
Colored Point Set Matching Under Noise in 3D

Yago Diez ∗ J. Antoni Sellarès ∗

Abstract

Let A and B be two colored points sets in R3, with |A| ≤ |B|. We propose a process for determining
matches, in terms of the bottleneck distance, between A and subsets of B under color preserving rigid
motion, assuming that the position of all colored points in both sets contains a certain amount of ”noise”.
Our algorithm consists of two main stages. In the first one we generate all, up to a certain equivalence,
possible motions that bring A close to some subset B′ of B and seek for a matching between sets A and
B′. To look for these possible matchings we use a bipartite matching algorithm that uses skip octrees
for neighborhood queries. Additionaly, we also present a lossless filtering algorithm to discard those
subsets of B where there can not appear any matches and thus, improve the efficiency of our process.
This algorithm determines a number of candidate zones which are regions that contain a subset S of B
such that A may match one or more subsets B′ of S. We use a compressed octree to have easy access to
the subsets of B related to candidate zones and store geometric information that is used by the lossless
filtering algorithm in each octree node.

1 Introduction
Protein molecules possess unique three-dimensional structures, defined by their amino-acid sequence, that
play a very important role in molecular biology. Many functional properties of proteins have been found to
depend on some typical parts of their three-dimensional structure. Typically a protein molecule is modelled
as a set of balls in R3, each representing an atom. Given a substructure understood as a small collection
of atoms, representing a secondary structure subunit or any other significant part of a protein (as some
significant union of such secondary structures, called motifs), the protein substructure detection problem
consists in determining whether the substructure exists in a protein molecule [7]. Here it is important to
notice that the types of atoms conforming a protein are a finite set, so if we consider the centers of the
atoms involved and colors corresponding to the types of atoms we can see the problem as a colored point
set matching problem. Since atom positions are fuzzy due to the finite precision of measuring devices, it is
impractical to consider an exact match between two atoms. Therefore, atoms are considered superimposed
if the distances between their centers are less than some positive constant, the center location error (ε),
small enough compared to inter-center distances. With this extra consideration we can define our problem
in terms of a Noisy Colored Point Set Matching problem. Notice that if all the points have the same color
we get, as a particular case, the widely known Noisy Point Set Matching problem. Another aspect that we
want to highlight is that the sets to be matched do not have the same cardinality, so the objective is to
match one of the sets to a subset of the other (this is also known as partial matching). Finally, bearing in
mind that in our motivational problems the correspondences between the colored points to be matched are
required to be one-to-one, we will use the bottleneck distance.

1.1 Previous Results

The study of the Noisy Point Set Matching in 2D problem was initiated by Alt et al. [2] who presented an
exact O(n8) time algorithm for solving the problem for two sets A,B of cardinality n. Combining Alt et alt.
algorithm with the techniques by Efrat et al. [8] the time can be reduced to O(n7 log n).

The 3D version of the problem is much less explored than its two dimensional counterpart. The only
algorithms to the best of our knowledge are: an algorithm by Ambühl, Chakraborty and Gartner presented

∗Institut d’Informàtica i Aplicacions, Universitat de Girona, Spain. Email: {ydiez,sellares}@ima.udg.es. Partially sup-
ported by the Spanish Ministerio de Educación y Ciencia under grant TIN2004-08065-C02-02.

in [1] that suffered from a computational cost of O(n32.5) and a O(n13+5/6+ε) result presented in [5] that also
uses techniques by [8]. Biswas and Chakraborty [3] present an algorithm for solving this problem exactly in
the particular case of protein molecules, that uses geometric properties of the carbon chains that constitute
them that is claimed to be fast enough to be useful in practice.

2 Problem Definition

Let P (q, r) represent the colored point q ∈ R3 with associated color r. Given a real number ε ≥ 0, we say that
two colored points A = P (a, r),and B = P (b, s) approximately match when r = s and d̃(A,B) = d(a, b) ≤ ε,
where d denotes the Euclidean distance. For the sake of concretion, from now on we will use the term match
instead of approximately match.

Let D, S be two colored points sets of the same cardinality. A color preserving bijective mapping f :
D → S maps each colored point A = P (a, r) ∈ D to a distinct and unique colored point f(A) = P (b, s) ∈ S
so that r = s. Let F be the set of all color preserving bijective mappings between D and S. The bottleneck
distance between D and S is defined as:

db(D,S) = min
f∈F

max
A∈D

d̃(A, f(A)) .

