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Abstract

Let R and B be disjoint point sets such that R ∪ B is in general position. We say that B is
enclosed by R if there is a simple polygon P with vertex set R such that all the elements in B
belong to the interior of P . In this paper we prove that if the vertices of the convex hull of R ∪B
belong to B, and |R| ≤ |Conv(R)| − 1 then B encloses R. The bound is tight. This improves
on results of a previous paper in which it was proved that if |R| ≤ 56|Conv(B)| then B encloses
R. To obtain our result we prove the next result: Let P be a convex polygon with n vertices
p1, . . . , pn and S a set of m points contained in the interior of P , m ≤ n − 1. Then there is
a convex decomposition {P1, . . . , Pn} of P such that all points from S lie on the boundaries of
P1, . . . , Pn, and each Pi contains a whole edge of P on its boundary.

1 Introduction

Let S be a set of n points in the plane in general position. A polygonization of S is a simple polygon
such that its vertex set is S. Finding an upper and lower bounds on the number of polygonizations
any point set admits is a problem that has been receiving much attention since it was posed in 1979
by Akl [2] and 1980 by Newborn and Moser [11]. In [2] a lower bound of 2.27n was proved. An upper
bound of the form cn for some constant c (ignoring polynomial terms) was conjectured by Newborn
and Moser [11]. This was proved in 1982 by Ajtai, Chvátal, Newborn, and Szemerédi [1], who proved
that there are at most 1013n crossing-free graphs on n points in a paper that had strong influence in
the latter theory of geometric graphs [3]. This bound has been improved in several papers, and most
recently for polygonizations to c = 86.81n by Sharir and Welzl [13].

Any simple polygon P defines two open regions on the plane, a bounded one called the interior
of P and an unbounded region called the exterior of P . The area of P is the area of the region
bounded by P . Problems of finding polygonizations of point sets S that maximize or minimize some
parameters of the polygonization have also been studied. S. Fekete [8] considers the problem of finding
polygonizations of point sets S that minimize or maximize the enclosed area. He proves that finding
such polygonizations is NP -complete. It is worth mentioning here that a tool used by Fekete, is Pick’s
Theorem, a classic result on polygonizations that for polygons with vertices on the integer lattice,
establishes an elegant relation between the area of the polygons and the number of lattice points on
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the boundary and in the interior of such polygons [12, 4]. The problem of finding polygonizations of
point sets that minimize the perimeter is the famous Euclidean Travelling Salesman problem, and it
is well known that this problem is NP -hard [10].

Figure 1: The polygon through the points represented by small solid points encloses all of the points
represented by small empty circles.

We say that a polygon P encloses a point set S if all the elements of S belong to the interior of
P ; see Figure 1. Let R and B be disjoint point sets on the plane such that S = R ∪ B is in general
position. The elements of R (respectively B) will be called the red points of S (respectively the blue
points of S). A polygonization of B will be called a blue polygonization. The problem of finding a blue
polygonization that encloses as many red points as possible was studied in [5].

Since any red element of S that is enclosed by a blue polygonization must belong to the interior
of the convex hull Conv(B) of B, in what follows we will assume that all the elements of R belong
to the interior of Conv(B). Under this assumption, it is proved in [5] that there always exists a blue
polygonization that encloses at least half of the elements of R. Moreover this bound is asymptotically
tight. It is also proved that there always exists a polygon that covers at least half of the area of the
convex hull of S.

Let k denote the number of vertices on Conv(B), and i the number of elements of B in the interior
of Conv(B), i + k = n. In [5] it was also proved that if |R| ≤ k

56 , then there always exists a blue
polygonization that encloses R. It is easy to see that there are red point sets contained in Conv(B)
with k elements such that the whole of R cannot be enclosed by any blue polygonization; simply let R
have an element close enough to the midpoint of each of the k edges of Conv(B), and make sure that
B has at least one point in the interior of Conv(B) as shown in Figure 2.

Figure 2: The blue points are represented by small solid circles, the red ones by small empty circles.

Our main goal in this paper is to show that if R has at most k−1 points, then there always exists a
blue polygonization that encloses R. The main tool used here is a partitioning lemma that we consider
to be of interest on its own, asserting the following: Let P be a convex polygon with n vertices, and
S a point set contained in P with at most n − 1 elements. Then there is a set of n convex polygons
P1, . . . , Pn with disjoint interiors such that the elements of S belong to the boundaries of P1, . . . , Pn,
each Pi contains in its boundary a whole edge of P , and P1 ∪ . . . ∪ Pn = P . See Figure 3.

