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Abstract

Let S be a point set in general position on the plane such that its elements are colored red or
blue. We study the following problem: Remove as few points as possible from S such that the
remaining points can be enclosed by two isothetic rectangles, one containing all the red points, the
other all the blue points, and such that each rectangle contains only points of one color. We prove
that this problem can be solved in O(n2 log n) time and O(n) space. We show how our techniques
can be generalized to solve other variants of the given problem such as the 3-dimensional problem
and the trichromatic problem.

1 Introduction

In Data Mining and Classification problems, a natural method to analyze data, is to select prototypes
representing different classes of data. A standard technique to achieve this, is to perform cluster
analysis on the training data [6, 9]. The clustering can be obtained by using simple geometric shapes
such as circles or boxes. In [1, 7], circles and parallel-axis boxes respectively, are considered for the
selection. In [1], the following problem is studied: given a bicolored point set, find a ball that contains
the maximum number of red points without containing any blue point inside it.

In some cases, as in Medical Data Analysis [8], methods can produce slanted classifications due to
the fact that some data may be defective or contain values out of reasonable ranges. In other cases,
we may obtain data hard to classify due to relatively small similarities between different classes. A
possible way to find a better classification for the former problem is to remove some data-points from
the input. Culling the minimum number of such points can be a suitable criterium to lose as less
information as possible. Thus, in this paper we study the following problem:

Let S be a bi-chromatic point set on the plane in general position such that its elements are colored
red or blue. Remove as few points as possible from S such that the remaining points can be enclosed by
two isothetic rectangles, one containing all the red points, the other all the blue points, and such that
each rectangle contains only points of one color.

Notice that the problem can be stated as follows:

Find the cardinal of the largest subset S′ of S which can be enclosed by two isothetic rectangles R
and B such that: R (resp. B) contains all the red (resp. blue) points of S′ and R (resp. B) contains
no blue (resp. red) points of S′.
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We will refer to this problem as the Empty Intersection Enclosing Boxes problem or the EIEB-
problem for short. For example, the solution to the EIEB-problem for the point set illustrated in
Figure 1 is n− 2 (being n the cardinal of the original set), since by removing the points r1 and b1 we
can obtain two rectangles, R and B, each of them containing only red and blue points, respectively. It
is easy to check that it is not possible to remove only one point in order to improve this number.
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Figure 1: Getting a solution by removing the points r1 and b1.

A first O(n3)-time and space algorithm has been proposed in [5]. The main goal of this paper
consists on proving that this problem can be solved in O(n2 log n) time and O(n) space. We also apply
our technique to solve other variants of the problem.

The outline of this paper is as follows. A simple algorithm to compute a solution in O(n4)-time
and O(n2)-space is first proposed en Section 2. Properties stated for this approach will be used later.
In Section 3 we introduce a data structure, Maximum Consecutive Subsequence Tree, MCS-Tree, to
maintain dynamically the optimal subsequence of the Maximum Consecutive Subsequence Problem. In
Section 4 we present the main algorithm for computing a solution for the EIEB-problem in O(n2 log n)
time and linear space. Section 5 is devoted to reduce the three-dimensional problem to O(n2) instances
of two-dimensional problems. In Section 6 we show how the MCS-Tree can be modified to solve the
trichromatic case by using three boxes.

2 Overview

From now on, an isothetic rectangle enclosing a set of red (resp. blue) points will be called red rectangle,
denoted by R (resp. blue rectangle, denoted by B). To solve our problem, we first observe that given
a bicolored point set S, and two rectangles R and B that provide an optimal solution to the EIEB-
problem for S, there are three types of relative positions of R with respect to B, up to symmetry. These
are depicted in Figure 2 a.) , b.) and c.). Observe that we reject case d.) because it is always possible
to move the left side of R towards the right until we get two disjoint rectangles (R′,B) such that R′
contains as many red points as R\B and that the number of blue points in B is at least the same than
it was (it could even be improved, depending on the existence of blue points in the intersection area).

