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Abstract

We study a simple geometric model of transportation facility that consists of two points between
which the travel speed is high. This elementary definition can be used to model shuttle services,
tunnels, bridges, teleportation devices, and moving walkways. Red-blue and unidirectional variants
can also be used to model escalators and elevators. The travel time between a pair of points is
defined as a time distance, in such a way that a customer uses the transportation facility only if
it is helpful. We give algorithms for finding the optimal location of such a transportation facility,
where optimality is defined with respect to the maximum travel time between two points in a given
set.

1 Introduction

Facility location is an old, well-studied topic in computational geometry. One of the simplest example
of facility location problem is finding the smallest disk covering a given set of points, which can be
done in linear time, or its min-sum counterpart, the Fermat-Weber problem, which is difficult to solve
exactly in usual models of computation. Surveys on both combinatorial and geometric facility location
problems can be found in [16, 9, 10, 15].

The optimality of a location is often defined with respect to a distance measure. Recently, an
interest has emerged in the definition and analysis of time distances, measuring the travel time
between points in the plane given a geometric transportation facility, such as a highway or a geometric
network made of line segments [1, 2, 5, 3, 13]. In general, the transportation facility is a subset of the
plane where the travel speed is high, and the travel time is naturally defined as the minimum time
needed to reach a point. Primary concerns in previous works on these notions include in particular
efficient constructions of the Voronoi diagrams for these distances.

In this work, we consider optimal location of geometric transportation facilities on a line and in
the plane. The transportation facilities we define are probably the simplest one can think about, and
consist of a pair of points between which one can travel faster than anywhere else in the plane. This
simple definition can be used to model for instance moving walkways in airports, shuttle connections
or tunnels in a city. For simplicity, we refer to these as moving walkways. Given a set of points and a
moving walkway, we define the travel time diameter as the maximum travel time between two points
in the set. A moving walkway is said to be optimal if it minimizes the travel time diameter.
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Figure 1: Moving walkways on a line. The travel time between two points is the minimum between a)
the direct distance, b) the travel time using the walkway.

Moving walkways on a line are defined and analyzed in section 2. We first provide an Q(nlogn)
lower bound on the computation of the travel-time diameter for a given walkway in the algebraic
computation tree model. Then we give a simple linear-time algorithm for finding the optimal moving
walkway on a line.

In section 3, we define moving walkways in the plane, and provide an O(nlogn) deterministic
algorithm for the diameter. We show, using Chan’s technique for implicit quasiconvex programs [8],
that this implies an O(nlogn) algorithm for finding an optimal horizontal walkway. We then derive
an algorithm for computing a (1 + ¢)-approximation of an optimal moving walkway with arbitrary
orientation and constant speed in time O(e~!nlogn).

Related works. We are not aware of many previous contributions on the topic of optimal trans-
portation facility location based on time distances.

In [7], we presented a family of geometric optimization problems in which the objective function was
in a min-max-min form. As an example, we proposed the problem of finding the location of a moving
walkway on a line such that the maximum travel time between n given pairs of source-destination
points is minimized. The current paper presents extensions and generalizations of this result.

Recently, an effort has been made by several authors to solve the problem of locating a highway
that minimizes the maximum travel time among a set of points [4]. In this work, a highway is modeled
as a line in the plane on which the travel speed is higher, and customers can enter and exit the highway
at any point on the line. In particular, they give an algorithm for the case where the travel speed
on the highway is infinite, and another algorithm for the case where the highway is restricted to be
vertical. The goal of this work is similar, but the transportation model that we study is different.

2 Moving walkways on a line

Suppose a new moving walkway is to be installed in a long corridor, for instance in the concourse of
an airport. The moving walkway is used by customers to go from source to destination points in the
corridor. We model the corridor as the real line, source and destination points as real numbers, and
the moving walkway by an interval [a,b] on the line. We denote by v > 1 the speed on the moving
walkway, and assume that the speed outside the moving walkway is 1. Customers can only enter the
walkway at point a, step down of it at point b, and always follow the shortest path. This is illustrated
in figure 1.

The travel time between a point s of the line and any other point ¢ > s, given a walkway [a, ], is
a time distance [2, 5], defined as follows:

1
dtime(8,t,a,b) = min{t — s, |s —a| + |t — b| + E(b —a)}.

Note that by assuming ¢t > s we implicitly make the moving walkway bidirectional: for going from ¢
to s, we enter the walkway at point b and exit at point a, which makes the travel time a symmetric
distance function.

