
A. Arratia Program Schemes 1�

�

�

�

Program Schemes

Reunión MOISES, 3 Septiembre 2004

Argimiro Arratia

Universidad de Valladolid

arratia@mac.uva.es

A. Arratia Program Schemes 2�

�

�

�

A program scheme ρ ∈ NPS(τ) involves a finite set of variables
and is over some vocabulary τ . It consists of a finite sequence of
instructions:

First is INPUT(x1, . . . , xm) and last is OUTPUT(x1, . . . , xm).
The others are

(i) assignment instruction of the form:
var := atom, where an atom is a variable or constant symbol of
τ ∪ {0,max} (0, max two special constants not in τ), or
GUESS var

(ii) test instruction : WHILE t DO α1; . . . ;αq OD

where each α1; . . . ;αq is an instruction (assignment or test)
and t is a conjunction of simple tests, or their negations, of the
form: atom = atom and R(atom, . . . , atom),
where R is a relation symbol of τ .
(note we can have nested while instructions)

A. Arratia Program Schemes 3�

�

�

�

NPS= {ρ ∈ NPS(τ) | τ is some vocabulary}

(NPS + ≤) means we have a successor
operation y := x + 1 built-in into programs

A. Arratia Program Schemes 4�

�

�

�

A program scheme ρ ∈ NPS(τ) takes as input a finite τ -structure
A, by interpreting each constant and relation of τ as constants and
relations of A; the 0 and max as two different elements of A, and
initially setting input/output variables to 0
A is accepted by ρ (A |= ρ) if for some sequence of guesses
(applied wherever the inst. GUESS var appears), that
nondeterministically assign values from A to the variables of ρ,
causes the program to halt with all its input/output variables set
to max

DPS is NPS without GUESS

A. Arratia Program Schemes 5�

�

�

�

Program Schemes Background

1970s : Program Schemata (Constable & Gries, 1972). No
attention paid to resources

1980s : Datalog, Dynamic Logics, Logics of Programs (Harel &
Peleg, 1984; Neil Jones, 1977-90s; Tiuryn, 1988). Relates
programming with computational complexity

1990s : Program Schemes developed mainly by Stewart, close to
Dynamic Logics or Datalog, but tied up with Finite Model
Theory (e.g. inputs are not strings from binary alphabets but
finite structures)

A. Arratia Program Schemes 6�

�

�

�

Example

Let ρ ∈ NPS(σ), σ = {E, C, D}, be

1 INPUT(x, y)
2 x := C

3 WHILE x �= D DO
4 GUESS y

5 WHILE ¬E(x, y) DO
6 GUESS y OD
7 x := y OD
8 x := max

9 y := max

10 OUTPUT(x, y)

Then A |= ρ ⇐⇒ A ∈ TC

A. Arratia Program Schemes 7�

�

�

�

An advantage of the Prog. Scheme model: we can incorporate
operations as STACKS and ARRAYS

Programs with Stacks

NPSS is NPS plus the instructions:

var := POP

PUSH var

Programs in NPSS come with a stack. PUSH var places the value
of var on top of the stack. var := POP removes the value of the
top of the stack and var assumes this value. All programs begin
computing with empty stack. A program accepts its input as before
but on termination the stack must be empty.

A. Arratia Program Schemes 8�

�

�

�

Programs with Arrays

NPSA is NPS plus the instructions:

(assignment) A[atom, . . . , atom] := atom

(test) atom = A[atom, . . . , atom]
A is an array symbol.

Programs in NPSA may have more than one array, and prior to
computation all arrays variables are set to 0

DPSA is NPSA without GUESS.
(NPSA + ≤) has a built-in successor operation

NOTE: IF THEN ELSE is definable from WHILE

A. Arratia Program Schemes 9�

�

�

�

Example : Let ρ ∈ (NPSA+ ≤)(σ), σ = {E}, be

1 INPUT(x)
2 A[0] := max

3 WHILE x �= 0 DO
4 GUESS y

5 IF x �= y ∧ E(x, y) ∧ A[y] = 0 THEN
6 A[y] := max

7 x := y FI OD
8 (x, z) := (0, 0)
9 WHILE x �= max ∧ z = 0 DO

10 IF A[x] = max THEN 14 IF A[max] = max ∧ z = 0

11 x := x + 1 15 THEN x := max

12 ELSE z := max FI 16 ELSE x := 0 FI

13 OD 17 OUTPUT(x)
Then A |= ρ ⇐⇒ A ∈ HAMCircuit

A. Arratia Program Schemes 10�

�

�

�

NPSB is NPSA but assignment to array elements are force to be
only 0 or max, i.e., only allow A[atom, . . . , atom] := max. Initially
arrays are set to 0 and once they are set to max they keep that
value to the end.

Example: the program scheme in previous slide is in NPSB

A. Arratia Program Schemes 11�

�

�

�

Programming vs Complexity

(Stewart 93) (DPS + ≤) = L

(Ste 93)(Arratia, Chauhan, Stewart 99) (NPS + ≤) = NL

(A, C, S 99) (NPSS + ≤) = P

(Stewart 00) (NPSA + ≤) = (DPSA + ≤) = PSPACE

(Stewart 02) (NPSB + ≤) = NP

A. Arratia Program Schemes 12�

�

�

�

Program Schemes w/o Order

Define

NPS(1) = NPS = prog. schm. where test in WHILE-loops is
quantifier free FO-formula

NPS(2) = {∀x1 . . .∀xp ρ : ρ ∈ NPS(1)}

NPS(3) = {ρ : test in WHILE is ρ′ ∈ NPS(2)}

and so on . . .

