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Abstract

In this paper we propose a novel algorithm for both contracting and expanding cube-style mod-
ular robots which reconfigures any given source robot composed of n atoms into any given target
robot with O(n) basic actions, improving on previous O(n2) algorithms. During reconfiguration,
the robot forms one connected component at all times, and the reconfiguration takes place within
the union of the bounding boxes of the initial and final robot configurations. The algorithm can
be implemented using distributed control and allowing massive simultaneous parallel moves of the
atoms.

1 Introduction

Self-reconfiguring robotic systems have received increased interest. When operating under uncertainty
of environmental models and/or task specifications, self-reconfiguring modular robots have the ability
to adapt to restricted environments such as narrow tunnels or rough terrains, circumvent or climb over
obstacles such as walls or stairs, grow emergency structures such as bridges, surround and manipulate
objects in outer space, inspect mechanisms and unaccessible spaces e.g., in nuclear plants, etc. Self-
reconfiguring modular robots are self sufficient systems that cannot only change their shape, but are
also capable of locomotion and self-repairing.

Modular robots are composed of simple units, very limited in their actions, that can be assembled
together to form versatile robotic systems. When all the units are identical, the modular robot is
called homogeneous. Units for modular robots have been studied and prototyped that can perform a
wide variety of basic actions. In this paper we consider self-reconfiguring modular robots composed of
cubical units (atoms) arranged in a lattice configuration and capable of performing four basic actions:
expand and contract, as well as attach and detach from neighbors. The atoms are arranged in meta-
modules, groups of atoms attached to one another in a cubic shape, that are known to be necessary
and sufficient to reconfigure any robot.

When reconfiguring, several properties are desirable for these systems. One is that the units that
form the robot are autonomous, and the reconfiguration can be performed under distributed control,
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munauté Française de Belgique - Actions de Recherche Concertées (ARC).

‡Villanova University, Villanova, USA, mirela.damian@villanova.edu.
§Massachusetts Institute of Technology, Cambridge, USA, edemaine@mit.edu. Partially supported by NSF CAREER

award CCF-0347776 and DOE grant DE-FG02-04ER25647.
¶Siena College, Loudonville, N.Y., USA, flatland@siena.edu
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independent from any central processor. Parallel reconfiguration algorithms are desirable, because
simultaneous unit movements make the reconfiguration faster. Finally, when space restrictions apply,
in-place reconfiguration is required or, at least desirable, so that the robot does not expand outside its
initial and final shapes or, at least, does not expand outside their bounding boxes. All the reconfiguring
moves must guarantee that the robot stays connected at all times. Finally, it is desirable that the
reconfiguration space is connected.

Our main contribution is a novel algorithm that satisfies all these requirements and reconfigures
any given source robot composed of n atoms and arranged in meta-modules into a given target robot
with O(n) basic atom actions, within the union of the bounding boxes of the initial and final robot
configurations. Previously, only O(n2) algorithms were known [RV01, VYS02, BR03]. Throughout the
paper, n refers to the number of robot atoms.

2 Definitions and basic moves

An atom is a cubical device equipped with an expansion/contraction mechanism that allows it to
extend its faces out and retract them back. When two opposing faces are extended, the length of the
atom along that dimension is twice what it is when the two faces are retracted. Each face is equipped
with an attaching/detaching mechanism that allows atoms to lock face-to-face with adjacent atoms.
We list below the four primitive operations an atom is capable of performing, where direction is one
of x+, x−, y+, y−, z+ or z−:

Contract(direction). Compress the atom in the indicated direction.

Expand(direction). Expand the atom in the indicated direction.

Attach(direction). Attach the atom to its neighbor in the indicated direction.

Detach(direction). Detach the atom from its neighbor in the indicated direction.

A robot is a connected collection of atoms arranged in a three dimensional lattice. The collection is
connected in the sense that its dual graph (vertices correspond to atoms, edges correspond to attached
atoms) is connected. A robot can reconfigure itself by having groups of its atoms perform the primitive
operations in a coordinated way, resulting in atoms moving relative to one another.