We consider the computation of the travel-time diameter and the optimal location of such a moving
walkway.



2.1 Travel time diameter

A first problem is, given a set of points and a walkway [a,b], to compute the travel time diameter,
defined as the maximum travel time between two points of the set.

Problem 1. Given a set P of n real numbers, a real number v > 1, and a pair (a, b) of real numbers,
find maXs tcP:s<t dtime(sa t,a, b)

Theorem 2.1. The travel time diameter for a moving walkway on a line can be computed in O(nlogn)
time.

The proof is omitted. The main point is to remark that computing the travel time diameter for
points in the interval [a, b] amounts to computing the angular diameter of points on a circle, since we
can travel between any pair by following one of two paths, using the walkway or not.

Theorem 2.2. There is an Q(nlogn) lower bound on the computation of the travel time diameter for
a moving walkway on a line in the algebraic computation tree model, even when v = +00.

Proof. The proof of the lower bound is by reduction from the problem of set disjointness, consisting
of checking whether AN B = () for two sets of numbers A and B. It is similar to the proof of the same
lower bound for the problem of computing the Euclidean diameter of a set of points.

We let v = 400, a =0, b = 2 and scale the elements of A and B so that they are all strictly smaller
than 1. We then let P = AU{z+1: 2 € B}. Then the travel diameter of the points in P with respect
to the moving walkway a,b is equal to 1 iff AN B # (). Note that since 1 is an upper bound on the
travel time diameter, the lower bound also holds for the decision version of the problem. O

2.2 Minimum travel time diameter location

We now consider the following moving walkway location problem.

Problem 2. Given a set P of n real numbers, a real number v > 1, find a moving walkway [a, b] of
speed v that minimizes the travel time diameter of P: min, ; max; ¢c p:s<t dtime (8, t, @, b).

There is a very simple deterministic algorithm solving this problem in O(n) time. It is a surprising
observation that we are able to find a moving walkway that minimizes the diameter faster than we
are able to compute the diameter for a given walkway. This observation has already been made for
the construction of optimal vertical highways [4]. We assume w.l.o.g. that min{z € P} = 0 and
max{z € P} =1, and denote by OPT the optimum value min, » max; ¢c p:s<¢t dtime (5, t, a, b).

Lemma 2.3. OPT < 575

Proof. We define a moving walkway by a = (1 — 5-27)/2 = 2% and b = (524 + 1)/2 = 21, To
go from a point p in the range [0,1 — 5;%5] to a point ¢ in the range [5;%7,1], the moving walkway
is used and the diameter is at most 5 >. Otherwise we do not use the moving walkway; for every
pair in [0, 5> ], the time distance is bounded by 5. The same observation holds for every pair in

1 - 55, 1] O

In what follows, we consider that we are given a set of points P and we try to find properties of
its optimal moving walkway [a, b]. Let s be the smallest point in P such that, to go from 0 to s, it is
better to use the moving walkway. We know that s < b, as to go from 0 to any point larger than or
equal to b it is always better to use the moving walkway. Symmetrically, let » be the largest point in
P such that to go from 1 to r, it is better to use the moving walkway; we know that r > a.

Lemma 2.4. Let P be a set of points and [a,b] an optimal moving walkway. The moving walkway is
used only for pairs (p,q) where p € [0,7] and q € [s,1]. For every other pair, the facility is not needed.



Proof. Suppose we have a pair (p,q) in [0,5). As s is the smallest value such that using the moving
walkway improves the distance, we know there is no need to use it to go from 0 to ¢, nor from 0 to p.
So there is no need to use it for going from p to ¢q. The same reasoning holds for pairs in (r, 1]. O

Lemma 2.5. The optimal moving walkway is such that a = 5 and b= %

Proof. We have not proved that all pairs (p,q) with p € [0,7] and q € [s, 1] require the use of the
moving walkway. What we know however is that the moving walkway will be used for the pairs (0, 1),
(0,5) and (r,1). Having a = £ and b = £} minimizes the maximum time distance for these pairs.
Since the distance between these pairs are greater than all other distances using the walkway, this is

optimal. ]

This lemma showed that the optimal moving walkway is uniquely determined by the points r and
s.

Lemma 2.6. The point r is the largest point of P whose value is less than or equal to 1 — 5-%=; s is

2v—1"
the smallest point of P whose value is more than or equal to 5" .