We conclude this paper showing how to construct blue and red point sets with n = i + k and
m = k − 2 + 2i elements respectively, such that any blue polygon contains exactly n − 2 red points.
Observe that when k = 3, R has exactly m = 2n − 5 elements, and thus any blue polygonization
contains exactly m+1

2 red points in its interior and m−1
2 points in its exterior.



Figure 3: The Decomposition Lemma.

2 The Decomposition Lemma

Let P be a convex polygon with n vertices. We call a set of convex polygons {P1, . . . , Pn} with disjoint
interiors a convex decomposition of P if it satisfies the following conditions:

• P1 ∪ . . . ∪ Pn = P

• Each Pi has exactly one edge of P on its boundary, called the lid of Pi.

P1, . . . , Pn will be called the pockets of the decomposition. See Figure 3. In the rest of this paper, all
point sets or unions of point sets will be assumed to be in general position. If the vertices of a polygon
P are labelled p1, . . . , pn in the counter-clockwise order along its boundary, we might refer to P as to
the polygon p1p2 . . . pnp1. In this section we prove:

Theorem 2.1. [Decomposition lemma] Let P be a convex polygon with n vertices p1, . . . , pn and
S a set of m points contained in the interior of P , m ≤ n− 1. Then there is a convex decomposition
{P1, . . . , Pn} of P such that all points from S lie on the boundaries of P1, . . . , Pn, see Figure 3.

We present some preliminary results that will be useful to prove Theorem 2.1.

Lemma 2.2. Let T be a triangle with vertices p1, p2 and p3, that contains in its interior a set S of
2 + x1 + x2 points, where x1 and x2 are non-negative integers. Then, there is a point t in the interior
of T such that one of the following situations happens:

(a) The union of the segments tp1, tp2 and tp3 covers exactly two points from S, and there are x1

and x2 points from S in the interior of the triangles tp1p2 and tp2p3, respectively.

(b) Each one of the segments tp1, tp2 and tp3 covers exactly one point from S, and there are x1 − 1
and x2 points from S in the interior of the triangles tp1p2 and tp2p3, respectively.

(c) Each one of the segments tp1, tp2 and tp3 covers exactly one point from S, and there are x1 and
x2 − 1 points from S in the interior of the triangles tp1p2 and tp2p3, respectively.

Proof. Let t0 be a point on the segment p1p3 such that the triangles t0p1p2 and t0p2p3 have, respectively,
x1 + 1 and x2 + 1 points from S in their interior. left).

We consider a point t that moves along the segment t0p2, with initial position t = t0, until some
point from S is encountered by one or both of the segments tp1 and tp3.

If two points are simultaneously found, one by tp1 and another by tp3 we are in situation (a).

Suppose then that a point point q1 from S is intersected by the segment p1t (the case q1 ∈ p3t is
identical). Let t1 be the intersection point of the lines generated by p1t and p2p3 ; now we move the
point t towards t1 along the line segment p1t1. If one point from S is met by either of tp3 or tp2 we
are again in case (a) and we are done . If two points are simultaneously met by tp3 and tp2, we are in
situation (c) .



Proof of Theorem 2.1

Observe that we can assume that m = n− 1, for otherwise we can add (n− 1)−m dummy points to
the set S, obtain a convex partition, and then remove the dummy points.

We prove our result by induction on n; the base case n = 3 follows from Lemma 2.2 with x1 =
x2 = 0. Suppose that the vertices of P are labeled p1, . . . , pn in the counter-clockise direction along
its boundary such that the lower vertex of P is precisely pn, and pn lies on the origin. Every point q
can be described by its polar coordinates (r(q), ϕ(q)), where r(q) is the distance from q to the origin
and ϕ(q) is the angle from the positive axis +x to the ray through q with apex at the origin.

For every value α in the interval [0, π] we define a function g as follows:

g(α) = |{q ∈ S | ϕ(q) < α}| − |{pi | ϕ(pi) < α, 1 ≤ i < n}|.