The Noisy Colored Point Set Matching (NCPSM) problem can be formulated as follows. Given
two Colored Points sets A, B, |A| = n, |B| = m, n ≤ m, and ε ≥ 0, determine all rigid motions τ for which
there exists a subset B′ of B such that db(τ(A),B′) ≤ ε. We define τ(P (a, r)) as P (τ(a), r) and τ(A) as
{τ(P (a, r)) | P (a, r) ∈ A}

If τ is a solution to the NCPSM problem, every colored point of τ(A) matches to a distinct and unique
colored point of B′ of the same color, and we say that A and the subset B′ of S are noisy congruent. For the
sake of clarity, through the rest of the paper we will just mention the colors associated to points only when
necessary, thus we will speak about a ∈ A instead of P (a, r) ∈ A.

3 NCPSM Problem Solving Algorithm

We present an algorithm to solve the NCPSM problem that extends the algorithm for the 2D version of
the problem presented in [6]. The algorithm consists on two parts called ”enumeration” and ”testing”. In
the ”enumeration” part we group all possible motions of set A in equivalence classes to make their handling
possible and then generate a representative in each class. In the ”testing” part we run a bipartite matching
algorithm for every resulting transformation of set A in order to determine if it matches any subset of B.

3.1 Enumeration

Generating every possible rigid motion that brings set A onto a subset of S is infeasible due to the continuous
nature of movement. Following the 2D algorithm in [2], we partition the set of all rigid motions in equivalence
classes in order to make their handling possible. Consider the arrangement of spheres SB = {S(b, ε)|b ∈ B}.
Any point p ∈ R3 belongs to the cell of the arrangement identified with the set of points b ∈ B that hold
that p ∈ B(b, ε).

Definition 3.1. Two motions τ, µ are equivalent if and only if, for any colored point a ∈ A points τ(a) and
µ(a) lie in the same cell of SB.

The next Lemma ensures that a finite set of motions suffices for the purpose of finding all the solutions
of the NCPSM problem.

Lemma 3.2. Any rigid motion µ that is a solution to the NCPSM problem can be transformed to another
equivalent motion µ′ such that there exist three points ai1 , ai2 , ai3 ∈ A whose images µ′(ai1), µ

′(ai2), µ
′(ai3)

lie on the spheres S(bj1 , ε), S(bj2 , ε), S(bj3 , ε) respectively, where bj1 = µ(ai1), bj2 = µ(ai2) and bj3 = µ(ai3).

Proof. First we transform the set µ(A) by a translation T in any given direction until a point p = T (µ(ai1)),
ai1 ∈ A belongs to S(bj1 , ε), where bj1 = µ(ai1) ∈ B. Next we rotate the translated set T (µ(A)) by the
rotation R of axis the line passing through p and whose direction is the translation vector of T until a point
q = R(T (µ(ai2)), ai2 ∈ A), belongs to S(bj2 , ε), where bj2 = µ(ai2) ∈ B. Finally we rotate the resulting set
R(T (µ(A))) by the rotation R′ whose axis is the line through p and q until the point r = R′(R(T (µ(ai3))),
ai3 ∈ A), belongs to S(bj3 , ε), where bj3 = µ(ai3) ∈ B. In these conditions, the motion µ′=R′ ◦ R ◦ T ◦ µ
holds Lemma 3.2.

Notice that, as a consequence of Lemma 3.2 we only need to consider those motions that bring three
points in set A to the boundary of the noise regions of their corresponding points in the matching. In this
section we present an algorithm that generates a representative for each of the equivalence classes of this
motions. Each rigid motion τ of set A is determined by the image of any three points. We choose these
points to be the ones that lie in the boundary of their corresponding points in the matching. Consequently,
we consider each possible 6-tuple ai1 , ai2 , ai3 , bj1 , bj2 , bj3 with ai1 , ai2 , ai3 ∈ A and bj1 , bj2 , bj3 ∈ B. As the
matching must preserve colors, we also demand the colors associated to points to be matched to be the same
i.e. P (ai1 , r1) ∈ A, P (bi1 , r1) ∈ B, P (ai2 , r2) ∈ A, P (bi2 , r2) ∈ B and finally, P (ai3 , r3) ∈ A, P (bi3 , r3) ∈ B.

Lemma 3.3. Any given position of point τ(ai1) in S(bj1 , ε) leaves a degree of freedom for the positions of
τ(ai2) and τ(ai3) in S(bj2 , ε) and S(bj3 , ε) respectively.