Proof. By Lemma 2.3 and 2.4, note that r <1 — 5" and s > 5", otherwise we would need to use
the moving walkway for the pairs (0,r) or (s,1). By definition of s, to go from 0 to s it is better to
use the moving walkway. This is true when

1 (r l—s) 1—-s5s _ v4+ouor—r+1
+ >
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By definition of s, it is the smallest value in P satisfying the constraint. Whatever the value of
r <1— 5>, the minimum value for s satisfying the constraint is 5> . Symmetrically, for r we have

1 1-— 1-— —s—1
1_T>C+_.<C+(s_r)+ 8)+ 2Sm<u

-2 w 2 2 - Jv—-1

And by definition of r, it is the largest value in P satisfying the constraint, which for all value of
82> gy is 1 — 575 O

Theorem 2.7. Problem 2 can be solved in O(n) deterministic time.

Proof. By Lemma, 2.6, we can find the points r and s of P in linear time. By Lemma, 2.5, the optimal
moving walkway is given by a = 5 and b = str—l O

3 Moving walkways in the plane

In this section, we generalize the previous moving walkway model to the plane. A moving walkway is
defined by two points a and b, and customers can go from a point s to a point ¢ either by going from s
to t directly, or by entering the walkway at one of its endpoint and exiting at the other. The walkway is
parameterized by a real number v so that the time to go from a to b is %d(a, b). The distance measure
d(.,.) used in the definition of the travel time must be convex and satisfy the triangular inequality.
For simplicity we assume it is the Euclidean distance, keeping in mind that all the following can be
generalized to other distance measures. Note that the moving walkways are bidirectional, hence the
travel time is a symmetric distance function:

diimme (5,1, 0,b) = min{d(s, ), d(s, a) + %d(a, b) +d(b, 1), d(s, b) + %d(a, b) + d(t, a)).

We first solve a location problem with n source-destination pairs, under the constraint that the moving
walkway must be horizontal. Then we give an algorithm for computing the travel time diameter for
a given moving walkway (not necessarily horizontal), and from this derive an algorithm for finding
optimal horizontal walkways. We show that this algorithm can be used for obtaining an approximation
algorithm for locating moving walkways with arbitrary orientation. We also outline other restricted
location problems in the plane that we can solve in O(nlogn) time.



3.1 Horizontal moving walkway location for n source-destination pairs

As a preliminary, we consider the problem of minimizing the maximum travel time between a number of
designated source-destination pairs, with the constraint that the moving walkway must be horizontal.
We let (pg,py) denote the 2 and y-coordinates of a point p.

Problem 3. Given n pairs {(s;,%;)}; of points, and a real number v > 1, find a horizon-
tal moving walkway [a*,b*] of speed v minimizing the maximum travel time between a pair:
ming p:q,—b, Max; dgime (84, i, a, b),

The following lemma states that if one travels from left to right, then the moving walkway, if it is
used, will be used from left to right.

Lemma 3.1. Given a pair of points a,b such that ay = b, and a; < by, and a pair of points s,t such
that s, < ty, we have: dyime(s,t,a,b) = min{d(s,t),d(s,a) + 1d(a,b) + d(b,t)}.

Proof. As it is the case on the line, pairs of points s,t for which the walkway is useful are separated
by the bisector of the segment [a,b]. Then we can see that if we use the walkway from b to a, using it
from a to b can only reduce the travel time. O

Lemma 3.2. Problem 3 is LP-type.

Proof. We prove that the functions f;(a,b) = diime(Ss, ti, a,b) are quasiconvex: all the lower level sets
{(a,b) : fi(a,b) < y} for any real number y are convex. From Amenta, Bern and Eppstein [6], this
implies that the problem is LP-type. The domain of these functions is R*, however we only consider
their restriction to the subspace of points a, b such that a, < b, and a, = by, for which quasiconvexity is
preserved. We also assume, without loss of generality, that s;, < t;,. We define the following function
gi, defined on the same domain as f;: gi(a,b) = d(s;,a) + Ld(a,b) + d(b,t;). This function is convex,
since it is a positively weighted sum of convex functions. Now we have f;(a,b) = min{d(s;,t;), gi(a,b)}.
The value d(s;,t;) does not depend on a and b, and can therefore be considered as a constant. So f;
is defined as the minimum between a constant and a convex function. All the levels of such a function
are necessarily convex. O

LP-type problems are known to be solvable in expected time linear in the number of constraints [17],
which implies that Problem 3 is solvable in O(n) expected time.