For any pair of rectangles R and B, not necessarily providing a solution, we call (R,B) a corner type
pair if R overlaps exactly one corner of B; a sandwich type pair if R intersects properly two parallel
sides of B; and a disjoint type pair if R and B can be separated either by a horizontal or a vertical
line. A pair (R,B) is called a corner solution if it is a corner type pair of rectangles that provides an
optimal solution to the EIEB-problem for S. Similarly, we define sandwich and disjoint solutions.
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Figure 2: a.) Corner, b.) sandwich and, c.) disjoint type pairs of rectangles, d.) moving to a disjoint
case.



We now introduce some properties and a first approach to solve a corner solution that can be stated
in a similar way for the other cases as well.

Let (R,B) be a corner type pair of rectangles. This means that for example, R overlaps the topmost
right corner of B (as in Figure 3 a.). We denote by Red(X)(resp. Blue(X)) the red(resp. blue) points
of S that are in the set X. We remark that R and B are considered to be closed sets. We call a pair
(QR,QB) a corner type pair of quadrants if the relative position of QR with respect to QB is as shown
in Figure 3 b.). We will assume that the quadrants include their borders. It easy to prove the following
result:
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Figure 3: a.) A corner type pair of rectangles b.) A corner type pair of quadrants.

Proposition 1. There exists a corner solution (R,B) to the EIEB-problem for a point set S if, and
only if there exists a corner type pair of quadrants (QR,QB) that maximizes the sum |Red(QR\QB)|+
|Blue(QB \ QR)| over all the possible choices of QR and QB.

As a consequence, we will simplify our search by considering corner type pairs of quadrants instead
of rectangles. We then reformulate our problem as follows: find the pair of quadrants (QR,QB) that
maximize the sum |Red(QR \ QB)| + |Blue(QB \ QR)|. We call such a pair (QR,QB) an optimum
corner type pair of quadrants. Next Proposition will lead to a discretization of the problem. We omit
the proof in this version.

Proposition 2. Let (QR,QB) be a corner type pair of quadrants. Then, it is possible to find another
corner type pair (Q̂R, Q̂B) such that Q̂R \ Q̂B (resp. Q̂B \ Q̂R) contains at least |Red(QR \ QB)| red
points (resp. |Blue(QB \QR)| blue points) and the sides of Q̂R (resp. Q̂B) go through red (resp. blue)
points.

Corollary 1. There exists an optimum corner type pair of quadrants (QR,QB) such that the sides of
QR (resp. QB) go through red (resp. blue) points.

As a consequence of the previous results, in the following any quadrant QR (resp. QB) will be
considered to be determined by red (resp. blue) points of S.

We describe a simple method to compute a corner solution in O(n4) time and O(n2) space by
considering all possible corner-type pair of rectangles. For each p ∈ IR2, we denote as SW(p), SE(p),
NW(p)and NE(p) the South-West, South-East, North-West, North-East Quadrants with respect to p
(Figure 4).
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Figure 4: Quadrants with vertex on p.

Consider now the orthogonal grid generated by drawing horizontal and vertical lines through the
elements of S. By using range search techniques [3], it is possible to perform a quadratic preprocessing
on the nodes of the grid and to store the number of red and blue points of S laying in the four quadrants
with vertex in each node.



Let (QR,QB) be a corner type pair of quadrants and denote by I1, I2, I3 and I4 to the vertices
(in clockwise order) of the rectangular overlapped region (see Figure 5).
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Figure 5: Looking for a corner solution in O(n4) time.

Then, |Red(QR \ QB)| = |Red(NE(I1))|+ |Red(NE(I3))| − |Red(NE(I2))| and

|Blue(QB \ QR)| = |Blue(SW (I1))|+ |Blue(SW (I3))| − |Blue(SW (I4))|.
Therefore, obtaining a pair of quadrants (QR,QB) that maximizes the sum |Red(QR \ QB)| +

|Blue(QB \ QR)| can be done in O(n4) time.

Theorem 2.1. A corner solution can be found in O(n4) time, given O(n2) preprocessing time and
space.