Two existing hardware models implement these robots: crystalline robots, which are contracting
cube-style modular robots, and telecube robots, which are expanding cube-style modular robots.

Contracting cube-style modular robots: Crystalline atoms [RV01] have an expanded natural
position, and their movement is based on the fact that they can contract.

Expanding cube-style modular robots: Telecube atoms [VYS02] have a contracted natural
position, and their movement is based on the fact that they can expand.

There exist atom configurations which cannot be reconfigured. For example, in a linear arrangement
of atoms, no atom can change its relative position with respect to the remaining atoms without
disconnecting the robot. Connected lattice arrangements of what are known as meta-modules, however,
guarantee connectedness of the reconfiguration space [RV01, VYS02]. A meta-module is a group of
atoms attached to one another in a cubic shape. The number of atoms necessary for a meta-module
depends on the hardware model considered. Crystalline meta-modules are composed of 4 × 4 × 4
atoms, which are shown necessary and sufficient to reconfigure any robot [RV01]. Telecube meta-
modules are composed of 2× 2× 2 atoms, which are shown necessary and sufficient to reconfigure any
robot [VYS02]. We define two basic moves (hardware independent) that meta-modules are able to
perform. The reconfiguration algorithms to be described in Section 3 use these moves extensively.

Slide(dirSlide). Slide the meta-module one step in the direction dirSlide with respect to some sub-
strate meta-modules. This move is illustrated in Figure 1. The preconditions for applying this
move are:



(i) The sliding meta-module (A in Fig. 1a) is adjacent to a meta-module in a direction orthog-
onal to dirSlide (B in Fig. 1a), which in turn is adjacent to a meta-module in direction
dirSlide (C in Fig. 1a).

(ii) The target position for the sliding meta-module is free.
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Figure 1: Examples of Slide(x−): (a) Meta-module A slides alone (2D projection), (b) A carries
adjacent meta-modules (2D projection), (c) A carries towers.

This move allows the sliding meta-module to “carry” other attached meta-modules (as in Fig-
ure 1b), as long as the target position for a carry-on meta-module is unoccupied. Similarly, this
move allows an entire tower of meta-modules sitting on top of the sliding meta-module to be
carried along, as shown in Figure 1c.

k-Tunnel(sPos, ePos). Push the meta-module located at sPos (start position) into the robot, and
pop a meta-module out of the robot in position ePos (end position). The preconditions for
applying this move are:

(i) sPos is at a leaf node in the dual graph of the starting configuration, and ePos is a leaf
node in the dual graph of the ending configuration.

(ii) There is an orthogonal path through the robot starting at sPos and ending at ePos, with k
orthogonal turns.

This move is illustrated in Figure 2 for k = 1, 2, 3, 4. Although the k-Tunnel move is defined
for arbitrary k, our reconfiguration algorithms only require k ≤ 4.

In both contracting and expanding cube-style modular robots, the Slide move can be achieved
by repeating a constant number of times a finite sequence of primitive atom operations known as the
Inchworm action [RV01, VYS02]. Details appear in the full version.

Lemma 2.1. Slide can be implemented using O(1) primitive actions in both the expanding and the
contracting models, without disconnecting the robot.

Similarly, any k-Tunnel move can be achieved by alternate application of k+1 Transfer actions
and k Turn actions. Both Turn and Transfer consist of a finite sequence of primitive atom
operations in both the contracting and the expanding models. Such sequences have been used in
previous reconfiguration algorithms [RV01, VYS02]. Details appear in the full version.

Lemma 2.2. k-Tunnel can be implemented using O(k) primitive actions in both the expanding and
the contracting models, without disconnecting the robot.
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Figure 2: Examples of Tunnel(A,C) with orthogonal turns at Bi, i = 1, 2, 3, 4 (a) 1-Tunnel (b)
2-Tunnel (c) 3-Tunnel (d) 4-Tunnel.

