
Fitting by monotone orthogonal chains

J.M. Dı́az-Báñez∗ M. A. López† H. Pérez-Roses‡ C. Seara§ I. Ventura¶

Abstract

In this paper, we study the problem of fitting a point set by a monotone orthogonal polygonal
chain, i.e., a chain consisting of few consecutive orthogonal line segments, and finding the best
direction for that fitting. We also extend the problem to the three-dimensional space where the
chain is interpreted as a connected configuration of orthogonal planes.

1 Introduction

Fitting a curve of a certain type to a given set of points in the plane is a fundamental problem in
many fields as statistics, computer graphics, or artificial intelligence. A special case is the so called the
polygonal approximation or the polygonal fitting problem, where a polygonal chain with k corners or
joints is fitted to a data set. The best configuration is the polygonal chain which minimize the error
of approximation. In many applications, the error is defined as the maximum vertical distance of any
input point from the polygonal chain (called the Chebyshev error). The following problem has been
widely studied.

Min-Max problem: Given k, find an approximating polygonal curve minimizing the error among
those with a corner number not greater than k.

The Min-Max problem with the vertical distance was first posed in [11]. They gave a O(n2logn)
time algorithm for this problem, and the complexity has been improved to O(n2) [20] and then to
O(n log n) [9]. Notice that these problems are closely related to approximating piecewise linear curves
by more simple ones, in which the input is a polygonal chain with n edges rather than a set of n points.
This question arises in cartography, pattern recognition, and graphic design [16, 5, 7], and has received
much attention in computational geometry [13, 18, 6, 10].

In this paper, we consider the case in which the points are fitted by an monotone orthogonal
polygonal chain with respect to an orientation, that is, a chain of consecutive orthogonal line segments
such that the extreme segments are half lines with the same slope. The case in which the slope is
given, the problem becomes the Min-Max rectilinear fitting problem solved in O(n2 log n) time [8]. See
[19] and [15] for more recent results. In this paper, we focus on fitting orthogonal chains consisting
of few segments and then we address the problem of finding the best direction for fitting a monotone
orthogonal polygonal chain. We also extend the problem to the three-dimensional space where the
chain is interpreted as a connected configuration of orthogonal planes.

We start by introducing some notation. Let S = {p1, p2, . . . , pn} be a set of points in the plane,
where pi = (xi, yi). A k-orthogonal chain O, k ≥ 1, is a chain of 2k−1 consecutive orthogonal segments
(links) such that the extreme segments are in fact half lines with the same slope. The orientation θ of
a k-orthogonal chain is the angle formed by their extreme half lines with the x-axis. Thus, O consists

∗Departamento de Matemática Aplicada II, Universidad de Sevilla, Spain, dbanez@us.es. Partially supported by
grants BFM2003-04062 and MTM2006-03909.

†Department of Computer Science, University of Denver, 2360 South Gaylord Street Denver, CO 80208, USA.
‡Universidad de Oriente, Santiago de Cuba, Cuba.
§Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Spain, carlos.seara@upc.edu. Sup-

ported by projects MEC MTM2006-01267 and DURSI 2005SGR00692.
¶Departamento de Matemáticas, Universidad de Huelva, Spain, iventura@us.es. Partially supported by grants

BFM2003-04062 and MTM2006-03909.

of k segments of slope tan(θ) and k−1 segments of slope tan(θ+ π
2). A k-orthogonal chain is monotone

with respect to a given orientation α if every line with slope tan(α + π
2) intersects the k-orthogonal

chain either in a point or in a segment with orientation α + π
2 (see Figure 1).

(a) (b)

Figure 1: a) A monotone 5-orthogonal chain, b) a monotone 5-non-orthogonal chain.

A k-orthogonal chain is monotone if it is monotone with respect to its orientation. In this paper
we deal with the problem of fitting a monotone k-orthogonal chain O to a set S of n points in the
plane. A monotone k-orthogonal chain O with orientation θ divides the plane into k (at most two
possible infinite) strips with orientation (θ + π

2) (see Figure 1). Fitting O to S is to locate k θ-oriented
segments si(θ), i = 1 . . . , k according to a given optimization criterium. Several reasonable criteria
may come to mind. We consider one of them here. Let li(θ) be the line passing through pi ∈ S with
orientation θ + π

2 . The fitting distance between pi and O, denoted by df (pi,O) is given by

df (pi,O) = min
p∈li(θ)∩O

d(pi, p).

