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Abstract

In this paper we present three different results dealing with the number of (≤ k)-facets of a set
of points:

1. We give structural properties of sets in the plane that achieve the optimal lower bound 3
(

k+2
2

)
of (≤ k)-edges for a fixed k ≤ bn/3c − 1;

2. We show that the new lower bound 3
(

k+2
2

)
+ 3

(k−bn
3 c+2

2

)
for the number of (≤ k)-edges of a

planar point set shown in [2] is optimal in the range bn/3c ≤ k ≤ b5n/12c − 1;

3. We show that, for k < n/4 the number of (≤ k)-facets a set of n points in R3 in general
position is at least 4

(
k+3
3

)
, and that this bound is tight in that range.

1 Introduction

In this paper we deal with the problem of giving lower bounds to the number of (≤ k)-facets of a set of
points S: An oriented simplex with vertices at points of S is said to be a j-facet of S if it has exactly j
points in the positive side of its affine hull. Similarly, the simplex is said to be an (≤ k)-facet if it has
at most k points in the positive side of its affine hull.

The number of j-facets of S is denoted by ej(S) and Ek(S) =
∑k

j=0 ej(S) is the number of (≤ k)-
facets (the set S can be omitted if it is clear from the context). Giving bounds on these quantities,
and on the number of the companion concept of k-set, is one of the central problems in Discrete and
Computational Geometry, and has a long history that we will not try to summarize here. Chapter 8.3
in [5] is a complete and up to date survey of results and open problems in the area.

Regarding lower bounds for Ek(S), which is the main topic of this paper, the problem was first
studied by Edelsbrunner et al. [7] due to its connections with the complexity of higher order Voronoi
diagrams. In that paper it was stated that Ek(S) ≥ 3

(
k+2
2

)
and an example was given showing that the

bound is tight if k ≤ bn/3c − 1. Unfortunately, the proof of the bound was not correct and a correct
proof, based on circular sequences, was independently found by Abrego and Fernández-Merchant [1]
and Lovász et al. [8], where the problem was revisited due to its strong connection with the rectilinear
crossing number of the complete graph or, equivalently, with the number of convex quadrilaterals in a
set of points.

This lower bound was slightly improved for k ≥ bn
3 c by Balogh and Salazar in [4], again using

circular sequences. Recently, and based on the observation that it suffices to proof the bound for sets
∗Research on this paper was carried out while the first author was a visiting professor at the Mathematics Department,

University of Alcalá, Spain.
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partially supported by grant MCYT TIC2002-01541.

§Departamento de Matemáticas, Universidad de Alcalá, Spain, david.orden@uah.es. Research partially supported
by grants MTM2005-08618-C02-02 and S-0505/DPI/0235-02.
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with triangular convex hull, we have shown [2] that

Ek(S) ≥ 3
(

k + 2
2

)
+

k∑

j=bn
3 c

(3j − n + 3). (1)

In this paper we deal with three different problems related to lower bounds for Ek(S): In Section 2,
we study structural properties of sets in the plane that achieve the lower bound 3

(
k+2
2

)
for a fixed

k ≤ bn/3c − 1. The main result of this section is that if Ek(S) is minimum for such a k, then Ej(S)
is also minimum for every 0 ≤ j < k. In Section 3 we give a construction which shows that the lower
bound in Equation (1) is optimal in the range bn/3c ≤ k ≤ b5n/12c−1. Finally, in Section 4 we study
the 3-dimensional version of the problem and show that, for k < n/4, the number of (≤ k)-facets of a
set of n points in general position in R3 is at least 4

(
k+3
3

)
, and that this bound is tight in that range.

The proof of this result is based on the fact that, similarly to the planar case, it is sufficient to prove
the lower bound for sets with four vertices in the convex hull.

2 Optimal (≤ k)-set vectors

Let us denote by Ek(S) the set of all (≤ k)-edges of S, that is Ek(S) is the cardinality of Ek(S). We
recall that for fixed k ≤ bn

3 c − 1, Ek(S) optimal means Ek(S) = 3
(
k+2
2

)
. The positive side of a j-edge,

j < n−2
2 , is the open half plane of its supporting line with j vertices of S in it.