Therefore, in particular,

g(ϕ(p1)) =0− 0 = 0;
g(ϕ(pn−1)) =(n− 1)− (n− 2) = 1;

g(ϕ(pi)) =|{q ∈ S | q is in the interior of the polygon with vertices pn, p1, . . . , pi}| − (i− 1).

Let j be the smallest index such that j > 1 and g(ϕ(pj)) ≥ 0; such an index must exist because
g(ϕ(pn−1)) = 1. Several cases arise.

Case 1: g(ϕ(pj)) = 0. In this case the number of points from S inside the polygon pnp1 . . . pjpn is
exactly j − 1 and we have g(ϕ(pi)) < 0 for all the values of i such that 1 < i < j, see Figure 4. The
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Figure 4: First step in Case 1.

polygon P̂ = pnpjpj+1 . . . pn−1pn has n− j +1 vertices; let Ŝ be the set of points of S that are interior
to P̂ . Since |Ŝ| = (n− 1)− (j − 1) = n− j < n− 1, we can apply induction to the polygon P̂ and the
point set Ŝ and obtain a convex partitioning Π of P̂ ; let Q ∈ Π be the pocket of P̂ whose lid is pnpj .
Let Qj−1 be the convex polygon obtained by the union of polygons Q and pnp1p2 . . . pjpn; note that
Qj−1 contains exactly j − 1 points from S, namely the set Sj−1 = S \ Ŝ.

Let us consider a moving point t that travels counterclockwise on the boundary of Qj−1, starting
at pj . Before t reaches pn some point q ∈ S must be meet by the segment pj−1t, otherwise we would
have j − 1 points of S inside pnp1 . . . pj−1pn and then g(ϕ(pj−1)) > 0, contradicting the choice of j.

We add the chord of Qj−1 through pj−1 and q to the decomposition of P that we are constructing
and remove from Qj−1 the region swept by pj−1t until q was found; in this way we obtain a new convex
polygon Qj−2 that contains exactly j−2 points from S in its interior, namely the set Sj−2 = Sj−1\{q}
(Figure 5, left ). We repeat the preceding construction by sweeping with a chord of Qj−2 having one
endpoint anchored at pj−2 and so on, until the claimed decomposition of P is completed (Figure 5,
right).

Case 2: g(ϕ(pj)) > 0. In this case the number of points from S inside the polygon pnp1 . . . pjpn is at
least j and we have g(ϕ(pi)) < 0 for all the values of i such that 1 < i < j.
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Figure 5: Iterative step and final construction for Case 1.

Let y1 and y2 be the number of points of S in the interior of the polygons pnp1p2 . . . pj−1pn and
pnpjpj+1 . . . pn−1pn, respectively. From the preceding observations we see that y1 ≤ j − 2 and that
(n− 1)− y2 ≥ j; i.e., y2 ≤ n− 1− j.

If we define the numbers

x1 = j − 2− y1, x2 = n− 1− j − y2,

we see that the number x of points from S interior to the triangle pnpj−1pj is

x = (n− 1)− (y1 + y2) = (n− 1) + (x1 − j + 2) + (x2 − n + 1 + j) = x1 + x2 + 2 ≥ 2.

p
1

p
j-1

p
j+1

p
j-2

Q
j-2

Q
j+1

p
j

p
2

p
n-1

p
n

q

Figure 6: First step for Case 2.

Therefore, we can apply Lemma 2.2 to the triangle pnpj−1pj with the numbers x1 and x2 associated
to the sides pnpj−1 and pnpj , respectively. Let q be the point such that the segments qpn, qpj−1 and
qpj split the triangle as in Lemma 2.2.

Let Qj−2 be the convex polygon obtained as union of the triangle pnpj−1q and the polygon
pnp1p2 . . . pj−1pn; let Qj+1 be the convex polygon obtained as union of the triangle pnqpj and the
polygon pnpjpj+1 . . . pn−1pn (Figure 6). Three subcases arise, that we describe separately; in all of
them the segments qpn, qpj−1 and qpj are used for the decomposition of P .

Subcase 2.1: The union of the segments qpn, qpj−1 and qpj covers two points from S and the triangles
qpnpj−1 and qpjpn contain x1 and x2 points from S, respectively, in their interior.

Let Sj−2 and Sj+1 be the set of points interior to Qj−2 and Qj+1, respectively. We have |Sj−2| =
x1 + y1 = j − 2 and |Sj+1| = x2 + y2 = n− 1− j (Figure 7, left).