3 Centralized Reconfigurations

In this section we present a centralized algorithm that reconfigures any given source robot, S, into any
given target robot, T , in O(n) basic moves that are performed “in place”. By “in place” we mean
within the union of the bounding boxes of the source and target robots, assuming that they overlap.

In Section 3.1 we consider the simpler case of robots consisting of single layers of meta-modules,
which we will refer to as 2D robots. We will then discuss the general case of arbitrary robots in
Section 3.2.

3.1 Centralized Reconfiguration in 2D

The main idea behind the algorithm is to specify a simpler shape, which we refer to as a “2D comb,” that
an arbitrary robot can reconfigure to and from. We then show that any 2D comb can be transformed
into any other 2D comb.

3.1.1 2D Robot to 2D Comb

Here we describe an algorithm for reconfiguring S, an arbitrary 2D configuration of robot meta-
modules, into an intermediate comb configuration [ABMP06], CS . In a comb configuration, the meta-
modules form a special type of histogram polygon [CSW99]. Specifically, the meta-modules are ar-
ranged in horizontally adjacent columns, with the bottom meta-module of each column in a common
row which is called the handle; the columns of meta-modules extending upward from the handle are
called teeth.

Initially, the algorithm designates the row containing the topmost meta-modules of S as the wall.
We view the wall as infinite in length. The wall sweeps the entire robot configuration, moving downward
by one row of meta-modules in each step. By having certain meta-modules Slide downward with the
wall, the teeth of the comb emerge upward from the wall. We call this process “combing” the robot.
Algorithm 3.1 describes our 2D-Combing method.

Algorithm 3.1. 2D-Combing(S)

1. Set wall to row containing topmost meta-modules of S.

2. while there are meta-modules below the wall do

(a) Label wall meta-modules moving or stationary.
A meta-module within the wall is labeled stationary if there is a meta-module adjacent
below; otherwise, the meta-module is labeled moving.



(b) Identify moving wall components.
A moving wall component is a maximal wall component of adjacent moving wall meta-
modules. Observe that a moving wall component always has a stationary meta-module
adjacent to one or both ends; otherwise, the moving component would be disconnected
from the rest of the object.

(c) Move wall one row lower, carrying along moving wall components and their attached teeth.
Each moving wall meta-module adjacent to a stationary meta-module performs a Slide(y−)
move, thus moving itself one row below w.r.t. the adjacent stationary wall meta-module. In
the process, the sliding meta-module carries along the entire moving component it belongs
to, which also pulls along the attached teeth (if any).

(d) Adjust meta-module attachments
i. Attach adjacent wall meta-modules.
ii. Detach meta-modules in w+ from meta-modules adjacent to left (x−) and right(x+).
iii. Attach meta-modules in w− to wall meta-modules newly adjacent above (y+ direction).

Lemma 3.2. The 2D-Combing algorithm reconfigures S to CS using O(n) moves. The robot config-
uration forms one connected component at all times, and the reconfiguration is done in place.

3.1.2 2D Comb to 2D Comb

In this section, we describe an algorithm to reconfigure any comb robot CS to any other comb robot
CT . Assume that the left end meta-modules of CS and CT are aligned. The basic idea behind our
algorithm is to lengthen short teeth in CS by moving meta-modules from long teeth in CS . This
is done one meta-module at a time by using 1-Tunnel or 2-Tunnel moves until the short tooth
has the required length in CT . Furthermore, the short teeth are lengthened in left to right order by
moving meta-modules from long teeth in right to left order. The details of our algorithm are given in
Algorithm 3.3. We represent meta-modules by their (i, j) coordinates in the lattice.

Algorithm 3.3. 2D-Comb-To-Comb(CS , CT )

1. Let O ← {(i, j) | (i, j) ∈ CS and (i, j) /∈ CT }. Sort O in decreasing lexicographic order.

2. Let I ← {(i, j) | (i, j) ∈ CT and (i, j) /∈ CS}. Sort I in increasing lexicographic order.

3. while |I| > 0 (that is, short teeth remain)

(a) oPos ← min{O}.
(b) iPos ← min{I}.
(c) 1-Tunnel(oPos,iPos) (if y(oPos) = 1 or y(iPos) = 1), or 2-Tunnel(oPos,iPos).
(d) Delete oPos from O.
(e) Delete iPos from I.