Remark 3.3. The restriction on the orientation of the moving walkway is useful in making the travel
time functions f; quasiconvex. If this assumption is lifted, then it is easy to show that the levels of the
functions are not even always connected. There are examples such that when interpolating between
a pair of moving walkways a,b and a',b’, the travel time starts to increase, then decrease afterwards
because the customer uses the walkway in the other direction.

Remark 3.4. In the above proof, we implicitly use the assumption on the computation model that
constant-size subproblems can be solved in constant time. This is a standard assumption, but it can
make the given algorithms difficult to implement in practice.

3.2 Travel time diameter

As a next step toward an algorithm for minimum travel time diameter location, we give an O(nlogn)
time decision procedure for the travel time diameter given a moving walkway (not necessarily hori-
zontal). Note that the travel time diameter for a moving walkway in the plane generalizes the travel
time diameter for a moving walkway on a line, so the O(nlogn) lower bound given in theorem 2.2 still
holds and our algorithm is optimal.

Problem 4. Given a set P of n points, a real number v > 1, and a pair of points a,b, find
max; tep deime(S, t, a, b).



Figure 2: The travel time disk B(s,y).

Lemma 3.5. The decision version of Problem 4 can be solved in optimal O(nlogn) deterministic
time.

Proof. The decision problem is to check, for a given walkway a,b, whether the largest travel time
max, tcp drime (S, t, a, b) between two points of P is not greater than a given value y.

We first observe that the pairs of points s,t € P such that diime(s,t,a,b) < d(s,t) are all separated
by the bisector of the line segment [ab]. If both points are on the same side of the bisector, then it is
always more advantageous to go directly from s to ¢ than to use the walkway. So as a first step, we can
partition the point set in two subsets R = {s € P : d(s,a) < d(s,b)} and B = {t € P: d(t,a) > d(t,b)},
say of red and blue points, according to which side of the bisector the points lie. Then we have :

srgzg}; dtime(s, t,a,b) = max{sr’r;;emlcz d(s,t), srggaé d(s,t), . %i)éB dtime (s, t,a,b)}.

So by first computing, in time O(nlogn), the Euclidean diameter of the red and blue sets, the
travel time diameter problem boils down to computing the red-blue travel time diameter.

The red-blue travel time diameter is not greater than y if and only if each point ¢t € B is contained
in the intersection of the travel time disks of the points in R, where the travel time disk B(s,y) of
s € R is the set of points reachable in time y from s. We observe that for a red-blue pair s € R,t € B,
we have dyime(s, t,a,b) = min{d(s, t),d(s,a) + 1d(a,b) + d(b,t)}, which means that for going from a
red to a blue point, the walkway is used from a to b. So the set B(s,y) for a point s € R is either (see
figure 2) the disk of radius y centered at s if y < d(s,a) + Ld(a,b), or the union of a disk of radius y
centered at s and a disk of radius y — d(s,a) — 2d(a,b) centered at b, otherwise.

To check the intersection condition, we proceed by first sorting the points in R in nondecreasing
order of their distance to a. We denote by s1, s2,. .., 5|g| the points in R, such that d(s1,a) < d(s2,a) <
Lo < d(3|R|,a).

For each point ¢ € B, we identify, in O(log|R|) time, the smallest index ¢ such that Vj > i :
d(sj,a) >y — Ld(a,b) —d(b,t). All the red points s; for j > i are such that we cannot go from s; to ¢
in time less than y by using the walkway. So for all these points, we must be able to reach ¢ directly,
which means that ¢ must lie in the intersection of the Euclidean unit disks with centers s; and radius

Y.

To check the latter condition, we can use a simple point location structure for convex circular
polygons. The difficulty lies in the fact that we must keep a version of the point location structure
for each intersection of the form C; = r]'fi'i B(sj,y) for i = 1,2,...,|R|. This can be achieved for free
using persistent data structures techniques [11].

The point location structure that we use is made of two balanced search trees, one for the upper
boundary of the intersection C;, and another for the lower boundary. These trees allow to compute, in
time logarithmic in the number of vertices of C;, for any value of the z-coordinate, the highest (resp.
lowest) point on the boundary of C; having this z-coordinate. From this, we can check if a point
belongs to C;. We now need a technical lemma.



Lemma 3.6. Consider the intersection I of i unit disks, and an additional, distinct, unit disk B. The
boundary of B intersects the boundary of I in at most two points.