3 The Maximum Consecutive Subsequence

In this section we describe the main tool that allows to solve the problem efficiently and, the technique
can be applied to other variants of the problem. The key idea to solve more efficiently the EIEB-
problem is that, for all of the cases, we will reduce our two-dimensional problem to some instances of
the following one-dimensional problem:

Maximum Consecutive Subsequence (MCS): Given a sequence x1, x2, ..., xn and a weight
function w over its elements such that w(xi) ∈ {−1, 0, 1}, compute the subsequence xi, xi+1, ..., xj of
consecutive elements such that w(xi)+w(xi+1)+ . . .+w(xj) is maximized either on the entire sequence
or so that it contains a specific element xk.

Proposition 3. The MCS problem can be solved in linear time.

Proof. The proof is based on the same techniques used to solve Bentley’s Maximum segment sum
problem [2]. It suffices to observe that w(xi)+w(xi+1)+ . . .+w(xj) can be computed as the difference
between the cumulative weight sums of x1, x2, ..., xj and x1, x2, ..., xi−1.

Next, we propose an O(n)-space data structure, the Maximum Consecutive Subsequence Tree, MCS-
Tree, to dynamically maintain the optimal weight sum subsequence of the entire sequence. When the
weight of an element xi is changed, the optimal value is recalculated in O(log n) time. Our structure
also permits to obtain in O(log n) time the optimal weight sum subsequence that includes a specific
element xk. By using MCS-Tree, we shall solve the Empty Intersection Enclosing Boxes problem in
O(n2 log n) time and O(n) space.

3.1 The MCS-Tree

A MCS-Tree is a balanced binary tree with n leaves that represents the sequence x1, x2, ..., xn as
follows: the kth leaf from left to right represents xk and each internal node represents the subsequence
interval corresponding to its leaves (see Figure 6).

Each node N stores the following intervals: I(N): The interval it represents (If N is a leaf repre-
senting xk, I(N) = [xk]); L(N): The non empty interval of maximum weight sum that is a prefix of



x1 x2 x3 x4 x5 x6 x7 x8

A

B

Root

Figure 6: MCS-Tree for a sequence of 8 elements. Nodes A, B and Root represent intervals [x1, x2],
[x5, x6, x7, x8] and [x1, x2, ..., x8] respectively

I(N); R(N): The non empty interval of maximum weight sum that is a suffix of I(N); M(N): The
non empty interval of maximum weight sum that is a subinterval of I(N).

Clearly, we have that I(Root) is [x1, x2, ..., xn] and L(Root), R(Root) and M(Root) are respectively
the intervals of the form [x1, x2, ..., xj ], [xi, xi+1, ..., xn] and [xi, xi+1, ..., xj ] that have maximum weight
sum in the given sequence.

The tree has linear complexity and t he following operators are used for computing MCS-Tree:

• +: returns in O(1) time the join between two contiguous intervals.

• MaxSum{I1, I2, ..., Im}: returns in O(1) time the interval of maximum weight sum between the
intervals I1, I2, ..., Im.

• CreateTree(X): given the sequence X = {x1, x2, ..., xn}, creates in O(n) time a MCS-Tree with
empty data in all its nodes.

• UpdateNode(N): creates(updates) in O(1) time the internal data of node N if it is a leaf or if
the data of its two children have already been created(updated).

• UpdateTree: performs in O(n) time a complete update. It is done by making a bottom-up
procedure from the leaves to the root invoking the operator UpdateNode.

• UpdateLeaf(xk): given an element xk of the sequence in where w(xk) has been changed, performs
UpdateNode at the nodes that are in the unique path from the leaf corresponding to xk, to the
root. It is done in O(log n) time.

• MaxSumInterval: returns M(Root) in O(1) time.

• MaxSumLeftInterval: returns L(Root) in O(1) time.

• MaxSumRightInterval: returns R(Root) in O(1) time.

• MaxSumIntervalContains(xk): computes in O(log n) time the interval of maximum weight
sum that includes xk.

Proposition 4. Given the sequence X = {x1, x2, . . . , xn}, the MCS-Tree can be built in O(n) time
and when some w(xi) is changed, the interval of maximum weight sum of consecutive elements can
be updated in O(log n). The data structure also permits to compute in O(log n) time the interval of
maximum weight sum of consecutive elements that includes a specific element xk

4 Computing a solution in O(n2 log n) time

In this Section, we are ready to solve more efficiently the problem. First, we consider a corner type-
solution and the other cases are considered later. Let (R,B) be a corner type-solution over all the
possible choices of corner type pairs of rectangles.

