Departamento de
Informatica

Universidad de Valladolid

Computer Science Department
University of Valladolid
Valladolid - Spain

SPC-XML(v0.4): An intermediate programming language
representation for nested-parallel environments

Arturo Gonzalez-Escribano!, Arjan J.C. van Gemund?, Valentin
Cardefioso-Payo!, and Ratl Portales Fernandez!

! Dept. de Informatica, Universidad de Valladolid.
E.T.I.T. Campus Miguel Delibes, 47011 - Valladolid, Spain
Phone: 434 983 423270, eMail:arturo@infor.uva.es

2 Embedded Software Lab, Software Technology Department,
Faculty of Electrical Engineering, Mathematics and Computer Science, P.O.Box 5031,
NL-2600 GA Delft, The Netherlands
Phone: +31 15 2786411, eMail:a. j.c.vangemundQewi.tudelft.nl

Feb 2005

Abstract. This document presents a parallel programming language
based on XML, which can be useful as an intermediate representation
for nested-parallel programs. It is a coordination language which clearly
makes a separation between the parallelism specification and the sequen-
tial code pieces. The design criteria of this language are oriented to make
it specially useful on nested-parallel programming environments where
scheduling and other compiling techniques need to obtain synchroniza-
tion structural information from the program specification.

This specification supersedes preliminary versions of SPC-XML (from
v0.1 to v0.3)

Technical Report No. IT-DI-2005-0001

1 Introduction

SPC-XML is an XML application which defines a parallel programming speci-
fication language. A first draft and prototype programming frameworks which
implements the preliminary versions of this language were introduced on [1,2,
5].

This document presents a transitional proposal of the language. SPC-XML
v0.4 is only a draft designed to help in detecting problems and solutions for
the development of a full compiler-framework supporting SPC-XML. In fact it
includes some features which may be problematic for implementation. A new
version of SPC-XML will be presented when the possibilities and requirements
of the compiler-framework becomes more defined.

This report is structured as follows: Section 2 introduces the design principles
and structure of the language, along with a discussion of data representation,
memory model and some other semantic details. Section 3 includes an example
program. In section 4 we present our conclusions. Appendix A contains a fully
detailed list of SPC-XML v0.4 tags. Appendix B contains the full DTD (Data
Type Definition) which is the XML formal description of the language tags.
Appendix C describes some changes from the previous version.

2 SPC-XML: A tag-based coordination language

In this section we introduce the structure and design principles of the a new in-
termediate highly-structured coordination language based on XML. It is named
SPC-XML, due to the SPC nested-parallel model [4] (Series-Parallel and Con-
tention model). This full parallel synchronization language is designed to sup-
port any feature to be found in a nested-parallel environment such as recursion,
critical sections, distributed or shared-memory models, and manual data-layout
specifications. The language is highly verbose and it is not designed to be writ-
ten directly by a programmer, but as a convenient intermediate representation
of a nested-parallel program. Front-ends to translate legacy code written in any
nested-parallel language to this representation would be a straightforward devel-
opment effort. Nevertheless, standard XML tools may be used to edit, visualize
or check consistency of SPC-XML representations. Although its main function-
alities and semantics are clearly defined, SPC-XML is still syntactically evolving
to find a more mature level. The design principles of SPC-XML are:

1. SPC-XML model implements the same semantics as the SPC model [4]:
SPC model is based on a processes algebra. Processes are composed to form
a program with only two possible operators — sequential and parallel —, which
may be freely nested.

2. It uses XML tags to represent directly the parallelism structure. Nested-
Parallelism is a hierarchical structured form of expressing parallelism. Thus,
a representation using an XML structured document is natural.

3. It is a coordination language [3]. Tags will represent only the synchroniza-
tion structure. Any classical sequential language may be used to code the

sequential sections. This separation will simplify the recognition of the par-
allel structure of a program.

4. The program must specify explicit input/output interfaces for sequential
sections and logical processes. The behavior of a data item in an interface
(input and/or output) will be compulsory specified. This will help the com-
piler to compute data-flow and automatically derive communications for a
given task decomposition and mapping.

5. Tag and attribute names are fully readable, to help humans recognize the
main program structures easily.

6. SPC-XML supports the synchronization mechanisms of any other nested-
parallel language, to be useful as an intermediate representation for legacy
programs.