Notice that df is not the Euclidean distance. However, we can assume that this distance is always the
Euclidean distance between pi and a point on a segment with orientation θ. The error tolerance of O
with respect to S, denoted by µ(O, S), is the maximum fitting distance between the points of S and
O, that is,

µ(O, S) = max
pi∈S

df (pi,O).

Definition 1.1. Given a set S of n points in the plane, the k-fitting problem consists on finding a
monotone k-orthogonal chain such that its error tolerance with respect to S is minimized.

Notice that if the orientation θ of the k-orthogonal chain is fixed, for example θ = 0, then the k-
fitting problem consists on finding an x-monotone rectilinear path composed of (2k−1) links (segments)
with minimum error tolerance where the fitting distance is just the vertical distance as in [8].

2 The oriented fitting problem

We consider the problem of fitting a k-orthogonal monotone chain whose extreme half lines have angle
θ. Without loss of generality, we can assume that θ = 0. Thus, we are looking for an x-monotone
rectilinear path formed by the concatenation of k horizontal segments and k− 1 vertical segments. In
a recent paper [15], Mayster and López studied two types of fitting problems for a set S of n points
in the plane: (1) the min-ε fitting problem, where the goal is to minimize the error tolerance ε for a
given number k of horizontal segments (our k-fitting problem, with θ = 0) and (2) the min-# fitting
problem, where the goal is to minimize the number of horizontal segments for a given allowed error
tolerance ε. They solve (1) in O(min{n2, nk log n}) time, and, after linear time preprocessing, they
solve an instance of (2) in O(min{k log n, n}) time.

We are interested in the first problem for small values of k, but where the orientation of the
chain is a free parameter and, therefore, the segments are not necessarily horizontal and vertical.
Nevertheless, in this section we discuss the oriented case, so we assume that the chain is horizontal.
By the results of [15], if k is a constant, the running time is O(n log n). Next we consider the oriented
k-fitting problem of a n point set S for some small values of k ≥ 1. Let ymax = max{y1, y2, . . . , yn},
ymin = min{y1, y2, . . . , yn}, yi

max = max{y1, y2, . . . , yi}, and yi
min = min{y1, y2, . . . , yi}; and a similar

notation for the x-coordinates of the points in S. In linear time we can compute xmax, xmin, ymax, and
ymin. Without loss of generality we assume that all the points in S are located in the first quadrant

of the coordinate system and that xmin = 0, ymin = 0, xmax = c, and ymax = d. In other words, the
rectangle with corners (0, 0) and (c, d) is the bounding box for S.

The oriented 1-fitting problem. The oriented 1-fitting problem corresponds to finding the hori-
zontal line y = (ymax + ymin)/2. Obviously, once we know ymax and ymin, then the optimal line can be
computed in constant time. Thus, the case k = 1 can be trivially solved in linear time.

The oriented 2-fitting problem. The oriented 2-fitting problem consists on finding two half
lines joined by a vertical segment. Next we show a simple O(n log n) time algorithm for this problem.
Assume that S is sorted by abscissas, so that x1 ≤ · · · ≤ xn. Sweeping S from left to right with a
vertical line `, we can update in O(1) time the error tolerance tli = |yi

max−yi
min|, i = 1, . . . , n−1, of the

points of S to the left of `. Store these values in an array Tl. Similarly, we can define tri using the reverse
sequences of the y-coordinates of the points so that we can sweep S from right to left to compute the
error tolerance tri of the points {pi+1, · · · , pn} to the right of the sweep line. Store these values tri in an
array Tr. Max{Tl(i), Tr(i)} provides the cost of splitting the two half lines between pi and pi+1. Thus,
by traversing both arrays simultaneously, we can find the optimal solution min1≤i<n max{Tl(i), Tr(i)}
in linear time.

Next we show a little more sophisticated O(n log n) time algorithm for the same problem which
has the advantage that it can be translated and used later in the unoriented fitting problem. The
algorithm is as follows. First, in linear time we compute ymax, ymin, xmax, and xmin. Also in linear
time we can do a translation of the points to the first quadrant of the coordinate system and, without
loss of generality, we can assume that p1 = (0, y1), pn = (c, yn), pi = (xi, ymax), and pj = (xj , 0) (see
Figure 2). Let ` be the line containing the vertical segment of an optimal solution of the orientated
2-fitting problem which produces a bipartition of S: points on the left of `, and points on the right of
` (see Figure 2).

