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Abstract

We propose a framework that combines Delaunay refinement and improvement techniques
for generating a refined Delaunay quality mesh of a Planar Straight Line Graph domain. Our
algorithms achieve quality mesh by moving and inserting Steiner points from or into the mesh,
combining the Delaunay criterion with different area-based criteria.

1 Introduction

The discretization of a continuous planar domain is an essential step in numerical simulation of physical
and engineering problems where numerical methods, such as the finite element method, are used. A
triangular mesh is a discretization of the domain into triangles that intersect only at shared edges and
vertices. Each triangle of the mesh must be well shaped in order to achieve the convergence of those
numerical methods.

There are several shape criteria, being the most common the Delaunay criterion, that maximizes
the minimum of the angles of the triangles of the triangulation, ensuring that the angles of each triangle
are neither too small nor too large. Maximizing the minimum area of mesh triangles without taking
into account the angles is not ideal for mesh generation because, in most cases, the resulting mesh can
have many long and skinny triangles. Nevertheless, Surazhsky at ed. in [6] showed that a triangulation
having triangles with areas close to equal has one important property: the distribution of the mesh
vertices is very uniform. For this reason area-based criteria are used for mesh control and improvement.

There exist many works on the generation of a quality triangular mesh for a Planar Straight Line
Graph (PSLG) domain. Delaunay refinement mesh generation algorithms have taken place in this
context [16, 3, 17, 14, 20, 10]. In keeping quality of a mesh two objectives are pursued. First, force
segments of the PSLG into the mesh. Second, get skinny triangles, triangles without the required
quality, out of the mesh. Both goals are achieved by the addition of Steiner points, points that do
not belong to the original mesh. The former objective is carried out by the addition of midpoints
on constrained segments to insert. Meanwhile, dealing with the later goal, several works studied the
problem of where to insert these additional vertices into an existing mesh. Among them, the algorithms
in [16, 3] use circumcenters of poor quality triangles. Recently has been proposed a new algorithm
[20] that inserts specially chosen points, the so-called off-centers. The algorithm generates quality-
guaranteed size-optimal meshes and an experimental study indicates that inserts considerably fewer
Steiner vertices than algorithms which insert circumcenters.

The improvement of a mesh is based on local optimizations that involve the movement of Steiner
vertices and the rearrangement of the triangulation. In the smoothing technique Steiner vertices are
moved to improve the quality of their adjacent elements. The movement of vertices lying on PSLG
segments can be forbidden or restricted to the segment itself. A smoothing algorithm is applied
several times through the entire set of vertices of the mesh. The most simple smoothing technique
is Laplacian smoothing, in which a vertex is moved to the centroid of the vertices to which it is
connected [11], but it has the drawback that an invalid mesh can be produced. In the last years several
smoothing techniques, based on optimization, that avoid the creation of invalid elements and guarantee
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an optimal location had been proposed [1, 15, 18]. Freitag at ed. in [7, 8] proposed a parallel algorithm
based on optimization. In [9] Freitag presents several techniques that combine the low cost Laplacian
smoothing with the optimization-based approach used only for the poorest quality elements. Works
[6, 5] add Steiner points to the mesh until all the triangles achieve some area requirements. A new
method which combines optimization and smoothing techniques in the generation and modification of
Delaunay refined meshes is presented in [2].

In the following we give a simple example to introduce the interesting problem of obtaining an
area bound adding as few Steiner points as possible. Figure 1(a) shows an initial mesh with triangles
whose area is greater than a certain bound. In the middle, 1(b), the result of adding any number of
Steiner points to fulfill the objective of not having any triangle in the mesh with area greater than the
established bound, and in the right, 1(c), a better result with a lower number of Steiner points.

(a) (b) (c)

Figure 1: (a) A Delaunay triangulation of the PSLG composed by a square boundary of 3x3 cm with triangles

with area greater than 1.0 painted in the figure. (b) A Delaunay triangulation with all its triangles with area

less or equal than 2.0. (c) Another Delaunay triangulation which fulfill the two requirements of triangles with

area less or equal than the established bound and fewer Steiner points than that obtained in the previous

figure. algorithm.

In this paper we present a framework that combines the Delaunay criterion with different area-
based criteria, obtaining a trade-off between improving the area-based quality and decreasing the
minimum-angle quality.

2 Preliminaries

A Planar Straight Line Graph (PSLG) is a set of points and segments satisfying two constraints: all
endpoint segments are points in the PSLG, segments may intersect each other only at their endpoints.