Let ∆ be a triangle spanned by three vertices of the convex hull of S. An edge e of ∆ is called good
if the open half plane of its supporting line which contains the third vertex of ∆, contains at least n−2

2
points from S. ∆ is called good if it consists of three good edges.

Lemma 2.1. Any set S of n points contains a good triangle spanned by vertices of its convex hull.

Proof. Let ∆ be an arbitrary triangle spanned by vertices of the convex hull of S. Assume that ∆ is
not good. Then observe that only one edge e of ∆ is not good and let v be the vertex of ∆ not incident
to e. Choose a point v′ of the convex hull of S opposite to v with respect to e. Then e and v′ induce a
triangle ∆′ in which e is a good edge. If ∆′ is a good triangle we are done. Otherwise we iterate this
process. As the subset of vertices of S we consider is strictly decreasing (restricted by the half plane
induced by e), this process terminates with a good triangle.

Lemma 2.2. Let a, b, c ∈ S be the vertices of a good triangle ∆ of S and let S′ = S \ {a, b, c}. Then

Ek(S) ≥ Ek−2(S′) + 3 + 6k.

Proof. Consider an (≤ k−2)-edge e of S′. If e intersects ∆ then it is an (≤ k)-edge of S as it can have
at most two vertices of ∆ on its positive side. If e misses ∆ then it can not have ∆ on its positive side
and it is thus an (≤ k − 2)-edge of S. Thus any edge of Ek−2(S′) also belongs to Ek(S). In addition
there are 2(k + 1) (≤ k)-edges incident to each of the convex hull vertices a, b, and c. At most three
edges might be incident to two of these vertices (the edges of ∆) and the bound follows.

Corollary 2.3. Let a, b, c ∈ S be the vertices of a good triangle of S and let S′ = S \{a, b, c}. If Ek(S)
is optimal then Ek−2(S′) is optimal and Ek(S) = Ek−2(S′) + 3 + 6k.

Proof. From the previous lemma we have 3
(
k+2
2

)
= Ek(S) ≥ Ek−2(S′)+3+6k ≥ 3

(
k
2

)
+3+6k = 3

(
k+2
2

)
.

Thus for both greater-or-equal signs equality holds and therefore Ek−2(S′) has to be optimal.

Theorem 2.4. If Ek(S) = 3
(
k+2
2

)
, then S has a triangular convex hull.
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Figure 1: Left: Each (k−1)-edge of S′ incident to a convex hull vertex of S′ (supporting lines are shown
as dashed lines) has two vertices of ∆ on its positive side. Right: All (k − 2)-edges of S′ (supporting
lines are shown as dotted lines) lie above the (bold) lower envelope.

Proof. We prove the statement by induction over k. For k = 0 nothing has to be proven, so let k = 1
and let h = |CH(S)|. Optimality of E1(S) means E1(S) = 9. We have h 0-edges and at least h
1-edges (two per convex hull vertex, but each edge might be counted twice). Thus E1(S) = 9 ≥ 2h
and therefore h ≤ 4. Assume now h = 4. Then at most two 1-edges can be counted twice, namely the
two diagonals of the convex hull. Thus we have 4 + 8− 2 = 10 (≤ 1)-edges and we conclude that, for
optimal E1(S), S has a triangular convex hull.

For the general case let k ≥ 2 and define ∆ and S′ as in Lemma 2.2. From Corollary 2.3 we know
that Ek−2(S′) is optimal and by induction the convex hull of S′ is a triangle. Moreover, Corollary 2.3
implies that no (k − 1)-edge of S′ can be an (≤ k)-edge of S. Thus any (k − 1)-edge of S′ must have
two vertices of ∆ on its positive side. Consider the six (k− 1)-edges of S′ incident to the three convex
hull vertices of S′, see Figure 1 (left). There the supporting lines of these (k − 1)-edges are drawn as
dashed lines and S′ is depicted as the central triangle. Each cell outside of S′ in the arrangement of
the supporting lines contains a number counting those of the (k− 1)-edges considered which have this
cell on their positive side. A simple counting argument shows that the only way of placing the three
vertices a, b, c of ∆ such that each (k − 1)-edge of S′ drawn has two vertices on its positive side is to
place one in each cell labelled with a 4. We conclude that no vertex of S′ can be on the convex hull of
S and the theorem follows.