Lemma 2.1. Line ` separates the points with y-coordinates ymin and ymax.

Assume that the point pi with y-coordinates ymax is on the left of the point pj with y-coordinate
ymin, thus by Lemma 2.1 the line ` lies in between these two points. We also assume that both points
have different x-coordinates because otherwise the solution is trivial. If the point pi with y-coordinates
ymax is on the right of the point pj with y-coordinate ymin, then the algorithm is similar with the
unique change in the step 2 by computing the maxima points with respect to the second quadrant and
the maxima points with respect to the fourth quadrant and join them forming two staircases.

The oriented 2-fitting algorithm

1. In linear time classify the points of S into: S1 points with x-coordinate less than xi, S2 points
with x-coordinate between xi and xj , and S3 points with x-coordinate greater than xj . In O(n)
time compute the point (a1, b1) such that b1 = min{y | (x, y) ∈ S1} and the point (a2, b2) such
that b2 = max{y | (x, y) ∈ S3}.

2. For S2 in O(n log n) time compute the maxima points (see [17]) of S2 ∪{(a2, b2)} with respect to
the first quadrant and the maxima points of S2 ∪ {(a1, b1)} with respect to the third quadrant
and join them forming two staircases as in Figure 2.

..
(0, 0)

p1 = (0, y1)

pn = (c, yn)

pi = (xi, ymax)

y = b1

y = b2

`

S2

pj = (xj , 0)

...............................

...............................

S1

S3

Figure 2: S1, S2, S3, and the maxima points of S2.

3. Now it is clear that the vertical line ` : x = a has to be in between the x-coordinates xi and xj ,
and in order to find the right location of the line ` we can do a binary search over the points
in the two staircases (using their structure) in at most O(log n2) time such that we get the best
balanced to the left and to the right of the line `, that is,

min
xi≤a<xj

a subject to max
xk≤a,(xk,yk)∈S2

{ymax − yk} ≥ max
xm>a,(xm,ym)∈S2

ym (1)

or
min

xi<a≤xj

a subject to max
xk≤a,(xk,yk)∈S2

{ymax − yk} ≤ max
xm>a,(xm,ym)∈S2

ym (2)

For at least one of the two equations (1) or (2) there exists a solution. In the case (1) the error
tolerance of S is given by the points to the left of the line ` and in the case (2) the error tolerance
is given by the points to the right of the line `. With an extra O(1) time we can compute this
error tolerance given by the half of the difference between the bigger and smaller y-coordinates
of the points to the left (or to the right) of the line `.

Theorem 2.2. The oriented 2-fitting problem can be solved in O(n log n) time.

The oriented 3-fitting problem. The above two staircases structure computed in O(n log n) time
(see Figure 2) can be used for the 3-fitting problem as follows. For this problem by Lemma 2.1 at least
one of the two lines has to be in between ymax and ymin. Thus either (1) the two vertical lines are in
between the ymax and ymin (see Figure 3); or (2) only one vertical line is in between the ymax and ymin

and the other is to the left of to the right of ymax or ymin.

..
(0, 0)

p1 = (0, y1)

pn = (c, yn)

pi = (xi, ymax)

S2

pj = (xj , 0)

...............................

...............................

S1

S3

`1`2

Figure 3: The 3-fitting problem.

In the case (1), the vertical line `1 has at most n − 2 possible locations in between the ymax and
ymin, nevertheless notice that the number of possible locations does not depend on the number of
points in S but on the number of points in the staircases which can be smaller than n − 2. Once we
have chosen a position for vertical line `1, then the second vertical line `2 can be found in O(log n)
time by a binary search either in between ymax and `1 or in between `1 and ymin by trying to minimize
the partial values of the tolerance errors just computed and updating the best solution.

In the case (2), once we have fixed the vertical line `1 (at most n−2 possible locations in between the
ymax and ymin, and as above the possible locations depend on the number of points in the staircases),
then either to the right of `1 or to the left of `1 there is only a horizontal segment which can be
computed in O(1) time using the structure in Figure 2 together with its error tolerance. Assume that
the horizontal segment is to the right. Then, we have to find the second vertical line `2 to the left of
`1. It can be found in O(log n) time by a binary search using the structure in O(log n) time trying
to minimize the partial value of the tolerance error we have just computed and updating the best
solution. Thus, in any case the time complexity is O(n log n).