Proof. For each possible position of point τ(ai1), consider the geometric locus of all the points that belong to
S(bj2 , ε) and whose distance to τ(ai1) is exactly d(ai1 , ai2). This corresponds, in the general case to a circle
Cai1 ,ai2

⊂ R3 resulting from the intersection of S(bj2 , ε) and S(τ(ai1), d(ai1 , ai2)). Consider also the geometric
locus of all the points that belong to S(bj3 , ε) and whose distance to τ(ai1) is exactly d(ai1 , ai3). Finally
by choosing a point in one of the circles (determining, thus τ(ai2)) and imposing that d(τ(ai2), τ(ai3)) =
d(ai2 , ai3), remains only a degree of freedom.

The configuration space of our problem can be seen as a cube of side 2π where each dimension corresponds
to one of the three angles that determine the associated rigid motion i.e. the two polar coordinates φ, ψ that
determine the position of τ(ai1) and the remaining angle θ corresponding to the point chosen in Cai1 ,ai2

.
From now on, we will denote τφψθ the rigid motion that corresponds to any given value of parameters φ, ψ
and θ. Another key observation is that, for any given values of parameters φ, ψ, θ any couple of the remaining
points aih ∈ A, bil ∈ B defines three possible positions corresponding to the position of τφψθ(aih) respect to
the sphere S(bil , ε) (in, out or in the surface). This three possible positions correspond to the values of φ, ψ
and θ for which aih and bil may (or may not) be matched. In this way, given a 6-tuple ai1 , ai2 , ai3 , bj1 , bj2 , bj3
and an additional couple aih , bil , we have a finite number of regions of [0, 2π[3 that encode the information
of when τ(aih) may be matched to bil for a motion τ that brings ai1 , ai2 , ai3 to the boundary of the spheres
S(bj1 , ε), S(bj2 , ε), S(bj3 , ε), respectively.

Consequently, in searching for the possible matchings, it suffices to consider the collection of (n− 3)(m−
3) ∈ O(nm) surfaces S of [0, 2π[3 determined by the angles φ, ψ, θ such that τφψθ(aih) belongs to the
boundary of the sphere S(bil , ε), aih /∈ {ai1 , ai2 , ai3}, bjl /∈ {bj1 , bj2 , bj3}. Since we only need to encode the
adjacency relationship among 3-dimensional cells of the arrangement, first we compute the vertical decom-
position of the arrangement and then we compute the adjacency relationship of cells in the decomposition
[12]. The number of cells of the vertical decomposition of the arrangement of the O(nm) surfaces in S
is O(n2m2λq(nm)), where q is an integer constant depending on the maximum degree of the surfaces and
λs(k) is the maximum length of (k, s) Davenport-Schinzel sequences that is roughly linear in k for any con-
stant s [13]. The vertical decomposition of the arrangement can be computed in randomized expected time
O((nm)3+ε), using the random-sampling technique [4]. Putting it all together, what we need to determine in
order to generate a representative in every equivalent class of motions is the arrangement of surfaces in the
cube [0, 2π[3 defined by all possible couples once fixed a 6-tuple and then iterate over the set of all 6-tuples.
This takes O(n6+εm6+ε) expected time and O(n5m5λq(nm)) space.

3.2 Testing

In this section we present an algorithm to test if each of the motions for set A generated in the Enumeration
step matches some subset of set B. Our algorithm uses the bipartite matching algorithm presented in [11].
For the implementation we adapt the ideas presented in [6] and [8] for the 2D case. We generate values for
parameters φ, ψ and θ inside each of the regions of the cube [0, 2π[3 defined in the Enumeration section and
test sets τφψθ(A) and B for matching. The first time we generate a layered graph [8] that contains information
on proximity relations between the points in τφψθ(A) and in B and run Hopcroft and Karp’s [11] algorithm.

Whenever the testing part determines a matching of cardinality n we annotate the corresponding τφψθ
and proceed. Every time we consider a new region representing an equivalence class of motion we can update
the matching by changing a single edge in the layered graph and finding a single augmenting path. If we
add an edge to the layered graph, the matching increases by at most one edge. Therefore, we look for an
augmenting path which contains the new edge. If we remove an edge from the layered graph, we need to
search for a single augmenting path.