2.1 Document structure

An SPC-XML document contains a HEADER tag and a UNIT-BODY tag. The
first one is used mainly for documentation and to specify low-level sequential
code blocks to be included at the beginning of the target program. The body of
the document contains a collection of elemental units (functions and processes).
If a process called main is found inside a document, this document represents a
program which begins executing that main process. If the document does not
include a main process, it is a library which may not be compiled alone. All
elemental units may have a DESCRIPTION tag containing extra documentation
tags for automatic documenting tools. Programming comments are included with
the usual XML tags <!I- - -->.

2.2 Logical processes and functions

SPC-XML has a PROCESS tag to define the content of a logical process. Each
process has a well-defined interface, whose formal parameters are defined with
the IN, OUT, INOUT tags, declaring the input/output intent of the data item in
the interface. Processes may contain also a LOCAL tag to declare variables, with
process visibility and scope. The BODY tag of a process contains the tags which
define its behavior.

The serial composition is implied in the tags declaration order as in many
common procedural languages. For programmer convenience, other common
control-flow statements are supported by the IF/THEN/ELSE, WHILE, REPEAT,
and LOOP tags. The parallel composition operator is implemented using the
PARALLEL tag. This tag may only contain one or more PARBLOCK tags, whose
contents are composed in parallel. The PARALLEL tag, have an optional attribute
named p="number", to specify a fixed number of branches to spawn. The PAR-
BLOCK tags may also have a index="number" attribute, to associate the tag con-
tent with a logical identifier inside the local subgroup of branches. A default
branch (using index="*") may be used to fill-up with its content all the non-
associated branches in a parallel region. The closing parallel tag implies a syn-
chronization of all the branches before proceed. At this logical synchronization

point, modifications done to the same variable in different branches are made
consistent. By default, the modifications done by only one branch will persist.
Future specifications should include optional attributes or tags to be used in
the PARALLEL tag to implement typical reduction operations for given data ele-
ments. As in any nested-parallel model, other PARALLEL tags may appear inside
a branch, or inside another process called inside a branch. All control-flow and
parallel structure tags may be nested freely.

Sequential codes are enclosed inside a FUNCTION tag, to distinguish them
from the logical processes. However, the input/output interface is defined exactly
in the same way. For symmetry, processes and functions are invocated with
the same CALL tags, containing PARAMETER tags to specify the formal to real
parameter substitutions.

The language includes some more features to help in the mapping trajec-
tory. For instance, the programmer, or a profiling tool, may provide sequential
functions with a performance estimation, using an optional workload="number"
attribute, as a hint to help the scheduling modules.

2.3 Data representation

As a coordination model, SPC-XML tags do not imply data manipulation. The
only purpose to define data containers is to describe data-flow between logical
processes and through sequential codes. Thus, SPC-XML variables are generic
multi-dimensional arrays of a given data type defined in the sequential language
used. The actual dimensions of a variable are readable attributes. They are
defined by VAR tags, always inside the LOCAL tag of a process. There are no
expression or data manipulation tags. The only tags which imply code execution
are CALL tags referring to function names (sequential tasks). However, we also in-
clude a COPY tag, whose purpose is to let the programmer specify data-flows in a
way that such information may be exploited by an SPC-XML compiler. This tags
will be translated to memory-to-memory copies, or directly to communications.
Special variables called overlaps are supported to define logical data partitions
over other SPC-XML array variables. Thus, simple data-layouts may be devised.
An overlap is defined and used as any other SPC-XML variable. However, before
using it, it must be associated to another variable using an VAR-OVERLAP tag.
Each overlap element becomes an alias of a subarray of the associated SPC-XML
variable. Subarray specifications may be expressed with a colon-notation similar
to Fortran90 and simplified by the use of some macro-definitions. Moreover, the
language provide with some special terms which represent typical block or stride
layouts.

2.4 Memory model

The SPC-XML semantics are based on a distributed-memory model. Each pro-
cess has access only to their local variables and parameters. The parameter are
always received as values. Thus, a process always works on local copies of the
data.