A triangulation T is a conforming triangulation of a PSLG, Ω, if each point in Ω corresponds to
a vertex in T , and a segment of Ω is represented by a linear contiguous sequence of edges of T . New
Steiner vertices, not points of Ω, may appear, and each segment of Ω may have been subdivided into
shorter edges by these additional vertices. Flipping these edges is forbidden, then they are marked as
locked. In a conforming Delaunay triangulation of a PSLG, the Steiner vertices are added so that the
Delaunay property is maintained.

The star of a vertex q, Sq, of a triangulation T consists of all the triangles of T that contain q. The
link of q, Lq, is the polygon determined by the set of edges of the triangles in Sq that are not incident
to q. Since the average degree of a node in a planar graph is less than six [3], the average number of
triangles of Sq or the average number of edges of Lq, is at most six.

Given an edge e ∈ Lq, whose endpoints are e1 and e2, we use the following notation (see Figure 2):

• Hq,e is the open half-plane determined by e and containing the vertex q.

• tq,e is the triangle with vertices e1, e2 and q.

• t′q,e is the adjacent triangle to tq,e by e.

• cq,e is the circumcircle of t′q,e.

• aq,e is the arc cq,e ∩Hq,e. We will say that cq,e is the supporting circle of aq,e.



• Aq,e is the area of a triangle tq,e.

A triangle tq,e having area Aq,e greater than α, for certain fixed α, is called a bad triangle.
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Figure 2: Notation used in the definitions.

The kernel of Lq, denoted by ker(Lq), is the set of all points p ∈ Lq, such that for every vertex v

of Lq, the segment vp is within Lq. It can be proved that ker(Lq) =
⋂

e∈Lq

Hq,e.

The Delaunay zone of an edge e ∈ Lq, denoted Dq,e, is the set of points of Hq,e external to cq,e

(see Figure 2). The external Delaunay zone of a vertex q is the set EDq =
⋂

e∈Lq

Dq,e. The external

Delaunay zone of a vertex is an open non-convex set included in ker(Lq) and, as exhibited in Figure
3(a), may be constituted by several non-connected components.

Let CLq be the convex vertices of Lq. The Delaunay zone of a vertex u ∈ CLq , denoted Dq,u, is the
interior of the circle determined by u and its adjacent vertices in Lq. The internal Delaunay zone of
a vertex q is the convex set IDq =

⋂

u∈CLq

Dq,u (see Figure 3(b)).

The Delaunay zone of a vertex q is the set Dq = EDq ∩IDq (see Figure 3(c)). The boundary of Dq

will be denoted by Dq. If we replace q by a point p ∈ Dq then Lp = Lq and the set of triangles {tq,e}
is substituted by the set {tp,e}.

q q q

(a) (b) (c)

Figure 3: (a) External Delaunay zone. (b) Internal Delaunay zone. (c) Delaunay zone.

2.1 Incremental Delaunay algorithm

There exists three types of algorithms for constructing Delaunay triangulations, namely, divide-and-
conquer, sweepline and incremental. We concentrate our attention in the latter ones.



Incremental algorithms add vertices one by one and update the triangulation after each vertex is
added maintaining the Delaunay property. The original algorithm, developed by Lawson [4], is based
upon edge flips. There are incremental algorithms due to Bowyer [1] and Watson [7] that do not use
edge flips. In Lawson’s algorithm, when a vertex is inserted, the triangle that contains it is found,
and three new edges are inserted to attach the new vertex to the vertices of the containing triangle.
If the new vertex falls upon an edge of the triangulation, that edge is deleted, and four new edges
are inserted to attach the new vertex to the vertices of the containing quadrilateral. Next, a recursive
procedure tests whether the new vertex lies within the circumcircles of any neighboring triangles, each
affirmative test triggering an edge flip that removes a locally non-Delaunay edge. Each edge flip reveals
two additional edges that must be tested.

2.2 Lower and upper envelopes of a set of planes

Let Π a set of non-vertical planes. The lower envelope, LEΠ, of the set of planes Π is the polyhedral
surface that bounds the “lowermost” unbounded cell of the arrangement defined by the planes of Π. If
we regard each plane π ∈ Π as the graph of a linear function π(p), where p is a point of the XY -plane,
the lower envelope LEΠ is the graph of the piecewise concave function:

LEΠ(p) = min
π∈Π

{π(p)}.