Corollary 2.5. If Ek(S) = 3
(
k+2
2

)
, then the outermost dk

2 e layers of S are triangles.

Proof. From the optimality of Ek(S) it follows by Corollary 2.3 that we can iteratively remove the
outermost dk

2 e layers to obtain optimal subsets, which, by Theorem 2.4, have triangular convex hulls.

Lemma 2.6. A j-edge, j ≥ 1, of S either has two vertices of the convex hull of S on its positive side,
or is incident to one of those vertices and has another on its positive side.

Proof. From Corollary 2.3 we have that Ej(S) = Ej−2(S′) + 3 + 6k. Thus an j-edge of S either stems
from a (j − 2)-edge of S′ and then has two vertices of the convex hull of S on its positive side, or it
comes from the 3 + 6k edges incident to a convex hull vertex of S.

Note that we have not proven that all (j−2)-edges of S′ need to be j-edges of S. The above lemma
only states that those which in fact are, have the claimed structure. Anyway, the next result shows
that for optimal Ek(S) all edges have this structure.

Theorem 2.7. Let 0 ≤ k ≤ bn
3 c − 1. If Ek(S) is optimal, then Ej(S), 0 ≤ j ≤ k, is optimal.



Proof. We prove the theorem by induction on k. For k = 0, 1 the theorem is equivalent to Theorem 2.4,
so let k ≥ 2. It is sufficient to show that optimality of Ek(S) implies optimality of Ek−1(S), as the
theorem follows by induction. Similar to Lemma 2.2 we have

Ek−1(S) ≥ Ek−3(S′) + 3 + 6(k − 1) = 3
(

k + 1
2

)
.

The last equality follows from the fact that Ek−2(S′) is optimal by Corollary 2.3 and implies optimality
of Ek−3(S′) by induction. To prove optimality of Ek−1(S) it thus remains to show that no (k−1)-edge
and no (k− 2)-edge of S′ can be an (≤ k− 1)-edge of S. For (k− 1)-edges of S′ this is obviously true,
as they have at least one vertex of the convex hull of S on their positive side.

So let e be an (k − 2)-edge of S′ and let p and q be the vertices of the convex hull of S′ incident
to e or on the positive side of e. The existence of p and q is guaranteed by Lemma 2.6. Without
loss of generality, assume that the edge pq is horizontal with the remaining vertices of S′ above it, see
Figure 1 (right) for the rest of the proof. Let `1 be the (k− 1)-edge of S′ incident to p which has q on
its positive side and `2 the (k − 1)-edge incident to q and having p on its positive side. The boundary
chain is the lower envelope of `1, pq, and `2. We claim that e does not intersect the boundary chain
and lies above it. If e is incident to p or q then the claim is obviously true. Otherwise observe that e
has to intersect the supporting lines of both considered (k− 1)-edges in the interior of S′, as otherwise
there would be too many vertices on the positive side of e. But then again e lies above the boundary
chain and the claim follows.

From the proof of Theorem 2.4 we know that two of the vertices of the convex hull of S have to
lie below our boundary chain (below the (k− 1)-edges, see a and b in Figure 1, right) and thus on the
positive side of e. Therefore e has at least k vertices of S on its positive side and does not belong to
Ek−1(S). We conclude that Ek−1(S) is optimal and the theorem follows.

3 Tightness of the lower bound for (≤ k)-edges in R2

In this section we show a point configuration which proves that the lower bound for Ek(S) given in [2]
is tight for 0 ≤ k ≤ b 5n

12 c − 1. This solves an open conjecture in [2]. Consider the configuration in
Figure 2 (left), which is composed of three rotationally symmetric chains, each one associated to a
convex hull vertex, fulfilling the following properties (where left and right are considered with respect
to the corresponding convex hull vertex):

A B

C

i-edge

k-edge

(5n

12
− 1)-edge

pi

Figure 2: Left: Configuration for which the bound in [2] for Ek(S) is tight. Right: For i ∈ {0, . . . , 2n
12 −

1}, exactly one j-edge appears for each j ∈ {i, . . . , k}.