Consider again the orthogonal grid generated by drawing horizontal and vertical lines through the
elements of the data set S. Suppose that these lines are colored red or blue according to the color of



the point in S they contain. We observe that our problem can be reduced to solve O(n2) instances of
the following problem:

Given a red-blue horizontal strip, that is, two horizontal blue (above) and red (below) lines, we
want to find a red-blue vertical strip, that is, two vertical blue (right) and red (left) lines such that the
corresponding red and blue quadrants are optimum.

By Corollary 1, we assume that the lines pass through points of the corresponding color. The
key idea for our approach is to reduce this two-dimensional problem to the one-dimensional problem
introduced in the above Section, the Maximum Consecutive Subsequence (MCS) problem.

The procedure is as follows. For a starting horizontal strip bounded above by a blue line hb and
below by a red line hr, we will compute in linear time a pair of vertical lines (vr, vb) that provides
a pair of quadrants (QR,QB) maximizing |Red(QR \ QB)| + |Blue(QB \ QR)|, over all the possible
choices of vr and vb. Thus, by using MSC-Tree we can sweep a red horizontal line and update the
solution in O(n log n) time. Finally, by repeating this process for each of the O(n) blue lines, we obtain
the claimed complexity.

Let us give some details. Consider an initial horizontal strip, bounded above by a blue line hb and
below by a red line hr (see Figure 7 a.). Let Hb and Hr be the points onto hb and hr respectively.
Let vb = vr = v0 the vertical line passing through Hb and denote by I1 the intersection point between
vr and hr. Lines hb, hr and v0 divide S into six subsets denoted by S1 S2, S3, S4, S5, and S6 as in
Figure 7. Consider a red quadrant QR0 = NE(I1) and a blue one QB0 = SW (Hb). QR0 and QB0

form a candidate corner solution CS0 (because they have point Hb in common) with assigned value
|Red(QR0 \ QB0)|+ |Blue(QB0 \ QR0)|. In order to improve this solution we move vr to the left and
vb to the right (see Figure 7 b.). When vr is moved to the left, the red points in S1 that are between
vr and v0 will be considered inside CS0 (i.e. the value of CS0 is increased in one for each of them)
and the blue points in S3 that are also between vr and the initial position v0 will be discarded from
CS0 (i.e. the value of CS0 is decreased in one for each of them). In a similar way, when vb is moved
to the right, the blue points in S2 that are between v0 and vb will be considered and the red points in
S4 that are between v0 and vb will be discarded.

hb

vr

Hb

Hr

QR0

QB0

S1

S2

S3 S4

S5

S6

I1

hr

vb

hb

Hb

Hr

QR0

QB0

S1

S2

S3 S4

S5

S6

I1

hr

vb

vr

a.) b.)

v0

Figure 7: a.) Initial b.) Improved

We assign weights to the elements of S according to how each of them affects the value of the
candidate solution CS0 when vr and vb are moved to the left and to the right, respectively. The
assignment of weights to points in S is as follows:

• Red points in S1 (resp. S4) have weight 1 (resp. -1) because they can be included into (resp.
excluded from) CS0 when vr (resp. vb) is moved to the left (resp. right).

• Blue points in S2 (resp. S3) have weight 1 (resp. -1) because they can be included into (resp.
excluded from) CS0 when vb (resp. vr) is moved to the right (resp. left).

• The rest of the elements of S will have weight 0 because they do not affect the value of CS0 when
vr and vb are moved.



Once the weights have been assigned, we observe that if we have the elements of S sorted by their
x−coordinate giving the sequence XS , the points in S that indicate where to move vr and vb to improve
CS0 in the best way are respectively, the beginning and the end of the interval of consecutive elements
in XS that has maximum weight sum and contains the element Hb. Thus in our approach, we start
by sorting the points of S to obtain XS and then, we build the MCS-Tree. By using MCS-Tree, the
interval of maximum weight sum containing the current Hb is computed in O(log n) time per strip.
We update our tree invoking UpdateTree every time in which the current Hb changes and making an
UpdateLeaf(P ) for at most all points P below hb for which the red sweeping-line hr passes through.
The algorithm computes a corner solution in O(n2 log n) time and O(n) space.