A similar hierarchy can be defined from NPSS

A. Arratia Program Schemes 13�

�

�

�

Let σ = {E, U}, E binary, U unary. View σ-structures as digraphs
with specified set of vertices or roots, U . Let ρ′ ∈ NPS(3) be

1 INPUT(x) where ρ ∈ NPS(1) is

2 GUESS x 1 INPUT(z, w)

3 WHILE ¬U(x) DO 2 z = x

4 GUESS x OD 3 WHILE z �= y DO

5 IF ∀y ρ(x, y) THEN 4 GUESS w

6 x := max ELSE 5 IF E(z, w) THEN

7 x := 0 FI 6 z := w FI OD

8 OUTPUT(x) 7 (z, w) := (max, max)

8 OUTPUT(z, w)

A |= ρ′ ⇐⇒ A is a rooted digraph where at least one root have
paths to every other vertice

A. Arratia Program Schemes 14�

�

�

�

Theorem [A,C,S 99]: Over arbitrary finite structures

1. NPS(1) ⊂ . . . ⊂ NPS(m) ⊂ NPS(m + 1) ⊂ . . .

2. NPSS(1) ⊂ . . . ⊂ NPSS(m) ⊂ NPSS(m + 1) ⊂ . . .

3. (±TC)∗[FO] =
⋃

m≥1

NPS(m) ⊂
⋃

m≥1

NPSS(m) = (±PS)∗[FO]

But, in the presence of a built-in successor relation

1. NPS(1) =
⋃

m≥1

NPS(m) = (±TC)∗[FO] = NL

2. NPSS(1) =
⋃

m≥1

NPSS(m) = (±PS)∗[FO] = P

A. Arratia Program Schemes 15�

�

�

�

The tools have an Ehrenfeucht-Fraissé flavour

Theorem[Hierarchy Theorem for NPS]: Let ρ ∈ NPS(τ). If there
exists families of τ -structures, {Ak}k≥0 and {Bk}k≥0, such that:

(i) for each k ≥ 0, Ak ⊆ Bk and for all sentence of the form
ψ := ∃x∀yφ(x, y), with φ a quantifier-free first-order formula and
|y| + |x| ≤ k, we have

Ak |= ψ iff Bk |= ψ;

(ii) for some β ∈ NPS(1) and all k ≥ 0,

Ak |= β and Bk �|= β.

Then, for all m ≥ 0, NPS(m) ⊂ NPS(m + 1).

A. Arratia Program Schemes 16�

�

�

�

Computational complexity open problems equivalent to
programming queries

Theorem [Ste 02]: The following are equivalent:

1. NP = PSPACE

2. NPSB = NPSA, over arbitrary finite structures.

(This is like Abiteboul & Vianu logical characterisation of the P =
PSPACE question)

A. Arratia Program Schemes 17�

�

�

�

Variations of the program scheme model:

an alternative way of doing iteration

A. Arratia Program Schemes 18�

�

�

�

Program Schemes based on FOR-loops

A program scheme ρ ∈ RFDPS involves a finite set of variables, a
finite set of array symbols and is over some vocabulary σ. It
consists of a finite sequence of instructions:

First is INPUT(x1, . . . , xm) and last is OUTPUT(x1, . . . , xm), and

(i) assignment instruction of the form: τ := atom,
where τ is variable or array term, and atom is variable, array
term or constant symbol of τ ∪ {0,max}

(ii) if-then-fi-block: IF ϕ THEN α1, . . . , αl FI
where ϕ is quantifier-free FO-formula in σ ∪ {0, max}

(iii) repeat-do-od-block : REPEAT DO α1; . . . ;αl OD

(iv) forall-do-od-block : FORALL x WITH Aj DO α1; . . . ;αl OD

FORALL x DO α1; . . . ;αl OD

where each α1; . . . ;αq is an instruction

A. Arratia Program Schemes 19�

�

�

�

How computation goes

Given an input model A of size n:

• REPEAT DO α1; . . . ;αl OD :
iteratively executes the block of instructions α1; . . . ;αl n times

• FORALL x WITH Aj DO α1; . . . ;αl OD :
n child processes are set off in parallel, one for each value
u ∈ |A|, which is taken by the “control” variable x and the jth
entry of array A. When all child processes terminates, i.e.,
reaches the forall-od inst., if the values of local variables are all
max, then the value of x is set at max, otherwise is set at 0.

A is accepted by ρ ⇐⇒ exist distinct values for symbols 0 and
max for which the computation of ρ on input A reaches OUTPUT
with all variables set at max

A. Arratia Program Schemes 20�

�

�

�

Theorem [Gault & Stewart 04]: There is a program scheme of
RFDPS accepting any first order definable problem

However, RFDPS can compute problems not first order definable.
Let ρ:

1 INPUT(x)
2 REPEAT DO
3 IF x = 0 THEN
4 x := max

5 ELSE
6 x := 0 FI
7 OD
8 OUTPUT(x)

Here acceptance and rejection is independent of the distinct chosen
values for 0 and max. For any vocabulary σ, a σ-structure is
accepted by ρ iff it has odd size.

A. Arratia Program Schemes 21�

�

�

�

Moreover
Theorem [G & S, 04]: There is a program scheme of RFDPS
accepting any problem definable in IFP logic.

However
RFDPS does not captures P

A. Arratia Program Schemes 22�

�

�

�

Conclusions

With Program Schemes:

• we can explore computational complexity through a
programming style, which should be more appealing than the
Turing machine to the programmer;

• we can design new logics (in the broad sense set forth by
Gurevich, as language with recursive syntax and semantics) by
adding programming constructs (e.g. arrays, stacks, and
different forms of recursion) which are hard to conceive within
the rigid framework of Logic;

• take advantage of its programming nature to visualise problems
as programs, and its link with Finite Model Theory for
techniques for proving power of computation