When searching for augmenting paths we need to perform efficiently two operations. a) neighbor
(D(T), q): for a query point q in a data structure D(T) that represents a point set T , return a point in T
whose distance to q is at most ε or ∅ if no such element exists. b) delete(D(T), s): deletes point s from D(T).
For our implementation we use the skip octree, a data structure that combines the best features of octrees
and a skip lists [9]. The cost of building a skip octree for any T ⊂ B with |T | = n′ is in O(n′ log n′). In the
worst case, when n′ = m, this computational cost is the same needed to build the data structure used in [8].
The asymptotic computational cost of the delete operation in T ’s skip octree is O(log n′). The neighbor
operation is used combined with the delete operation to prevent re-finding points. This corresponds to
a range searching operation in a skip octree followed by a set of deletions. The range searching can be
approximated in O(δ−2 logn′ + u) time, where u is the size of the output, for a small constant δ such that
ε > δ > 0 [9]. The approximate range searching outputs some ”false” neighbor points that can be detected in
O(1) time. We will denote t(n, n′) an upper bound on the amortized time of performing neighbor operation
in T ’s skip octree. This yields a computational cost of O(nt(n, n′)) for finding an augmenting path.

In the worst case t(n, n′) ∈ O(n′). However, if we assume that the amount of noise in set A data is
”reasonable“ t(n, n′) ∈ O(log n). As Hopcroft-Karp Bipartite matching algorithm ends in, at most n1.5 steps,
the total cost of the testing algorithm is bounded by O(n1.5t(n, n′)). However, as we only need to compute
the first layered graph and update it in constant time for the remaining cases, the total amortized cost drops
to O(nt(n, n′)). Consequently, testing the whole O(n5m5λq(nm)) cells takes O(n6m5λq(nm)t(n, n′)) total
time.

4 Lossless Filtering Preprocessing Step

In most applications the cardinals of the two sets involved in matching problems are dissimilar and |A| <<
|B|. The algorithm that we have presented until now, as well as the algorithms in the literature are designed
for sets of roughly equal cardinalities so cannot take advantage of this situation if it occurs. In this section
we present an algorithm that discretizes the NCPSM problem by turning it into a series of smaller instances
of itself and then solves them using the algorithm already presented. To achieve the discretization that we
are looking for we use a conservative strategy that discards those subsets of B where no match may happen
and keep a number of zones where this matches may occur.

Our process consists of two main algorithms. The First one performs a Lossless Filtering step that
discards those parts of B that may not contain matches and outputs a number of ”candidate zones”. Each
of these zones contains a subset S of B such that A may approximately match one or more B′ ⊂ S. The
second algorithm solves the NCPSM problem between A and every S. The discarding decisions throughout
the first part of the process are made according to a series of geometric parameters that are invariant under
rigid motion. These parameters help us to describe and compare the shapes of A and the different subsets
of B that we explore. To navigate B and have easy access to its subsets, we use a compressed octree [9]. By
doing this we achieve a reduction of the total computational time, corresponding to a pruning of the search
space, as an effect of all the calculations we avoid by discarding parts of B cheaply and at an early stage.

Overview of all the algorithms used:

LFA: Losless Filtering Algorithm,
OBA: Octree Building Algorithm

COBA: Compressed Octree Building Algorithm

AGIA: Adding Geometric Information Algorithm

SA: Search Algorithm

CPSMA: Colored Point Set Matching

Algorithm

E: Enumeration,

T: Testing

The candidate zone determination algorithm consists itself on two subparts. An octree construction
algorithm and a search algorithm that traverses the octree looking for the candidate zones. The octree
construction algorithm can also be subdivided in two more parts: a compressed octree building algorithm
that uses the colored points in B as sites (without considering their color), and an algorithm that adds the
information related to the geometric parameters being used to each node (See also Figure 4).The NCPSM
algorithm works as described previously, notice that the compressed octree that we build in the first part
helps us to construct the octrees needed in the testing algorithm.

4.1 Octree construction

First we build a compressed octree OB using the (colored) points as sites. We use the techniques in [9]
to ensure a total asymptotic cost of O(m logm) in all cases, where m = |B|. Then, we add the geometric
information considered to OB. To simplify explanations we consider OB to be complete. Although it is clear
that this is not the general situation this limitation can be easily overcome in all the parts of the algorithm.