Communication is hidden to the programmer on the parameter substitution
when an invocation to a process is executed in another processor/thread. How-
ever, when the programmer knows that, in a shared-memory architecture, it
is safe to work on the original memory positions instead of a local copy, she
may specify the shared="true" attribute for that variable. This attribute value
is used by the compiler as a hint for efficient implementation when using a
shared-memory back-end. Nevertheless, the programmer may not rely on this
feature to communicate processes/threads (e.g. one thread writing on a vari-
able and another reading the values directly from the memory positions). First,
the compiler does not consider synchronization issues for these variables. And
much more important; the underlying architecture or back-end may not support
shared-memory, implementing local copies anyway. Allowing such programming
practices would destroy the portability premises of the framework.

2.5 Static vs. dynamic programming

Nested-Parallel program specifications may have three different flavors, present-
ing implementation problems which should be tackled with different approaches.
A flexible compiler should detect them and use different compilation techniques
for each one. We describe the three types, and how SPC-XML parsing may
automatically detect them.

Many times, the data-partition needed to exploit parallelism for a given com-
putation is specified statically as a function of the number of processors (e.g.
the simple pipeline example in section 3). These programs resemble the typical
coarse-grain efficient specifications found in lower-level specifications, such as
those done for message-passing tools. These specifications do not normally need
more than one level of parallelism, but if needed, the scheduling and mapping
may be computed at compile-time.

On the other hand, divide & conquer and other similar algorithmic design
techniques decompose the data recursively. Examples of these applications in-
clude recursive varieties of FFT, Strassen matrix multiplication or some sorting
networks. These fine-grain approximations have a higher abstraction level, and
they are more flexible. The compiler may decide the exact grain to use, stopping
the recursive parallel decomposition when it becomes appropriate, to adapt the
computation to the machine or environment. This complex decisions may be
taken at compile-time.

Finally, some solutions are based on dynamic parallel structures, which are
created and destroyed as the data-process require them. Thus, they are com-
pletely data-dependent. In these cases, the scheduling and load balance may be
done only at run-time. Examples of these programs may be some hierarchical
n-body solutions or tree/graph-searching.

These different types of programs may be easily detected in a coordination
language with the design principles assumed in SPC-XML: (a) Static problems
do not have control-flow structures (except loops with a fixed number of iter-
ations) which affect the coordination structure (with parallel tags inside); (b)
recursive, but not fully dynamic decomposition, present control-flow statements

whose conditions are dependent on the data-sizes, but not on their values; (c)
dynamic solutions have control-flow statements, dependent on the data values,
which affect the coordination structure. Thus, SPC-XML parsing may easily de-
tect these different types of programs, enabling different compilation-paths or
mapping modules for each type.

2.6 Data partitions (layouts)

We distinguish three main types of data partitions depending on the compilation /run-
time level on which layout decisions should be taken:

Completely static :

In completely static data partitions the number of parts in which data are
splited is fixed, and the sizes of each part is also known at compile time.
This situation could easily arise when using SPC-XML as an intermediate
representation of another language. The front-end which generates the SPC-
XML code from the source code may compute even the part sizes.

Recursive dynamic : Typical divide&conquer algorithms divide their data ac-
cordingly to an heuristic. But the number of pieces in each level is fixed (e.g.
quicksort algorithm splits the array in two parts at each level). What is com-
puted dynamically is the size of each part. However, the number of spawned
subprocesses cannot be known at compile time. In this sense, the synchro-
nization structure is dynamic, and some run-time scheduling policy will be
needed.

Structural static :

A similar situation appears when the the number of parts is fixed in the
code (or by the first compiler stages), but the number of data pieces on each
part is data-dependent or computed on scheduling or run-time, even if the
partition is not recursive. In this case, the synchronization structure of the
program is static, even if the data sizes are not, and the scheduling may be
computed before run-time.

Completely dynamic : When non-recursive data partitions are used, is typ-
ical that the one-level partition is done in as many parts as processors are
available. If the decision of the number of processors available is delayed un-
til scheduling or run-time, the number of parts (and also their sizes) cannot
be fixed in the source code.

This situation also appears when several levels of parallelism are used, but
the decision of how many processors are assigned to each group is taken by
the scheduler or mapping module.

A flexible compiler should be able to deal with each kind of data partition or
layout at the appropriate level. As many decisions as possible should be taken
before run-time to enable more sophisticated mapping techniques. An efficient
run-time data partition and scheduling policy should be provided for last chance.