Theorem 2.3. The oriented 3-fitting problem can be solved in O(n log n) time.

Now we would like to extend this procedure to a number k of vertical lines. By Lemma 2.1 there
will be al least one vertical line in between ymax and ymin. The 4-fitting problem can be solved using
the same technique but with more case analysis. The algorithm in [15] solves these problems with
an O(min{n2, nk log n})-time algorithm which is O(n log n) time for k being a constant. Nevertheless
our algorithm is sensitive to the number of points in the staircases, thus if this number is small our
algorithm is faster.

3 The unoriented fitting problem

Now we consider the problem of fitting the point set S by an unoriented k-orthogonal monotone chain
where the orientation θ of the orthogonal polygonal chain is free.

The unoriented 1-fitting problem. The unoriented 1-fitting problem is equivalence to the problem
of computing the width of the set of points S, if we know the width we solve the unoriented 1-fitting
problem and vice versa. The width of a set of points S in the plane can be computed in O(n) using
the rotating caliper technique if we know the convex hull of S (see [12]), otherwise the problem of
computing the width of a set of points in the plane has an Ω(n log n) time lower bound (see [14]).
Therefore the unoriented 1-fitting problem can be solved optimally in Θ(n log n) time

Theorem 3.1. The unoriented 1-fitting problem can be solved optimally in Θ(n log n) time.

The unoriented 2-fitting problem. An optimal solution for the unoriented 2-fitting problem is
determined by a line ` splitting S into two parts and by two pairs of points (one per each part) giving
their partial errors. We denote by Sl (left) and Sr (right) the subsets in which the separating line `
divides S and by eu

l , eb
l (resp. eu

r , eb
r) the points giving the error tolerance in Sl (resp. Sr). Thus,

given a monotone orthogonal 2-polygonal chain O with orientation θ, the error tolerance is

µ(O, S) = max
pi∈S

d(pi,O) = max{dθ(eu
l , eb

l), dθ(eu
r , eb

r)}

where dθ(p, q) denotes the distance between lines through p and q of orientation θ.

We call left and right antipodal-pairs to the points eu
l , eb

l , and eu
r , eu

r , respectively. By shifting the
separating line ` of an optimal orthogonal 3-polygonal chain, we can prove easily the following lemma.

Lemma 3.2. There always exists a fitting by a monotone and orthogonal 3-polygonal chain for S such
that its separating line ` pass through a point of S, furthermore the line ` separates the points with
y-coordinates ymin,θ and ymax,θ for each fixed orientation θ.

We will use Lemma 3.2 to look for an optimal solution. The goal of our approach is to adapt the
O(n log n)-time staircases algorithm shown in Section 2 for the oriented case to the changes of the
orientation of the optimal 3-polygonal chain. The main idea is to maintain the structure formed by
the two staircases (initially formed by horizontal and vertical segments for orientation θ = 0) as we
change the orientation θ of the polygonal chain and deleting and updating points in the staircases
according to the orientation changes. First notice that the two staircases (formed by horizontal and
vertical segments) correspond to the points of S which are π/2-maxima with respect to the orientation
given by the bisector of the first quadrant (one staircase) and the bisector third quadrant (the other
staircase), so the difference of the orientation is 180[3]. The goal is to maintain the a list and the order
of the points of S which are unoriented π/2-maxima for some orientation in θ ∈ S2 and analogously
for the orientation θ + 180, both forming a staircases pair. In the steps of the algorithm we assume
that for the current orientation θ the point with y-coordinate ymax,θ is on the left of the point with
y-coordinate ymin,θ, otherwise we only update the changes in the staircases according to the current
orientation without computing optimal solution. Then we will repeat the algorithm assuming that for
the current orientation the point with y-coordinate ymax,θ is on the right of the point with y-coordinate
ymin,θ, and the algorithm will output the best obtained optimal solution.