For the decomposition of Qj−2 we consider a segment with an endpoint at pj−2 and the other one
at a moving point t that travels counterclockwise on the boundary of Qj−2, with starting position
t = pj−1; a point from S must be found by the sweeping chord before t reaches pn, and we proceed as
in the proof of Case 1 achieving the decomposition of Qj−2(Figure 7, right).
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Figure 7: Initial situation in Subcase 2.1 and decomposition of Qj−2.

For the decomposition of Qj+1 we consider a segment with an endpoint at pj+1 and the other one
at a moving point t that travels clockwise on the boundary of Qj+1, with starting position t = pj . If
some point of Sj+1 is found before t reaches pn, we cut off the swept area and iterate as in the previous
situation; if this keeps happening we arrive at the decomposition of Figure 8, left.
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Figure 8: Decomposition of Qj+1 in Subcase 2.1.

If t reaches pn and no point from Sj+1 has been encountered, all points from Sj+1 must lie in the
interior of the polygon P̂ = pnpj+1pj+2 . . . pn−1pn; this polygon has n − j = |Sj+1| + 1 vertices and
hence we can apply induction to P̂ and Sj+1. In a final step, we obtain the overall decomposition of
P by taking as a pocket with lid the edge pjpj+1 the union of the triangles pnqpj and pjpj+1pn with
the pocket corresponding to pnpj+1 in the decomposition of P̂ (Figure 8, right).
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Figure 9: Subcases 2.2 and 2.3.

Subcase 2.2: Each one of the segments qpn, qpj−1 and qpj covers one point from S and the triangles
qpnpj−1 and qpjpn contain x1 − 1 and x2 points from S, respectively, in their interior.

Let Sj−2 be the set of points of S interior to Qj−2 together with the point from S covered by the
segment qpn, and let Sj+1 be the set of points of S interior to Qj+1 (Figure 9, left). We again have
|Sj−2| = (x1 − 1) + y1 + 1 = j − 2 and |Sj+1| = x2 + y2 = n− 1− j and continue with the sets Sj−2

and Sj+1 as in Subcase 2.1 .



Subcase 2.3: Each one of the segments qpn, qpj−1 and qpj covers one point from S and the triangles
qpnpj−1 and qpjpn contain x1 and x2 − 1 points from S, respectively, in their interior.

Let Sj−2 be the set of points of S interior to Qj−2 and let Sj+1 be the set of points of S interior
to Qj+1 together with the point from S covered by the segment qpn (Figure 9, right). We again have
|Sj−2| = x1 + y1 = j − 2 and |Sj+1| = (x2 − 1) + y2 + 1 = n− 1− j and continue with the sets Sj−2

and Sj+1 as in Subcase 2.1.

3 Main Result

We recall an observation made in [5].

Observation 3.1. Let P be a convex polygon, pipj an edge of P , and S a set of points in the interior
of P . Then there is a simple polygonal starting at pi and ending at pj such that its vertex set is
{pi, pj} ∪ S, see Figure 10.

p
i

p
j

p
i

p
j

Figure 10: The polygonal within a pocket.

We can now prove:

Theorem 3.2. Let R and B be two point sets such that S = R ∪ B is in general position and R is
contained in the interior of Conv(S). Then, if the number of vertices of Conv(S) is k and |R| < k,
there is a blue polygon enclosing all points of R. This result is tight.

Proof. By Theorem 2.1, we can obtain a convex decomposition {P1, . . . , Pk} of Conv(S) such that all
the points in S belong to the boundaries of P1, . . . , Pk. By the previous observation, in each Pi we can
find a polygonal that starts and ends at the vertices of Pi in Conv(S) and contains all the elements of
B in the interior of Pi. Concatenate the polygonal chains thus obtained. It is clear that this way we
obtain a blue polygon that encloses all the elements of R, see Figure 11.

Figure 11: Construction of the enclosing polygonization.



4 Concluding Remarks

The full paper includes some additional results that are omitted from this version due to space limi-
tations. In particular, it is proved that there are sets of points B and R with n and m blue and red
points respectively, R ⊂ Conv(B), such that any blue polygonization encloses m+1

2 elements of R. It
is also shown that using Pick’s theorem one can see that this bound is essentially tight. We refer the
interested reader to the complete article.
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