2.7 Internals of an overlap variable

An overlap variable should be implemented in a way that each part is a complete
reference to the original variable pieces defined during the overlap declaration.
The semantics of the overlapping model imposes that an overlap is a reference
to the original variable. Thus, accesses through different overlaps of the same
variable always read and write on the memory locations of the original variable.

Overlaps A” of a previous overlap part A’[i] are allowed. The new overlap
A" will reference to the memory positions of the root variable A, although the
sizes and positions are computed according to the layout specification on the
intermediate overlap A’.

Overlaps are mainly used to create data-layouts, in order to split data along
processes. Thus, the possibly sparse memory allocations referenced by an overlap
part should be efficiently marshalled to be communicated when needed.

Back-ends using a C-like language as native/target language should create
the appropriate pointer structures to implement overlaps. When overlap parts
are formed by consecutive data pieces, one pointer and one storage size would
suffice to represent the part position (e.g. row block partitions). However, when
stride partitions are created, or multiple-dimension variables are used, the data
pieces of an overlap part may not be consecutive. Then, each part should be
represented by a list of structures containing pointer arrays and sizes on each
dimension.

On the other hand, Fortran90 like languages, which allow named multidimen-
sional array pointers, provide direct support for overlaps. Fortran77 back-ends
are not possible as the target language does not provide pointers, and it is not
able to represent overlaps.

To avoid all these problems, the back-end designers should consider to use any
other portable mechanism. For example, the MPI library provides procedures to
create and destroy new data-types which could be used to define overlaps.

3 Examples

3.1 Simple pipeline (static data-layout)
This example is a parallel implementation of the following inner loop:

double v[800000];

for(iterations=1; iterations<10000; iterations++) {
for(i=1; i<800000; i++) {
v[i] = (v[i] + v[i-11) / 2;
}
}

It is an example with an 800000 elements vector statically splited among P
parallel tasks. The example uses the C dran48 function to initialize the data
with a given seed found in a file named pipe.seed.

<SPC-XML>
<HEAD>
<TITLE>Pipe</TITLE>
<DESCRIPTION>. . .</DESCRIPTION>
<LANG name="C" />
</HEAD>

<UNIT-BODY>

<!-- Specific C includes -->
<CODE>

#include<stdio.h>
#include<stdlib.h>
#include"myTypes.h"

</CODE>

<!-- Ancillary functions -->
<FUNCTION name="init">
<DESCRIPTION>Initialize </DESCRIPTION>
<PARAMETERS>
<INOUT name="vector" basetype="double" dim="size">
</PARAMETERS>
<CODE>
int i;
FILE *fseed;
long int seed;

/* 1. READ THE SEED */

if (NULL==(fseed = fopen("pipe.seed","r"))) {
perror ("Opening the file pipe.seed");
exit(-1);
}

if (1!'=fscanf(fseed,"}1d",&seed)) {
perror("Reading the file pipe.seed");
exit(-1);
}

fclose(fseed);

/* 2. INIT RANDOM STREAM x*/
srand48(seed) ;

/% 3. RANDOM VALUES */

for (i=0; i<(*size); i++) {
vector[i] = drand48();
}

</CODE>
</FUNCTION>

<!-- Main computation -->
<FUNCTION name="compute'>
<DESCRIPTION>Simple forward loop</DESCRIPTION>
<PARAMETERS>
<IN name="firstStage" basetype="bool" dim="1">
<IN name="border" basetype="double" dim="1">
<INOUT name="data" basetype="double" dim="size">
</PARAMETERS>
<CODE>
int i;

/* 1. COMPUTE FIRST ELEMENT EXCEPT FOR FIRST STAGE */
if (! firstStage) {

data[0] = (datal[0] + border[0]) / 2;

}

/% 2. COMPUTE THE REST OF ELEMENTSx*/
for (i=1; i<(*size); i++) {
data[i] = (datal[i] + datali-1]) / 2;

}
</CODE>
</FUNCTION>
<!-- Synchronization structure -->

<PROCESS name="main">
<DESCRIPTION>Main: Data layout for 8 processors</DESCRIPTION>
<PARAMETERS>
</PARAMETERS>
<LOCAL>
<VAR name="data" basetype="double" dim="800000">