At this stage OB contains no information about the different colors of the points in B or the geometric
characteristics of B as a whole. Since these parameters will guide our search for matches they must be
invariant under rigid motion. The geometric parameters we use are: a) parameters that take into account
the fact that we are working with point sets: number of points and histogram of points’ color attached to a
node; b) parameters based on distances between points: maximum and minimum distance between points of
every different color. For every geometric parameter we will define a parameter compatibility criterium that
will allow us to discard zones of the plane that cannot contain a subset B′ of B to which A may match. An
important asset of our algorithm that enhances its applicability is that other general geometric parameters
may be considered in future work as well as specific ones due to specialized applications of the algorithms.

Once selected the set of geometric parameters to be used, in the second stage of the octree construction,
we traverse OB and associate to each node the selected geometric parameters. We also compute them for the
whole of A. The computational cost of adding the geometric information to OB depends on the parameters
that we choose. In the case of the ”number of points” and ”histogram of points’ colors” parameters we can
easily keep track of them while we build the octree, so no additional cost is needed. For the ”minimum and
maximum distance between points of the same color” parameters, the necessary calculations can be carried
out in O(m2 logm) time for each color category.

4.2 Lossless Filtering algorithm

The subdivision of R3 induced by a certain level of the Octree is formed by axis-parallel cubes. To take
advantage of this, in the filtering step we search for a certain axis-parallel cube in the octree big enough to
contain set A even if it appears rotated. We also demand the cube that we are looking for to contain a part
of B similar to A in terms of some the geometric parameters described in section 4.1. By doing this, we are
able to temporarily forget about all the possible motions that set A may undergo and just find those zones
of the octree where they may actually appear. This type of search is much more adequate to the octree data
structure.

Through the rest of the paper, all tetrahedrons and cubes considered are axis-parallel unless explicitly
stated. Let TA be the minimal tetrahedron that contains all the (colored) points in A, and let s be the

smallest positive integer for which (diagonal(TA) + 2ε) ≤ 2s holds.Let us also denote any cube with side
length 2s as a square of size s. Note that we use powers of two as side lengths of the cubes considered to
simplify the explanations in section 4.2, although it is not really necessary for our algorithm. For any rigid
motion τ there exists a cube of side s containing all the points in τ(A). This allows us to affirm that, for any
S ⊂ B that matches A, there exists a cube of side s that contains it. We store the points in B in a compressed
octree OB and describe the geometry of each of the nodes in this octree by using the rigid-motion-invariant
geometric parameters described in 4.1. Then we look for candidate zones in the octree whose associated
geometric parameters match those of A.

To sum up, we can say that, in the first step of the algorithm, instead of looking for all possible rigid
motions of set A, we look for cubes of side s covering subsets of B, which are parameter compatible with
A. Notice that, although our intention would be to describe our candidate zones exactly as cubes of size s
this will not always be possible, so we will also have to use groups of two, four or eight cubes of size s. It is
important to stress the fact that ours is a conservative algorithm, so we do not so much look for candidate
zones as rule out those regions where no candidate zones may appear. The subdivision induced by the nodes
of size s of OB corresponds to a grid of cubes of side s superimposed to set B. There are only four ways to
place the cube we are looking for respect to this grid that correspond to the relative position of one of the
cube’s vertices (inside a cube, inside a face, in an edge or on a vertex). This yields four different kinds of
candidate zones associated to one, two, four or eight nodes. The subsets B′ that we are looking for may lie
anywhere inside those zones.

4.2.1 Search algorithm

We provide a brief overview of an algorithm that traverses the octree OB searching for the collection C of
candidate zones. Algorithm 1 presents its main guidelines.

The hierarchical decomposition of B provided by OB makes it possible to begin searching at the whole of
B and later continue the search only in those zones where, according to the selected geometric parameters,
it is really necessary. The algorithm searches recursively in all the octants considering also those zones that
can be built using parts of more than one of them. The zones taken into account through all the search are
easily described in terms of OB’s nodes and continue to decrease their size, until they reach s, following the
algorithm’s descent of the octree. Consequently, early discards made on behalf of the geometric parameters
rule out of the search bigger subsets of B than later ones.

Given that two, four or eight nodes defining a candidate zone need not be in the same branch of OB, at
some points we will need to be exploring two, four or eight branches simultaneously. This will force us to
have four separate search functions, depending on the type of candidate zones we are looking for, and to keep
geometric information associated to those zones that do not correspond exactly to single nodes in the octree
but to couples, quartets or octets. The main search function, denoted search 1, seeks for candidate zones
formed by only one node and invokes itself and the other three search functions, called search 2, search 4
and search 8 respectively. Consequently, search 2 finds zones formed by pairs of nodes and also launches
itself, search 4 and search 8. Analogously, search 4 finds zones formed by quartets of nodes and calls itself
and search 8. Finally, search 8 locates zones formed by groups of eight nodes and only invokes itself.