• The first part of the chain is slightly convex to the right and contains 3n
12 points, with a hole

between the first 2n
12 points (which we call subchain A) and the remaining n

12 points (called
subchain B).

• Each chain is completed with a subchain C, composed of another n
12 points slightly convex to

the left.



pi

i-edge

k-edge

(4n

12
+ (3n

12
− i − 1))-edge

k-edge

3n

12
− i − 1

pi

Figure 3: Left: For i ∈ { 2n
12 , . . . , 3n

12 − 1}, exactly one j-edge appears for each j ∈ {i, . . . , k}. Right:
For i ∈ { 2n

12 , . . . , 3n
12 − 1}, exactly one j-edge appears for each j ∈ { 7n

12 − i− 1, . . . , k}.

• All the lines spanned by two points in A∪B leave to the right the next chain in counterclockwise
order, and to the left both the points in C and those in the remaining chain.

• All the lines spanned by two points in C separate subchains A and B. Furthermore, they leave
to the right both other subchains of type C.

• The triangle defined by the innermost points of chains of type B contains all the chains of type C.

Theorem 3.1. For the point configuration S defined above and n
3 ≤ k ≤ 5n

12 − 1,

Ek(S) = 3
(

k + 2
2

)
+ 3

(
k − n

3 + 2
2

)
.

Proof. Because of the rotational symmetry, we can focus on one of the three chains A ∪ B ∪ C and
let pi be the (i + 1)-th point on that chain. We will count oriented j-edges of type

−→
piq (i.e. with pi on

the tail) for j ≤ k. In order to do so we rotate counterclockwise a ray based on pi, starting from the
one passing through the convex hull vertex of the next chain in counterclockwise order. Three cases
arise, depending on the index i of pi, which correspond to pi lying on one of the three subchains:

(A) For i ∈ {0, . . . , 2n
12 − 1}, exactly one j-edge appears for each j in the range j ∈ {i, . . . , k}, while all

the remaining j-edges
−→
piq in the rotation have j > k since at some point we find a ( 5n

12 − 1)-edge and
after that all the j-edges found have j ≥ 5n

12 > k. See Figure 2 (right).

(B) For i ∈ { 2n
12 , . . . , 3n

12 − 1}, exactly one j-edge appears for each j in the ranges j ∈ {i, . . . , k}
and j ∈ { 7n

12 − i − 1, . . . , k}, while all the remaining j-edges
−→
piq in the rotation have j > k. See

Figure 3.

(C) For i ∈ { 3n
12 , . . . , 4n

12 − 1}, exactly one j-edge appears for each j in the ranges j ∈ {i, . . . , k}
and j ∈ { 8n

12 − i − 1, . . . , k}, while all the remaining j-edges
−→
piq in the rotation have j > k. See

Figure 4.

Let us point out that, depending on the values of k and i, some of the above ranges could actually
be empty. Now we are ready to count the total number of (≤ k)-edges incident to points pi on the
first chain, which is:

2n
12−1∑

i=0

(k − i + 1) +

3n
12−1∑

i= 2n
12

(k − i + 1) +

4n
12−1∑

i= 3n
12

(k − i + 1) +

3n
12−1∑

i= 2n
12

(k − 7n

12
+ i + 2) +

4n
12−1∑

i= 3n
12

(k − 8n

12
+ i + 2),

where the first three summands come from the first ranges of the three cases above, while the two
remaining summands come from the second ranges in cases (B) and (C). Merging the first three
summands and rewriting the two latter ones, the above sum equals
4n
12−1∑

i=0

(k− i + 1) +

4n
12∑

i= 5n
12−1

(k− i + 1) +

4n
12∑

i= 5n
12−1

(k− i + 1) =
k+1∑

j=1

j +
k− 4n

12 +1∑

j=1

j =
(

k + 2
2

)
+

(
k − n

3 + 2
2

)
,



pi

(4n

12
+ (4n

12
− i − 1))-edge

k-edge

pi

i-edge

k-edge

Figure 4: Left: For i ∈ { 3n
12 , . . . , 4n

12 − 1}, exactly one j-edge appears for each j ∈ {i, . . . , k}.
Right:For i ∈ { 3n