<!-- Split data and overlap to border elements -->
<VAR-OVERLAP srcVar="data" name="pieces[#P]" layout="[#blocks]" />
<VAR-OVERLAP srcVar="data" name="borders[#P]" layout="pieces[#i][0]" />

<!-- null border --> <VAR name="foo" basetype='"double" dim="1">
</LOCAL>
<BODY>

<!-- Init data -->

<CALL name="init">
<PARAM value="data" />

</CALL>

<!-- Tterations -->
<LOOP n="10000">

<!-- Parallel computations -->
<PAR n="#P">
<!-- First stage of the pipeline has no input border -->

<PARBLOCK index="0">
<CALL name="compute'">
<PARAM value="true" target="firstStage" />
<PARAM value="foo" target="border" />
<PARAM value="pieces[0]" target="data" />

</CALL>
</PARBLOCK>
<!-- Rest of the pipe stages uses previous stage border -->

<PARBLOCK index="*">
<CALL name="compute'">
<PARAM value="false" target="firstStage" />
<PARAM value="borders[#i]" target="border" />
<PARAM value="pieces[#i]" target="data" />

</CALL>
</PARBLOCK>
</PAR>
</L00P>
</BODY>
</PROCESS>

</UNIT-BODY>
</SPC-XML>

4 Conclusion

This report introduces the SPC-XML v0.4 intermediate representation for nested-
parallel programming languages. The design principles of this representation al-
low the compiler to exploit information about the synchronization structure of
an application. Different mapping or scheduling techniques could be automati-
cally selected as a function of the structural details of the application Moreover,
information about data-flow between tasks may be directly obtained from the
SPC-XML specifications. Implicit communication structures are also exposed
and could be easily optimized, to generate low-level codes adapted to a specific
target-machine.

10

A Summary of tags

A.1 General structure

<SPC-XML> </SPC-XML>
Opening and closing tags for any SPC-XML document. It contains one
HEAD and one UNIT-BODY tags.
<b-- -->
Comments are introduced using these sgml’s standard tags for documenta-
tion.
<DESCRIPTION> </DESCRIPTION>
Tags containing data to be used by an automatic documentation program.
This tags may be used inside HEAD, PROCESS and FUNCTION tags.
Proposed documentation tags: AUTHOR, DATE VERSION, ...
<HEAD> </HEAD>
Opening and closing tags for the head of an SPC-XML document. Head
contains the program title, an indication of the sequential language used to
implement sequential parts, and optional documentation description.
<TITLE> </TITLE>
This tag contains a title string for the program or library.
<LANG name="" />
This tag is empty. The required attribute name contains the name and ver-
sion (if applicable) of the sequential language used to write the sequential
code pieces of the program. It should be used by the compiler to select the
appropriate back-end language module or plug-in.
Some standard names should be accepted by any compiler of SPC-XML even
if the appropriate plug-in is not available:
C : C language.
CC : C++ language.
F90 : Fortran 90 language.
F95 : Fortran 95 language.

<UNIT-BODY> </UNIT-BODY >
The body of the full SPC-XML document contains declarations of process-
ing units (processes and functions) and contention resources declarations.
Allowed tags inside the program body are: CODE, PROCESS, FUNCTION,
INCLUDE and RESOURCES.

<CODE> </CODE>
It should contain cdate which is not parsed by an SPC-XML front-end,
but copied into the target language file. This tag may appear to define the
body of a sequential function written in the native/sequential language or
alone in the BODY of the program. In this last case the purpose of the
CODE tag is to allow the programmer the inclusion of any specific sequential
language instructions to initialize the program. For example, to add the
include statements needed on a C language program.

11

<INCLUDE> </INCLUDE>

This tag must contain a valid filename on the system containing an SPC-
XML document. This tag forces the inclusion of the BODY inside the other
SPC-XML document before parsing. Nested inclusion should be supported
by the front-end. An SPC-XML document is included only once even if it is
several times included.

It is suggested that the DESCRIPTION of the other SPC-XML document
should be included. Information enough to find the original filename and line
numbers should also be added to processes and functions description tags in
order to generate appropriate error messages during following compilation
phases.