By using a similar algorithm, the sandwich solution can be found in O(n2 log n) time and O(n)
space and, the disjoint case can be found in O(n log n) time and O(n) space. Combining the results
from the three preceding cases, we arrive to the main result of this section:

Theorem 4.1. A solution for the EIEB-problem can be found in O(n2 log n) time and O(n) space.

5 The three-dimensional case

In the EIEB-problem in IR3 we have more solution types than in IR2 but the good new is that we can
transform each of them to problems in IR2. Furthermore, the two-dimensional problems can be solved
with our techniques. We proceed to explain how to transform a Corner Solution case in IR3 to some
similar Corner Solution cases in IR2.

Cubes R and B form a corner type pair of cubes if they intersect each other in a corner (see
Figure 8 a.). The idea to obtain a corner solution is as follows. For each pair of horizontal planes
(PR,PB) (PR passing through a red point and PB passing through a blue point as shown in Figure
8 b.), we consider the orthogonal projection of the blue points below or in PB and the red points
above or in PR onto a horizontal plane P. Let T1 be the set of projected points x such that x is
blue and comes from below PR or x is red and comes from above PB. Let T2 be the set of the rest
of the projected points. Then, we have to find in P a pair of quadrants (QR,QB) (see Figure 8 c.)
maximizing |Red(QR ∩ T1)|+ |Blue(QB ∩ T1)|+ |Red((QR \ QB) ∩ T2)|+ |Blue((QB \ QR) ∩ T2)|.
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Figure 8: Corner Solution in IR3 is transformed to IR2

This planar problem can be solved in O(n2 log n) time and O(n) space by using a similar method
to the corner solution in above Section but assigning weights to the points of P in a convenient way
(see again Figure 7).

Thus, this case in IR3 can be reduced to solve O(n2) instances of problems in IR2 and we have the
following result:

Theorem 5.1. A Solution to EIEB-problem in IR3 can be found in O(n4 log n) time and O(n) space.

6 The trichromatic case with three disjoint boxes

In this section we study the following problem as an extension of EIEB-Problem:



Let S be a trichromatic point set on the plane in general position such that its elements are col-
ored red, blue or green. Compute three isothetic pair-wise disjoint rectangles B, R and G such that
|Blue(B)|+ |Red(R)|+ |Green(G)| is maximum.

This problem is named the Disjoint Trichromatic Enclosing Boxes problem (DTEB-Problem). We
observe that B, R and G must be separated by either two parallel isothetic lines (Figure 9 a.) or two
perpendicular isothetic lines (Figure 9 b.). Thus we have two possible configurations for a solution and
we have to solve two different problems.
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S
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Figure 9: Separated by two isothetic lines a.) Case 1: parallel b.) Case 2: perpendicular

Case 1: Compute two vertical lines l1 and l2 that partition the plane into three regions: a strip
S and two half-planes H− and H+, and a permutation P = [R1,R2,R3] of {H−,S,H+} such that
|Blue(R1)|+ |Red(R2)|+ |Green(R3)| is maximum. Once l1, l2 and P are found, blue, red and green
points in R1, R2 and R3 are enclosed with boxes B, R and G respectively. (see Figure 9 a.)

Case 2: Similar to Case 1 but finding a vertical line l1 and a horizontal half-line l2 partitioning
the plane into three regions: a half-plane H and two quadrants Q− and Q+, and a permutation
P = [R1,R2,R3] of {H,Q−,Q+}. (see Figure 9 b.)

Both problems can be solved in O(n log n) time and O(n) space. In Case 1, we can reduce it to some
instances of the Longest Increasing Subsequence Problem [4] and, for Case 2, we use a modification of
our structure MCS-Tree.

Theorem 6.1. A Solution to the DTEB-Problem can be found in O(n log n) time and O(n) space.
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