Lemma 3.4. The 2D Comb-To-Comb algorithm reconfigures CS to CT using O(n) moves. The
robot configuration forms one connected component at all times, and the reconfiguration is done in
place.

3.1.3 Overall 2D Reconfiguration Algorithm

The general algorithm to reconfigure any robot S to any other robot T consists of three major steps:

1. Apply the 2D-Combing algorithm to reconfigure source S into source comb configuration CS .

2. Apply the 2D Comb-To-Comb algorithm to reconfigure source comb CS into target comb CT .

3. Apply the moves of the 2D-Combing algorithm in reverse order to reconfigure target comb CT

into target robot T .

Theorem 3.5. Any source robot can be reconfigured into any target robot using O(n) moves. The robot
configuration forms one connected component at all times, and the reconfiguration is done in place.



3.2 Centralized Reconfiguration in 3D

The main idea behind the 3D reconfiguration algorithm is analogous to the 2D case: specify a simpler
shape, which we refer to as a “comb of combs” (3D comb for short), that an arbitrary robot can
reconfigure to and from. We also show that any 3D comb can be reconfigured into any other 3D comb.
The reconfiguration into the 3D comb goes through another intermediate shape, which we call a “3D
terrain”. In the following we describe each reconfiguration step.

3.2.1 Source Robot to 3D Terrain

We use the 3D analog of the 2D-Combing process, 3D-Combing, to reconfigure S into a 3D terrain as
follows. The wall now consists of an entire 2D horizontal layer of meta-modules, initially the topmost
single layer of S. In each step of the algorithm, the wall moves downward through S by one layer.
At any given step, the wall consists of a collection of meta-modules, some of which are stationary and
some of which are moving. Analogous to the 2D case, a stationary meta-module is one that has an
adjacent meta-module below. Unlike the 2D case, where a 2D moving wall component is one row of
adjacent meta-modules, a 3D moving wall component is an arbitrarily shaped maximal component of
adjacent moving meta-modules within the wall. When the wall moves downward by one layer, the
wall moves past the stationary meta-modules, while the moving meta-modules get carried along with
the wall using Slide(z−). The robot stays connected at all times. The final result is that all meta-
modules of S having the same (x, y) coordinates are grouped together to form a contiguous tower of
meta-modules, and the resulting robot consists of a set of towers extending in the z+ direction and
resting on an arbitrarily-shaped layer (in the xy-plane) of connected meta-modules.

Lemma 3.6. The 3D-Combing algorithm reconfigures any robot into a 3D terrain using O(n) moves.
The robot configuration forms one connected component at all times, and the reconfiguration is done
in place.

3.2.2 3D Terrain to 3D Comb

In this section we reconfigure a 3D Terrain I (here I stands for Intermediate configuration) into a
3D comb by applying a 3D-Terrain-To-Comb algorithm which reconfigures the base of I into a
2D comb, without altering the towers resting on the base of I. This can be accomplished using the
2D-Combing algorithm of Section 3.1.1. Recall that the Slide move allows meta-modules to carry
towers, as illustrated in Figure 1c. This implies that the 2D-Combing algorithm applies not only to
single layer robots, but also to robots consisting of a single layer on with towers sitting on top.

After this second combing pass, the resulting robot is a 2D comb whose teeth are combs themselves,
i.e., each tooth itself is a the handle of a comb with teeth extending in the z-direction; hence, the name
of “comb of combs”, or 3D comb for short.

Lemma 3.7. The 3D-Terrain-To-Comb algorithm reconfigures any 3D terrain into a 3D comb
using O(n) moves. The robot configuration forms one connected component at all times, and the
reconfiguration is done in place.