Sketch of the unoriented 2-fitting algorithm

1. In O(n log n) time compute the list of the points of S which are unoriented π/2-maxima and the
(at most 3) orientation intervals in S2 where each point is unoriented π/2-maxima. This can
be done with the algorithm from Avis et al. [3]. Consider the set of orientation intervals as an
arrangement of intervals ordered by their endpoints in such a way that we know which unoriented
π/2-maxima points are actives in current sweeping orientation. Notice that the set of endpoints
is linear. We compute the arrangement of intervals such that the starting point corresponds to
the orientation α = π/4, i.e., the algorithm starts from the staircases with horizontal and vertical
segments computing the 3-polygonal chain with orientation θ = 0.

2. In O(n log n) time compute the two (horizontal and vertical) staircases for S and the vertical
line ` corresponding to the optimal solution for θ = 0 which also gives the partition Sl (left)
and Sr (right) and their corresponding antipodal-pairs (eu

l , eb
l), (eu

r , eb
r), which define the error

tolerance of Sl and Sr. While the staircases do not change in any point, the error tolerance is
defined by the same antipodal-pairs (eu

l , eb
l), (eu

r , eb
r). The error tolerance can increase or decrease

according to the functions defined by the distance between two rotating calipers passing through
the antipodal-pairs. Thus in constant time we can compute the optimal error tolerance while no
change is produced.

3. Start the sweeping from left to right and each time that we get an endpoint: either (1) a new
unoriented π/2-maxima point enter in the staircases, or (2) an active unoriented π/2-maxima
point is deleted from the staircases, update all the changes in O(log n) time, including also
the possible changes of the points with minimum and maximum y-coordinates for the current
orientation θ. Since we consider the points in general position, at most two aligned points are
updated at the same time producing a constant number of changes. When a change in the
staircases is produced we have to compute the new line separating ` corresponding to the new
optimal solution which can be computed in O(log n) time. Store and update the information of
the obtained optimal solution.

The Ω(n log n) time lower bound for the unoriented 1-fitting problem implies the Ω(n log n) time
lower for the unoriented 2-fitting problem. Nevertheless we show a concrete reduction for this problem.
We reduce the problem to the MAX-GAP problem for points in the first quadrant of the unit circle
centered at the origin of the coordinates system, which has an Ω(n log n) time lower bound in the
algebraic decision tree model [14]. Let P = {(x1, y1), . . . , (xn, yn)} be an instance of the MAX-GAP
problem. Consider a symmetric copy of points in the third quadrant and a new copy of the overall
circle in other arbitrary position. It is easy to see that the optimal unoriented 2-fitting polygonal chain
defines the maximum gap for P and vice versa, the maximum gap of the points in P defines the best
solution for the unoriented 2-fitting problem.

Theorem 3.3. The unorientated 2-fitting problem can be optimally solved in Θ(n log n) time.

4 The fitting problem in R3

In this section we study the fitting problem in the three-dimensional space, where a polygonal chain
is interpreted as a connected configuration of orthogonal planes.

4.1 The oriented fitting problem in R3

The oriented 1-fitting problem. This problem corresponds to find the width of a set of points in
a given direction, say the z-axis direction, or to find a plane (the splitting plane) with direction given
by the z-axis which split the set S into two subsets of the same minimal width. To solve this problem
we proceed as follows according to how much information we have in order to fix the orientation:

(1) Fixed the orientation of the splitting plane: For example, the orientation is given by the unit
vector (0, 0, 1). We solve this problem in O(n) time by computing the points with maximum and
minimum z-coordinates. The splitting plane is the horizontal plane passing through the mid points of
the vertical distance between those maximum and the minimum points.

(2) Fixed the orientation of a line contained in the splitting plane: For example, a line in the split-
ting plane with orientation given by the unit vector (0, 1, 0)). To solve the problem we project the
points onto the plane y = 0 and compute the convex hull of the projected points in O(n log n) time.
Then we compute the width of this convex hull with a rotating caliper in (n) time. Then, in constant
time, we compute both the mid line ` of the two parallel lines defining this width and its vector direc-
tion −→v` . The desired splitting plane is the plane which contain the line ` and has normal vector the
cross product −→v` × (0, 1, 0). The total running time is O(n log n).

Proposition 4.1. The oriented 1-fitting problem in 3D fixing the orientation of the splitting plane
can be solved in O(n) time and O(n) space. If we only fix the orientation of a line contained in the
splitting plane then the problem can be solved in O(n log n) time and O(n) space.

