLIOGRAPHY 169

G. Lindén. Structured Document Transformations. PhD thesis, Dept. of Computer
Science, University of Helsinki, 1997.

Philippe Martin and L. Alpay. Conceptual structures and structured documents.
In Peter W. Edlund, Gerard Ellis, and Graham Mann, editors, Conceptual Struc-
tures: Knowledge Representation as Interlingua, 4th International Conference on
Conceptual Structures, ICCS ’96,, volume 1115 of Lecture Notes in Computer
Science, pages 145-159, Sydney, Australia, August 1996. Springer.

Guido De Mets. Consleg Interleaf: SGML Applied in Legislation. In SGML’96:
Celebrating a Decade of SGML, Boston, 1996.

National Institute of Information Standards, http://sunsite.berkeley.edu/SICI.

SICI: Serial Item and Contribution Identifier Standard, ANSI/NISO Z39.56 Ver-
sion 2 edition.

Peter J. Niirnberg, Richard Furuta, John J. Leggett, Catherine C. Marshall, and
Frank M. Shipman III. Digital libraries: Issues and architectures. In Digital
Libraries 95. Center for the Study of Digital Libraries, Texas A&M University,
1995.

Association of Research Libraries. Definition and Purposes of a Digital Library,
October 1995.

Andreas Paepcke. Digital libraries: Searching is not enough. D-Lib Magazine,
May 1996.

Andreas Paepcke, Che Chuan K. Chang, Héctor Garcia Molina, and Terry Wino-
grad. Interoperability for Digital Libraries Worldwide. Communications of the
ACM, April 1998.

H. Van Dyke Parunak. Don’t Link Me In: Set Based Hypermedia for Taxonomic
Reasoning. In Proceedings of the Third ACM Conference on Hypertert, pages
233-242, San Antonio, Texas, USA, December 1991.

H. Van Dyke Parunak. Hypertert/Hyermedia Handbook, chapter Ordering the
information graph, pages 299-325. Intertext Publications, 1991.

Norman Paskin. DOI: Current Status and Outlook May 1999. D-Lib Magazine,
May 1999. http://www.dlib.org/dlib/may99/05paskin.html.

James Powell and Edward A. Fox. Multilingual Federated Searching Across He-
terogeneous Collections. D-Lib Magazine, September 1998.

S. Ranwez and M. Crampes. Conceptual documents and hypertext documents
are two different forms of virtual documents. In Workshop on Virtual Documents,
Hypertext Functionnality and the Web, Eight International World Wide Web Con-
ference, Toronto, Canada, 1999.

170

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

BIBLIOGRAPHY

Antoine Rizk and Dale Sutcliffe. Distributed link service in the AQUARELLE
project. In Mark Bernstein, Les Carr, and Kasper Osterbye, editors, 8th ACM
Conference on Hypertert and Hypermedia. ACM, 1997.

Martin Roscheisen, Michelle Baldonado, Kevin Chang, Luis Gravano, Steven
Kechpel, and Andreas Paepcke. The Stanford InfoBus and Its Service Layers,
August 1997. http://www-diglib.stanford.edu.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel. Database systems for structured
documents. In International Symposium on Advanced Database Technologies and
Their Implementation., pages 272-283, Nara, Japan, October 1994. Invited paper.

Bruce Schatz, William Mischo, Timothy Cole, Ann Bishop, Susan Harum, Eric
Johnson, Laura Neumann, Hsinchun Chen, and Dorbin Ng. Federated Search of
Scientific Literature. Computer, 32(2), February 1999.

Cecilia Magnusson Sjoberg. DTD development for the legal domain. In Swedis
SGML 97, 1997. http://info.admin.kth.se/SGML/.

D. Smith and M. Lopez. Information extraction for semistructured documents.
In Workshop on Management of Semi-structured Data, Tucson, Arizona, 1997.

C. M. Sperber-McQueen and Lou Burnard, editors. Guidelines for Electronic Text
Encoding and Interchange. ALLC/ACH/ACL Text Encoding Initiative, 1994.

Stanford Digital Libraries Project. http://www-diglib.stanford.edu.

Steve B. Cousins. A task-oriented interface to a digital library. In CHI 97 Con-
ference Companion, pages 103-104, 1996.

K. Summers. Toward a taxonomy of logical document structures. In Electronic
Publishing and the Information Superhighway: Proceedings of the Dartmouth In-
stitute for Advanced Graduate Studies (DAGS ’95), pages 124-133. Boston, 1995.

Kristen Maria Summers. Automatic Discovery of Logical Document Structure.
PhD thesis, Cornell University, aug 1998.

Janet Verbyla. Unlinking the Link. ACM Computing Surveys, 31(4):34—, Decem-
ber 1999.

Anne-Marie Vercoustre and Francois Paradis. Reuse of Linked Documents through
Virtual Document Prescriptions. Lecture Notes in Computer Science. Lecture
Notes in Artificial Intelligence, May 1998.

W3C, the World Wide Web Consortium. Cascading Style Sheets, level 2 CSS2
Specification. W3C Recommendation 12-May-1998.

W3C, the World Wide Web Consortium. Eztensible Stylesheet Language (XSL).
Version 1.0. W3C Working Draft 27-March-2000.

W3C, the World Wide Web Consortium. HTML 4.01 Specification.

BIBLIOGRAPHY 171

[113] W3C, the World Wide Web Consortium. XHTMLI™! 1.0: The Extensible Hyper-
Text Markup Language. A Reformulation of HTML 4 in XML 1.0. W3C Recom-
mendation 26-January-2000.

[114] W3C, the World Wide Web Consortium. Namespaces in XML, January 1999.
W3C Recommendation. http://www.w3.org/TR/REC-xml-names.

[115] W3C, the World Wide Web Consortium. XML Path Language (XPath), November
1999. W3C Recommendation. http://www.w3.org/TR/1999/xpath.

[116] W3C, the World Wide Web Consortium. XML Pointer Language (XPointer),
December 1999. W3C Working Draft. http://www.w3.org/ TR /xptr.

[117] W3C, the World Wide Web Consortium. Extensible Markup Language
(XML) 1.0 (Second FEdition), October 2000. W3C Recommendation.
http://www.w3.org/TR/REC-xml.

[118] W3C, the World Wide Web Consortium. Resource Description Framework (RDF')
Schema Specification 1.0, March 2000. W3C Candidate Recommendation 27
March 2000. http://www.w3.org/TR /rdf-schema.

[119] W3C, the World Wide Web Consortium. XML Linking Language
(XLink), February 2000. W3C Working Draft 21-February-2000.
http://www.w3.org/TR/2000/WD-xlink-20000221.

[120] Norman Walsh and Leonard Muellner. DocBook: The Definitive Guide. O’Reilly,
1st edition, October 1999.

[121] Eve Wilson. Links and structures in hypertext databases for law. In Antoine Rizk,
Norbert A. Streitz, and J. André, editors, Furopean Conference on Hypertext,
ECHT’90, The Cambridge Series on Electronic Publishing, pages 194-211, Paris
(France), 1990. Cambridge University Press.

[122] XSilfide (Serveur Interactif pour la Langue Francaise, son Identité, sa Diffusion
et son Etude). http://www.loria.fr/projets/XSilfide/.

[123] YiXu. An Incremental Apporach to Document Structure Recognition. PhD thesis,
GMD - Forschungszentrum Informationstechnik GmbH, 1998.

[124] 7Z39.50 Maintenance Agency. ANSI/NISO Z39.50-1995. Information Retrieval
(739.50): Application Service Definition and Protocol Specification, July 1995.