3.2.3 3D Comb to 3D Comb

In this section we describe an algorithm 3D-Comb-To-Comb to reconfigure any source 3D comb CS

into any given target 3D comb CT . Both CS and CT have the configuration described in the previous
section; that is, they consist of a single comb in the xy-plane (call this the xy-comb), and each tooth
of the xy-comb is itself the handle of a comb with teeth extending in the z direction (call these the
z-combs). Let Sxy (Txy) denote the xy-comb of CS (CT ). Suppose that the handles of Sxy and Txy

are aligned with matching left end meta-modules.

Let S1, S2, . . . , Sm be the z-combs of CS . Similarly, let T1, T2, . . . , T` be the z-combs of CT . Let
|Si| (|Ti|) be the number of meta-modules in Si (Ti). If m ≥ ` (that is, the handle of Sxy is no shorter



than the handle of Txy), we consider |Ti| = 0 for all i > `. Similarly, if ` > m (that is, the handle of Txy

is longer than the handle of Sxy), we consider |Si| = 0 for all i > m. For each Si, 1 ≤ i ≤ max(m, `),
define L(Si) to be |Si| − |Ti|. Call a z-comb Si of CS large (small) if L(Si) > 0 (L(Si) < 0); in this
case, Si has more (less) meta-modules than Ti and some meta-modules will need to be moved out of
(into) Si.

The basic idea behind our algorithm to reconfigure CS to CT consists of the following two basic
steps:

1. First enlarge a small z-comb Si of CS by moving meta-modules from a large z-comb Si′ of CS .
This is done one meta-module at a time by using k-Tunnel (k ∈ {1, 2, 3, 4}) moves until Si has
the required size in CT (that is, L(Si) becomes 0). A meta-module from Si′ may be tunneled to
anywhere within Si that is an occupied position in CT and can be reached by a k-Tunnel move.
The small z-combs are enlarged in left to right order by shrinking large z-combs in right to left
order.

2. Once L(Si) = 0, 1 ≤ i ≤ max(m, `), the number of z-combs in the reconfigured Si is equal to `.
Let S1, S2, . . . , S` refer to the new z-combs of the reconfigured S. Even though |Si| = |Ti|, it is
possible that the configuration of Si is different from that of Ti. In this case, reconfigure Si to
Ti by using Algorithm 2D-Comb-To-Comb.

Lemma 3.8. The 3D-Comb-To-Comb algorithm reconfigures CS into CT using O(n) moves. The
robot configuration forms one connected component at all times, and the reconfiguration is done in
place.

3.2.4 Overall 3D Reconfiguration Algorithm

The general algorithm to reconfigure an arbitrary 3D robot S to a given 3D target robot T consists of
five major steps:

1. S → IS . Reconfigure S into the source 3D terrain IS using the 3D-Combing algorithm.

2. IS → CS . Reconfigure IS into the source 3D comb CS using the Terrain-To-Comb algorithm.

3. CS → CT . Reconfigure CS into the target 3D comb CT using the 3D Comb-To-Comb algorithm.

4. CT → IT . Reconfigure CT into the target 3D terrain IT by applying the moves of the Terrain-
To-Comb algorithm in reverse order.

5. IT → T . Reconfigure IT into the target T by applying the moves of the 3D-Combing algorithm
in reverse order.

Theorem 3.9. Any source robot can be reconfigured into any target robot using O(n) moves. The robot
configuration forms one connected component at all times, and the reconfiguration is done in place.

4 Distributed Implementation

The algorithms presented in Section 3 are described assuming that there exists a controlling unit
that can communicate with the atoms and control and coordinate their actions. Nevertheless, they
can all be implemented in a distributed and synchronous way, while keeping the overall linear-time
complexity. They require an initialization step that basically consists in sending to each atom the
initial configuration, as well as its address in it, together with the final configuration. After this
initial step, the robots can self-reconfigure without the help of any central controller, only based on
distributed control and local communication. Furthermore, the distributed algorithms that we propose
allow massive parallel actuation of atoms and modules.

Theorem 4.1. Any source robot can be reconfigured into any target robot in O(n) time in a distributed
and synchronous way which allows parallel actuation of atoms and modules. The robot configuration
forms one connected component at all times, and the reconfiguration is done in place.
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