The oriented 2-fitting problem. This problem is defined by a monotone orthogonal 3-polygonal
chain composed by three orthogonal consecutive planes. We call the separating plane to the plane
giving the bipartition of the point set S and call the supporting planes to the parallel planes giving
the tolerance error in each part of the bipartition of S. Fixing the orientation for the 2-fitting problem
three cases can be considered: (1) fixing the orientation of both the separating plane and the parallel
supported planes; (2) fixing the orientation of the separating plane; and (3) fixing the orientation of
the parallel supporting planes.

(1) Fixed the orientation of both the separating plane and the parallel supported planes. Assume
that the orientation of the separating plane is given by the vector (0, 1, 0) and the orientation of the
parallel supporting planes is given by the vector (0, 0, 1). We project the points in S onto a plane
with vector orientation (1, 0, 0) and solve the problem as the 2D oriented 2-fitting problem in optimal
Θ(n log n) time using Theorem 2.2.

Proposition 4.2. The oriented 2-fitting problem in 3D fixing the orientation of both the separating
plane and the parallel supported planes can be solved in Θ(n log n) time and O(n) space.

(2) Fixed the orientation of the separating plane. Assume that the orientation of the separating
plane is given by the vector (0, 1, 0). Sort the points in S by y-coordinate in O(n log n) time. Let
Si = {p1, . . . , pi} and Sn−i = {pi+1, . . . , pn} be the bipartition of S as the separating plane pass
through pi. In order to compute the two pairs of parallel supporting planes of Si and Sn−i which gives
the optimal solution, we project the points of Si and the points of Sn−i into two planes parallel to
the separating plane with orientation (0, 1, 0). Thus, we work with the convex hulls of the projected
points. Let CH(S′i) and CH(S′n−i) be the respective convex hulls of the projected points. In order
to determine the widths of the corresponding parallel supporting planes, we use two simultaneously
(clockwise) rotating calipers over CH(S′i) and CH(S′n−i). Each step is defined by the minimum
rotating angle of the two calipers on antipodal pairs. Suppose that at some step, the rotating caliper
over CH(S′i) has antipodal points q1 and q2 and the rotating caliper over CH(S′n−i) has antipodal
points q3 and q4 and let α be the angle which define the rotation; let wi (wn−i) be the width function
of CH(S′i) (CH(S′n−i)) and di = d(q1, q2) and dn−i = d(q3, q4), in the interval of rotation of the two
calipers in this step. The width function wi (wn−i) depends on di (dn−i) and cos(α), thus the minimum
of the maximum of the two values wi and wn−i is located either in the extremes of the rotation interval
or in the intersection point of wi and wn−i; both cases can be computed in constant time. Thus, we
only have to compute the widths when this fact occurs (a linear number of times) and maintain the
best solution, which is the one such that the maximum of the two widths is minimum. We can update
CH(S′i) and CH(S′n−i) in O(log n) time when a point Pi changes from Sn−i to Si [4], but it is not
clear how to compute the new widths in O(log n) time. Thus, in each stop we spend linear time to
obtain the optimal solution. The total running time is O(n log n) + O(n)O(n) = O(n2).

(3) Fixed the orientation of the parallel supporting planes. We assume that the separating plane
passes through a point pi of S given a bipartition Si, Sn−i of S, and the supporting planes of Si and
Sn−i are horizontal, i.e., have as normal vector (0, 0, 1). Thus, the separating plane can have any
normal vector in the unit circle of directions S2, i.e., the circle x2 + y2 = 1, so we can say that it is
a vertical plane. Fixed the point pi contained in the separating plane, we start with an orientation
of the separating plane (for example the y-axis orientation) and compute the points located in both
sides of this plane in O(n) time, computing also the points max z and min z on each side of the plane.
Then, we can preform a radial sweep with the rotating vertical plane anchored at pi and each time the
rotating plane bumps a new point we update in constant time max z and min z and store the optimal
one. In order to do this step we need to know the radial order of the points S r {pi} with respect to
pi as they are projected on a horizontal plane z = 0. We can compute this order in O(n) time per
point by reading the order in the dual formed by the arrangement of the lines corresponding to the
projected points. Then we have an overall O(n2)-time algorithm as we spend linear time per point pi.

Theorem 4.3. The oriented 3-fitting problem in 3D fixing the orientation of the separating plane or
fixing the orientation of the four parallel supporting planes can be solved in O(n2) time and O(n) space.