The upper envelope, UEΠ, of the set of planes Π is the polyhedral surface that bounds the “upper-
most” unbounded cell of the arrangement defined by the planes of Π. The upper envelope UEΠ is the
graph of the piecewise convex function:

UEΠ(p) = max
π∈Π

{π(p)}.

The set of vertices of LEΠ and UEΠ are denoted VLEΠ and VUEΠ , and their projection onto the
XY -plane V LEΠ and V UEΠ , respectively.

We denote UEΠ − LEΠ the graph of the piecewise convex function UEΠ(p) − LEΠ(p). The set of
projections of the vertices of UEΠ − LEΠ onto the XY -plane is V LEΠ ∪ V UEΠ .

The polyhedral surfaces LEΠ, UEΠ and UEΠ −LEΠ have O(n) complexity and can be obtained in
O(n log n) time, where n is the number of planes of Π.

3 Finding a point optimizing a star

Let T be a Delaunay refined triangulation of a PSLG. Consider a vertex q of T . We are interested in
replacing the point q by a point p̃ ∈ Dq, to assure Lp = Lq, such that optimizes diverse criteria related
to the area of the triangles of the star Sq.

3.1 Problem transformation

From now on we identify R2 with the xy-plane of R3 so that the point (x, y) ∈ R2 becomes the point
(x, y, 0) ∈ R3. We also assume that the triangulation T is located on the xy-plane and that the edges
of any star Sq are ordered counterclockwise.

If the coordinates of the endpoints of and edge e of Lq are e1 = (e11, e12, 0) and e2 = (e21, e22, 0),
then for any point p = (p1, p2, 0) ∈ Sq we have:

Ap,e =
1
2

∣∣∣∣
e21 − e11 p1 − e11

e22 − e12 p2 − e12

∣∣∣∣ . (1)

Consequently, the area Ap,e is a linear function of p ∈ Sq, denoted πe(p), whose graph is (a bounded
part) of the plane πe through the segment e with normal vector (−e22 + e12, e21 − e11, 2).



Let Πq be the the set of all planes πe, e ∈ Lq. Then we have:

min
e∈Lq

{Ap,e} = min
πe∈Πq

{πe(p)} = LEΠq
(p) and max

e∈Lq

{Ap,e} = max
πe∈Πq

{πe(p)} = UEΠq
(p). (2)

3.2 Optimization problems

We want to find p̃ ∈ Dq that satisfies one of the following criteria:

• p̃ maximizes the minimum area among the triangles of Sq:

max
p∈Dq

(min
e∈Lq

{Ap,e}) = max
p∈Dq

LEΠq (p). (3)

• p̃ minimizes the difference between the maximum and minimum area among the triangles of Sq:

min
p∈Dq

(max
e∈Lq

Ap,e − min
e∈Lq

Ap,e) = min
p∈Dq

(UEΠq (p)− LEΠq (p)). (4)

3.3 Optimization algorithms

The method to find these points is based on the following properties:

• Any local minimum (maximum) of a convex (concave) function defined on a compact set is also
a global minimum (maximum).

• If a continuous function defined on a compact set does not have any local extremum, their global
extrema lies on its boundary.

• A linear function z = Ax+By +Cz +D defined on a circle of center (c1, c2) and radius r reaches

its maximum on the point
(

c1 +
Ar√

A2 + B2
, c2 +

Br√
A2 + B2

)
and its minimum on the point

(
c1 − Ar√

A2 + B2
, c2 − Br√

A2 + B2

)
.

Our method first finds the local extremum p∗ that optimizes the area of the triangles of Sq. If
p∗ ∈ Dq then p∗ is the optimal solution p̃. Otherwise we find the point p̃ that optimizes the areas of
the star restricted to Dq and we take a point inside Dq close to p as the target point p̃. This process
needs to compute the arcs of Dq and the envelopes LEΠq and UEΠq . Since the computation depends
on the number of edges of Lq whose average number is six, the time needed for the overall method is
constant.

3.3.1 First step

The first step that finds a point p∗ on Sq satisfying one of the two area criteria established is explained
in this subsection.

Finding a point maximizing the minimum area (see Figure 4)

1. Determine Πq.

2. Find LEΠq .

3. Determine V the vertices of LEΠq .

4. Let p∗ be the vertex in V with the maximum height.

Finding a point minimizing the difference between areas (see Figure 5)

1. Determine Πq.



2. Find LEΠq and UEΠq .

3. Determine VLE , VUE , V LEΠq
and V UEΠq

.