The search step begins with a call to function search 1 with the root node as the parameter. We denote
t the size of the root and assume t ≥ s. Function search 1 begins testing if the information in the current
node is compatible to the information in A. If this doesn’t happen, there is no possible matching contained
entirely in the descendants of the current node and we have finished. Otherwise, if the current node has size
s then we have found a candidate zone. If this does not happen, we must go down a level on the octree. To
do so, we consider the eight sons of the current node (s1, s2, s3, s4, s5, s6, s7, s8).

The candidate zones can be located: Inside any of the si. So we have to call search 1 recursively in
all the si’s. Partially overlapping two of the si’s. In this case, we would need a function to search both
subtrees for all possible pairs of nodes (or quartets) that may arise below in the subdivision. This is function
search 2. Partially overlapping four si’s. In this case, we would invoke the function that traverses all
four subtrees at a time, called search 4. Partially overlapping all of the eight si’s. in this case we
would call function search 8.

Algorithm 1 Search 1(node N)
for all S sons of N do

if (S is parameter compatible with A) then
if (We have not reached the node size to stop the search) then

Call Search 1(S)
else {We have found a candidate node}

Report candidate zone
end if

end if
end for
{Continue in pairs of nodes if necessary (twelve possibilities)}
for all S1, S2 pairs of neighboring sons of N do

if (The couple (S1, S2) is parameter compatible with A) then
if (We have not reached the node size to stop the search) then

Call Search 2(S1, S2)
else {We have found a candidate pair}

Report candidate zone
end if

end if
end for
{Continue in quartets of nodes if necessary (four possibilities) }
for all (S1, S2, S3, S4): Quartets of neighboring sons of N. do

if ((S1, S2, S3, S4) are parameter compatible with A) then
if (We have not reached the node size to stop the search) then

Call Search 4 (S1, S2, S3, S4)
else {We have found a candidate quartet}

Report candidate zone
end if

end if
end for
{Continue in the octet of nodes formed by all the eight sons}
(S1, S2, S3, S4, S5, S6, S7, S8): Octet formed by the sons of N.
if ((S1, S2, S3, S4, S5, S6, S7, S8) are parameter compatible with A) then

if (We have not reached the node size to stop the search) then
Call Search 8 ((S1, S2, S3, S4, S5, S6, S7, S8))

else {We have found a candidate octet}
Report candidate zone

end if
end if

Functions search 2, search 4 and search 8 work similarly but take into account that they need two, four
and eight parameters respectively that those must be chosen adequately. The process goes on recursively
until the algorithm reaches the desired size (s), yielding a set of candidate zones of all four possible types.

Lemma 4.1. The number of candidate zones c = |C| is O(mn). This bound is tight.
Proof. Each point in B belongs to a unique node of OB, it can be seen that each node may belong to up to 27
zones (one of type one, six of type two, twelve of type four and eight of type eight) and thus each point in in
B may belong to, at most, 27 candidate zones. Subsequently, c ∈ O(m). To improve this bound we consider
ni, the number of points inside the ith candidate zone. As each colored point belongs to at most 27 zones,∑
ci∈C ni ≤ 27m. As every candidate zone must contain, at least, n points then cn ≤ ∑

ci∈C ni, putting
this two statements together, we obtain c ≤ 27m

n . The tightness of the bounds follows from considering, for
example, the case when A = B.

Lemma 4.2. a)The total cost of the Search algorithm is O(m). b) The total cost of the lossless filtering
algorithm is O(m2 logm).

Proof. a) Through the search algorithm every node is traversed at most 27 times corresponding to the
different candidate zones it may belong to, as the compressed octree data strucure guarantees that there
are at most O(m) nodes the total computational cost is O(m). b) The result follows from considering the
sepparate (additive) contributions of the O(m2 logm) Octree building algorithm and the O(m) contribution
of the search algorithm.

Lemma 4.3. The computational cost of the algorithm that combines the lossless filtering algorithm and the
matching algorithm is O(n6m5λq(nm)t(n, n′)). The bound is tight.