12 , . . . , 4n
12 − 1}, exactly one j-edge appears for each j ∈ { 8n

12 − i− 1, . . . , k}.

where the first equality comes from neglecting the negative summands, due to the above mentioned
empty ranges, and merging the first two sums. This result has to be multiplied by the three chains of
the configuration, so we get

Ek(S) = 3
(

k + 2
2

)
+ 3

(
k − n

3 + 2
2

)
,

which matches the lower bound stated in [2].

4 A lower bound for (≤ k)-facets in R3

Throughout this section, S ⊂ R3 will be a set of n points in general position. Given p, q, r ∈ S, we
say that the triangle pqr is a j-facet of S if the plane containing it partitions S into two subsets with
cardinality j and n− 3− j (we consider unoriented j-facets and, therefore, j ≤ n−3

2 ).

Let us recall that ek(S) and Ek(S) denote, respectively, the number of k-facets and the number of
(≤ k)-facets of S. The main result of this section is a lower bound for the number of (≤ k)-facets of a
set of n points in general position in R3 in the range 0 ≤ k ≤ bn

4 c − 1.

Motivated by the standard definition of convex position, we say that a set of points is in simplicial
position if its convex hull is a simplex. Our first step is showing that sets minimizing the number of
(≤ k)-facets (for 0 ≤ k ≤ bn

4 c − 1) are in simplicial position. We use continuous motion and study
the events when the number of j-facets changes. These events, called mutations, have been previously
considered by Andrzejak et al. [3]: p1 is moving in a continuous way and a mutation occurs when p1

becomes coplanar with three other points, p2, p3, and p4 in such a way that the orientation of the
4-tuple changes at that instant. We assume that no other 4-tuple of points changes its orientation
during this process (see [3] for a more formal definition).

There are two types of mutations in R3: when points involved in the mutation are coplanar, they
can be in convex position or not. The first type of mutation is called a convex mutation and the second
one a mutation through triangle (see Figure 5). We denote by M(p1, p2, p3, p4) the mutation involving
points p1, p2, p3, and p4. If M is a mutation through triangle, we assume that p1 crosses the triangle
p2p3p4 during the mutation. We denote by −M the mutation opposite to M .

Given j ≤ n−4
2 , we say that the mutation M(p1, p2, p3, p4) has index j if there are j points of S

(besides p1) in the halfspace defined by p2p3p4 and containing p1. Observe that if j < n−4
2 , then

p2p3p4 is a (j + 1)-facet and p1 is contained in its defining halfspace, while if j = n−4
2 then p2p3p4 is

a n−4
2 -facet, both before and after the mutation (p1 is not contained in its defining halfspace).

The changes in the j-facet vector produced during a mutation have been previously considered
in [3]. In the next lemma we state the result for future reference.

Lemma 4.1 ([3]). Let S′ be the set obtained from S after a mutation M with index j. Then:
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p3

p4
p1
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Figure 5: Convex mutation (left) and mutation through triangle (right).

a) If M is a convex mutation, then ek(S′) = ek(S) for all 0 ≤ k ≤ n−3
2 .

b) If M is a mutation through triangle then: If j = n−4
2 then ek(S′) = ek(S) for all 0 ≤ k ≤ n−3

2 .
If j < n−4

2 then ej(S′) = ej(S) − 2, ej+1(S′) = ej+1(S) + 2 and ek(S′) = ek(S) for the rest of
the indices.

In order to show that a set of points can be continuously transformed to simplicial position while
decreasing the vector of (≤ k)-facets we need the concept of centerpoint (see [6]). Because we need a
set of centerpoints with non-empty interior, we relax the standard definition a little bit: We say that
a point c ∈ R3 is a centerpoint of S if every closed halfspace containing c contains at least bn

4 c points
of S .

Lemma 4.2. Let S be a set of points in general position. The set of centerpoints is a polyhedron with
non-empty interior.