4.2 The unoriented fitting problem in R3

The unoriented 1-fitting problem. The unoriented 1-fitting problem corresponds to find the
orientation of the supporting planes defining the width of S, and therefore the plane just in the middle
of these two planes. The width of S, w(S), is defined as the minimum distance between parallel planes
of support of S. Houle and Toussaint [12] show that w(S) can be computed in O(n log n + I) time
and O(n) space, where I is the number of antipodal pairs of edges of the convex hull of S, and n is
the number of vertices; in the worst case, I = O(n2). For a convex polyhedra the time complexity
becomes O(n + I). Agarwal and Sharir [2] give a randomized algorithm for computing the width of a
point set in 3D which expected running time is O(n3/2+ε), for any ε > 0. Therefore, the unoriented
1-fitting problem can be solved in O(n log n + I) which in the worse case is O(n2) time.

These problems were posed and partially solved during the Third Spanish Workshop on Geometric
Optimization, July 4-8, 2006, El Roćıo, Huelva, Spain. The authors would like to thank the other
workshop participants for helpful comments.

References

[1] P. K. Agarwal, O. Schwarzkopf, and M. Sharir. The overlay of lower envelopes and its applications. Discrete
Computational Geometry, 15, 1996, pp. 1–13.

[2] P. K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric optimization problems.
Discrete and Computational Geometry, Vol. 16, No. 4, 2004, 317–337

[3] D. Avis, B. Beresford-Smith, L. Devroye, H. Elgindy, E. Guvremont, F. Hurtado, and B. Zhu. Unoriented
Θ-maxima in the plane: complexity and algorithms. SIAM Journal of Computing, Vol. 28, No. 1, 1999,
pp. 278–296.

[4] D. Avis, H. Elgindy, and R. Seidel. Simple on-line algorithms for convex polygons. Computational Geom-
etry, G. T. Toussaint, ed., North-Holland, Amsterdam, 1985, pp. 23–42.

[5] P. J. Burt. Fast filter transforms for image processing. Computer Graphics and Image Processing, 16,
(1979), 20–51.

[6] W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line segments or
minimun error. International Journal of Computational Geometry & Applications, 6, (1996), 59–77.

[7] F. Chin, A. Choi, and Y. Luo. Optimal generating kernel for image pyramids by piecewise fitting. IEEE
Trans. Pattern Anal. Machine Intell., 14, (1992), 1190–1198.

[8] J. M. Dı́az-Báñez and J. A. Mesa. Fitting rectilinear polygonal curves to a set of points in the plane.
European Journal of Oper. Research, 130, 1, 214–222, 2001.

[9] M. T. Goodrich. Efficient piecewise-linear function approximation using the uniform metric, Discrete and
Computational Geometry, 14, (1995), 445–462.

[10] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating polygons and
subdivisions with minimum-link paths. International Journal of Computational Geometry & Applications,
3, (1993), 383–415.

[11] S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points in the plane. Graphical
Models and Image Processing, 53, (1991), 132–136.

[12] M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 10, no. 5, pp. 761–765, 1988.

[13] H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. Computational
Morphology. G. T. Toussaint ed., North Holland, 1988.

[14] D. T. Lee and Y. F. Wu. Geometric complexity of some location problems. Algorithmica, 1 (1986) 193–211.

[15] M. A. López and Y. Mayster. Approximating a set of points by a step function. Journal of Visual Com-
munication and Image Representation, (accepted), 2006.

[16] T. Pavlidis. Algorithms for shape analysis of contours and waveforms. IEEE Transation Pattern Analysis
Machine Intelligence, Pami-2, (1980), 301–312.

[17] F. P. Preparata and M. I. Shamos. Computacional Geometry, an Introduction. Springer-Verlag, 1988.

[18] G. T. Toussaint. On the complexity of approximating polygonal curves in the plane. Proc. IASTED,
International Symposium on Robotics and Automation, Lugano, Switzerland, 1985.

[19] D. P. Wang. A new algorithm for fitting a rectilinear x-monotone curve to a set of points in the plane.
Pattern Recognition Letters, vol. 23, no. 1, 329–334(6), 2002.

[20] D. P. Wang, N. F. Huang, H. S. Chao, and R. C. T. Lee. Plane sweep algorithms for polygonal approxi-
mation problems with applications. Lecture Notes in Computer Science, 762, (1993), 515–522.