4. Determine V = {(p1, p2,LEΠq
(p)− UEΠq

(p)) | (p1, p2) ∈ V LEΠq
∪ V UEΠq

}.
5. Let p∗ be the vertex of V with the minimum height.
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Figure 4: First step in finding a point maxi-
mizing the minimum area.
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Figure 5: First step in finding a point minimiz-
ing the difference between areas.

3.3.2 Second step

The second step finds a point p̃ on Dq (see Figure 6). Let F be the set of the projected faces of the
polyhedral surface considered (LE or UE −LE). The point p̃ is found by applying the following steps:

1. Compute the arcs ai of Dq.

2. Split each arc ai in subarcs aij according to the faces of F intersected by ai (see Figure 6(a)).

3. For each subarc aij compute the global extremum point pij of the linear function associated to
the face intersected by aij (see Figure 6(b)).

4. Let p be the point pij that optimizes the criterion considered and p̃ be a point inside Dq close to
p (see Figure 6(c)).
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Figure 6: Second step in finding a point into the Delaunay zone.



4 Movement of Steiner points

Movement of Steiner points is the basic operation used by our improvement process. Steiner points
to be treated by the process can belong to two main groups. The first group is formed by the Steiner
points located on any segment of the PSLG, and the second group is formed by the remaining Steiner
points. We name restricted vertices the points of the first group, since their movement will be restricted
to the corresponding segment, and free vertices the points of the second group.

4.1 Moving free vertices

The key concept regarding the movement of a free vertex q is to substitute this vertex by the best point
in Sq such that it optimizes the area criterion of the triangles of the star, being α the area quality
requirement of the mesh. In order to do that, we apply the optimizing algorithm explained in the
previous section.

4.2 Moving restricted vertices

The movement of restricted vertices is constrained over their correspondent subsegments. This kind
of vertices can be present on a boundary subsegment or on a non-boundary subsegment of a PSLG.
Since the optimizing algorithm can easily be adapted in order to guarantee that the vertex p̃ lies on
the subsegment, in both cases we apply the iterative process explained in Section 3.3.

5 Generating a Delaunay refined mesh

The process to generate a refined Delaunay quality mesh of a PSLG considering the area of its triangles
as the quality measure consists of the following steps. First, a conforming Delaunay triangulation of
the PSLG is generated, then the list of bad triangles (area bigger than α) to be removed is obtained,
and finally our improvement method is applied to eliminate those bad triangles. Observe that initially
the list of points to be inserted is empty.

5.1 Improvement process

The improvement process receives as input the list of bad triangles to be removed. The output of
the process is a mesh with the desired quality. The process maintains this list and finishes when it is
empty. To remove a bad triangle, first its vertices are checked for movement, if it is not possible the
midpoint of its longest edge is inserted and moved to an optimal position.

6 Experimental results

We have implemented our algorithms in C++ language and using OpenGL libraries to build an inter-
active interface. Our application takes a triangulated PSLG as input. This initial mesh is refined until
the desired area quality is achieved. In the optimization method we use the freely available software
Qhull [9] to calculate the needed envelopes.

We have run several simulations in order to test our implementation and we have compared these
simulations with meshes generated using Triangle, a freely available software produced by Jonathan
R. Shewchuck [8], which offers the possibility of generating a mesh with a required area quality. We
work results on two PSLGs. The first PSLG is the 3x3 cm square presented in the introduction, and
the second one is composed of a square boundary and a polygonal hole described by 20 points. The
results obtained are presented in Figures 7 and 8. It can be observed in the results obtained that the
number of triangles generated by Triangle are higher than applying our algorithm. Also notice that
the second criterion produce less triangles than the first criterion.

7 Future work

Future work include the study of the deletion of Steiner vertices in order to reduce the number of
triangles while maintaining the area quality. We also are interested in to apply the algorithm developed
when the a Delaunay refined mesh is modified. Modify a mesh means to insert new PSLG elements
into the mesh or delete PSLG elements from the mesh.



(a) 287 triangles. (b) 256 triangles. (c) 235 triangles

Figure 7: Results obtained in the generation of a mesh for an area of 0.05. In (a) the result from Tri-
angle, in (b) and (c) applying our algorithm maximizing the minim area and minimizing the difference
between areas, respectively.

(a) Initial mesh. (b) 1147 triangles. (c) 943 triangles.

Figure 8: Results obtained in the generation of a mesh for an area of 0.05. In (a) the initial mesh with
bad triangles painted, in (b) the result from Triangle and in (c) applying our algorithm minimizing
the difference between areas.
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