This shows that the number of vertices of C; is O(i) and that the point location data structure
answers queries in time O(log¢) = O(logn). Using the partial-persistence transform [11], the additional
space cost due to persistence is the total number of pointer changes on the structure over a sequence
of operations. Since there are at most two new vertices on the intersection of the disks for each new
value of ¢, the total number of changes is O(|R|). So the persistent data structure uses linear space.

So for each point ¢t € B, we can check in O(logn) time whether ¢ € C; for the computed index 4.
Hence the whole algorithm takes O(nlogn) deterministic time. O

3.3 Minimum travel time diameter location of horizontal moving walkways

Now given our algorithm for computing the travel time diameter and the observation that the location
for n source-destination pairs is LP-type, we are able to solve the minimum diameter location problem,
which is in fact an implicit quasiconvex program.

Problem 5. Given a set P of n points, and a real number v > 1, find a horizontal moving walkway
[a*,b*] of speed v minimizing the travel time diameter of P: min, p.q,=p, Maxs tcp diime (S, 1, a,b).

Theorem 3.7. Problem 5 can be solved in O(nlogn) randomized expected time.

Proof. The result is by using a lemma from Chan [8] for solving some LP-type problems with a large
number of constraints. This lemma states that if an LP-type optimization problem is decomposable
(in some precise sense) and there exists an efficient algorithm for testing a given solution, then the
whole problem can be solved within the same time bounds. This requires to be able to decompose a
set of points P into r groups P;, each of size at most «|P|, such that the set of constraints encoded
by P (the pairs s,t € P) is the union of the corresponding sets for the P;. Here, we can partition
the set P in three equal-sized subsets, say @), R and S. We form the following three groups of points
:PL=QUR,P,=RUS and P; = QU S, each group containing 2n/3 points. We have r = 3 and
a = 2/3. This decomposition is satisfying, because each pair of points is included in at least one group.
Another thing we need is an algorithm for the satisfaction-violation test for a group of constraints.
This corresponds to a decision algorithm for the travel time diameter, which, from the previous lemma,
can run in O(nlogn) time. Hence from Chan’s lemma, the optimization problem can be solved within
the same time bounds, in the randomized expected sense. O

3.4 An approximation algorithm for moving walkway location in the plane

So far we only considered the constrained problem in which the moving walkway must be horizontal.
The unconstrained problem is as follows.

Problem 6. Given a set P of n points and a real number v > 1, find a moving walkway [a*, b*] of
speed v minimizing the travel time diameter of P: min, ; max; icp dime(S,,a,b).

It is easy to verify that the constraints are not LP-type anymore, so we are not able to apply the
previous randomized techniques. We can solve the problem approximately, however, using the following
trick: rotate the set of points in O(1/e) directions, and for each direction solve the constrained version
of the problem. The proof is omitted.

Theorem 3.8. A (1 + ¢)-approzimate solution for problem 6 can be found in O(Ynlogn) randomized
expected time.

Remark 3.9. By combining the above trick with a grid technique (see for instance Har-Peled [14]),
we can obtain a location algorithm whose complexity is of the form O(n + poly(e~!,v)). The main
idea is to snap the points in P to a grid of size e ! x ¢!, and work on the point set formed by taking
the centers of all nonempty cells. We can then run the above algorithm for n = O(e~?).



3.5 Escalators and Elevators

The constraint that the walkway must be horizontal is one way among others to make the problem
more tractable by reducing it to an implicit quasiconvex program. We can also simply assume that
the walkway is unidirectional, i.e. we can only travel from a to b, and not from b to a.

If we adopt this convention, however, the travel time diameter is always equal to the Euclidean
diameter, since for a given source-destination pair s, ¢, the moving walkway cannot be useful in both
directions. So we must further assume that for a given pair of points, the travel direction is determined.
We can suppose, for instance, that we always travel from left to right. Note that this does not mean
that we always use the walkway for going from left to right, so the problem is not equivalent to
Problem 6. We can also assume that the point set is partitioned in red and blue subsets, and that we
always travel from a red point to a blue point.

For these two restricted problems with unidirectional walkways (escalators), the quasiconvexity of
the constraints is guaranteed, and the diameter algorithm can be adapted. So we can solve them in
O(nlogn) randomized expected time.

If we restrict the red-blue version further so that the escalator is a single point and all customers
have to use it, then we have a suitable model for an elevator location problem, where the red and blue
sets represent two different floors of a building. In this case, the problem is similar to a point location
problem mentioned by Eppstein ([12], section 3.2), and solvable in linear expected time using Chan’s
trick again.
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