Proof. It is not hard to see that the set of centerpoints can be obtained as the intersection of closed
halfspaces containing d 3n

4 e+1 points of S and having 3 points of S in its bounding plane. Now, it can
be checked that the intersection is not a point (if four such halfspaces had only a point in common,
taking complements easily leads to a contradiction) and that it is not contained in a line (this would
contradict the result for centerpoints in dimension 2 for the set obtained by projecting perpendicularly
to that line). Finally, if the intersection is contained in a plane h, there are d 3n

4 e+ 1 points in each of
the closed halfspaces bounded by h, and this is only possible if n ≤ 2.

Theorem 4.3. Let S be a set of n points with h > 4 extreme points. There exists a set S1 of n points
in simplicial position and such that Ek(S1) ≤ Ek(S) for every 0 ≤ k < n

4 .

Proof. Using Lemma 4.2, we can choose a centerpoint c in the interior of a tetrahedron T whose
vertices are extremal points of S. If the convex hull of S has more than four vertices, there exists an
extreme point s outside T . Let pqr be the face of T intersected by segment cs. Now, we move points p,
q, and r along the rays cp, cq, and cr, respectively. Clearly, in this way the number of extreme points
is reduced, so we only have to study how the number of j-facets changes.

We know that the number of j-facets does not change during a convex mutation, so we only have
to consider mutations through triangle when we move an extreme point p along the ray cp. Because p
is an extreme point, without loss of generality we can consider a mutation M(u, p, v, w) where points c
and u are separated by the plane defined by pvw.

If c is contained in the defining side of pvw before the mutation, then the mutation −M has index
at least n

4 and therefore the vector Ek(S) does not change for k < n
4 .

On the other hand, if c is not contained in the defining side of pvw and M has index j, according
to Lemma 4.1 it follows that if j = n−4

2 the vector Ek(S) does not change, while for j < n−4
2 we have

that Ej(S) decreases by two and Ek(S) does not change for k 6= j.

We are now ready for the main result of this section.

Theorem 4.4. Let S be a set of n points in R3 in general position. If k < n
4 , the number of (≤ k)-facets

of S is at least 4
(

k + 3
3

)
. Furthermore, this bound is tight.



Proof. The proof uses induction on n. From Theorem 4.3, we can assume that S is in simplicial
position. Let C = {p, q, r, s} be the set of vertices of conv(S) and let S′ = S r C.

Let Ej
k be the number of (≤ k)-facets of S adjacent to exactly j vertices of conv(S). Clearly, for

j = 3, we have four 0-facets (the faces of conv(S)). For j = 0, observe that a (≤ k)-facet of S′ is an
(≤ k + 3)-facet of S. Therefore, using induction we have that that, E0

k ≥ 4
(
k−3+3

3

)
= 4

(
k
3

)
.

For j = 2, consider the edge pq. We can rotate the plane defined by pqr around pq and through
the set: when the movement has just started, the plane separates r from the rest of points of S. If
uj is the jth point found in this way (and j ≤ n−3

2 ), then pquj is a j-facet of S. We can repeat the
process starting from the plane defined by pqs and, therefore, there are exactly 2k (≤ k)-facets of S
adjacent to pq. Because the j-facets obtained when we repeat this process for the rest of the edges of
the convex hull are different, we have that E2

k = 12k.

Finally, let us consider the case j = 1. Let π be the plane passing through qrs and let S′π be the
set obtained by projecting S′ from p to π. We observe that if ` is a j-edge of S′π, the plane passing
through ` and p defines an (≤ j + 2)-facet of S. Because the number of (≤ k)-edges of a set of points
in the plane is at least 3

(
k+2
2

)
(see [1, 8]), the number of (≤ k)-facets of S adjacent to p (and no other

extreme point) is at least 3
(
k
2

)
. Then, E1

k = 12
(
k
2

)
. Therefore, we obtain

Ek(S) =
3∑

i=0

Ei
k(S) ≥ 4 + 12k + 12

(
k

2

)
+ 4

(
k

3

)
= 4

(
k + 3

3

)

The example in [7] showing that the bound 3
(
k+2
2

)
is tight for k ≤ bn

3 c − 1 in the planar case can
be easily extended to R3, showing the tightness of the bound.
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