Proof. The lossless filtering step takes O(m2 logm) computational time. Given the O(n6m5λq(nn′)t(n, n′))
cost for every candidate zone, S with n′ = |S|, when all candidate zones are considered, the total cost
is

∑
Ci∈C O(n6ni

5λq(nni)t(n, ni)) where ni = |Ci|. Bearing in mind that ni ≤ m and factorizing we
obtain T ∈ λq(nm)n6t(n, n′)

∑
Ci∈C O(ni5), taking into account that

∑
Ci∈C O(ni5) ≤ (

∑
Ci∈C O(ni))

5,
T ∈ λq(nm)n6t(n, n′)(

∑
S∈C O(ni))

5, as each point belongs to at most 27 candidate zones then
∑
Ci∈C O(ni)

is in O(m) and thus, the result follows. The tightness of the bound is reached, for example, when A = B
5 Conclusions and Future work

The lemma that we have just presented shows that from a formal point of view, our process takes, at its worst,
the same computational time as the algorithm that does not use the lossless filtering step. Consequently
we benefit from any reduction of the computational time that the filtering achieves without any increase
in the asymptotic costs. In practice we expect the assumptions presented in section 3.2 to be met and the
λq(nm) factor to be to be linear in nm and, thus, obtain a O(n7m6 logn) algorithm that improves slightly
the best computational costs for the problem up to date. Given the high computational complexity of the
problem, one of the aims in our future work is the development of an implementable approximate algorithm
that reduces the computational cost of the exact algorithm presented in this paper at the cost of some of
its precision. This type of approximation does not refer to the fuzziness of data, but to how much does the
solution given by the algorithm resemble the optimal (taking the noise into account) solution.To do so we
intend to adapt some of the ideas in [10] to the 3D case. Finally, we also intend to develop more of the
geometric parameters used in the lossless filtering step taking advantage of the geometric properties of 3D
space.

References

[1] C. Ambühl, S. Chakraborty, and B. Gartner. Computing largest common point sets under approximate congru-
ence. In Proc. 8th Annual European Symposium on Algorithms, LNCS 1879, pages 52-63, 2000.

[2] H. Alt, K. Mehlhorn, H. Wagener and E. Welzl. Congruence, similarity and symmetries of geometric objects.
Discrete & Computational Geometry, 3:237–256, 1988.

[3] S. Biswas, S. Chakraborty, Fast Algorithms for Determining Protein Structure Similarity, W orkshop on Bioin-
formatics and Computational Biology, at the International Conference on High Performance Computing (HiPC),
Hyderabad, India December 2001.

[4] B. Chazelle, H. Edelsbrunner, L.J. Guibas and M. Sharir, “A singly-exponential stratification scheme for real
semi-algebraic varieties and its applications”, Proc. 16th Internat. Colloq. Automata Lang. Program., Lecture
Notes Comput. Sci. Vol. 372, Springer-Verlag, pp 179-192, 1989.

[5] V. Choi, N. Goyal, A Combinatorial Shape Matching Algorithm for Rigid Protein Docking. CPM 2004, LNCS
3109, pp. 285-296, 2004.

[6] Y.Diez, J.A. Sellarès. Noisy Disk Set Matching Under Rigid Motion. Proceedings EWGC, 115-118, 2006.

[7] F. Dupuis, J. Sadoc, J. Mornon, Protein Secundary Structure Assignment through Voronoi Tesellation PRO-
TEINS: Structure, Function and Bioinformatics 55:519-528(2004).

[8] A. Efrat, A. Itai and M.J. Katz. Geometry helps in Bottleneck Matching and related problems. Algorithmica,
31:1–28, 2001.

[9] D. Eppstein, M.T. Goodrich, and J.Z. Sun. The skip quadtree: a simple dynamic data structure for multidi-
mensional data. 21st ACM Symp. on Comp. Geom., 296–305, 2005.

[10] P.J. Heffernan S. Schirra. Approximate decision algorithms for point set congruence. Computational Geometry:
Theory and Applications 4(3), 137–156, 1994.

[11] J.E. Hopcroft and R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs. S IAM Journal
on Computing, 2(4):225–231, Dec. 1973.

[12] M. Sharir, “Recent Developments in Theory of Arrangements of Surfaces”, Lecture Notes in Computer Science,
Vol 1738, pp 1-21, Springer-Verlag 2000.

[13] M. Sharir and P.K. Agarwal, Davenport-Schinzel sequences and their geometric aplications, Cambridge Univer-
sity Press, 1995.