A.2 Processes and functions

<PROCESS name=""> </PROCESS>
It contains a named SPC-XML process definition. Name must be unique
along all the process and function definitions on the document, and other
included documents. The special name main identifies the process which is
started when the program begins to run.
A process definition includes one PARAMETERS, one LOCAL and one
BODY tag. A PROCESS tag may also include an optional USES tag to
define the contention resources needed.

<BODY> </BODY>
The body of a process. It contains the sequential /parallel control structure of
this process, including other processes and function invocations. Allowed tags
inside a process body are: CALL, PAR, LOOP, IF, REPEAT and WHILE
tags.

<FUNCTION name="" [workload=""]> </FUNCTION>
It contains a named function definition written on the native/target sequen-
tial language. Name must be unique along all the process and function defi-
nitions on the document, and other included documents.
A process definition includes one PARAMETERS and one CODE tag with
the function body. The CODE tag contains the function definition in the
native/target language. The input/output interface must be consistent with
the PARAMETERS tag definitions.
The workload attribute is optional, and if it appears, it must contain an
number representing the estimated mean workload of the sequential function.
It may be used by the compiler for workload estimation and optimizations.
A function tag may also include an optional USES tag to define the con-
tention resources needed.

<PARAMETERS> </PARAMETERS>
This tag includes a collection of parameter declarations using the IN, OQUT,
INOUT tags.

<IN name="" basetype="" [dim=""] />
This tag declares an input parameter with the given name. The basetype
attribute contains a valid type on the native/target language. If programmer

12

data types definitions are previously included through a CODE tag they can
be used as a basetype. The SPC-XML front-end does not verify the existence
or proper declaration of the data types. However, it should use the basetype
names to check type consistency on process and function calls.
The dim attribute is optional. If it appears, its value is a local variable name
in which the integer dimensions of the real parameter are stored during the
call of the function or process.
If multidimensional variables are used, the dim attribute is an SPC-XML
variable or array with enough elements to contain all the values of the di-
mensions.

<OUT name="" basetype="" [dim=""] />
This tag declares an output parameter with the given name. All the details
previously discussed about the IN tag applies to the OUT tag.

<INOUT name="" basetype="" [dim=""] />
This tag declares an input/output parameter with the given name. All the
details previously discussed about the IN tag applies to the INOUT tag.

A.3 SPC-XML variables

<LOCAL> </LOCAL>
This tag includes a collection of local variable declarations for a process,
using the VAR tag.

<VAR name="" basetype="" dim="" [shared=""] />
A variable declaration with a given name. For the basetype attribute see the
IN tag declaration. The attribute dim is compulsory and must be a number
(if only one-dimensional array variables are supported), or a list of numbers
separated by colons (if multi-dimensional variable arrays are supported).
Single variables must be defined as one-dimensional arrays with only one
element (dim="1").
The optional attribute shared has a default value of "false". If its value is
"true", it indicates to the compiler that it is safe to pass this variable to
other processes using shared memory instead of sending a copy of the data
(see memory model in section 2.4).

A.4 Invocation of functions and processes

<CALL name="" [exclusive=""]> </CALL>
A call tag represents an invocation of the process or function identified by
the name attribute.
A CALL tag contains PARAM tags specifying the real parameters to be
used as the formal parameters of the function or process.
The optional exclusive attribute has a value of null. If its value is a name,
the invocation is mutual exclusive with any other invocation of this process
which has an exclusive attribute with the same name. (We should consider
for consistency checks to force the programmer to include declarations for
valid mutual exclusion names in the LOCAL section).

13

<PARAM value="" [target=""] />

This tag represents a parameter substitution. A valid SPC-XML variable
name or a reference to an element of a local overlap variable must appear
on the value attribute.

The target attribute is optional. If it appears it indicates the name of the
target formal parameter to which the substitution applies. If it is not present,
the substitution applies to the first formal parameter not named in a target
attribute that has not been yet substituted.

A.5 Data-layouts: Overlaps

<VAR-OVERLAP srcVar="" name="" layout="" />

This tag is a declaration statement which creates and associates the indexed

overlapping-variable elements with portions of the source variable, using the

layout attribute to select the shape and sizes of the overlapping sections.

This attribute is a Fortran90 style sub-array specification with colon notation

(e.g. layout="[1:3]1[10:100:2]" means a subarray of the srcVar with only

its first to third rows and only elements in its even columns from 10 to 100).

The layout specification may use the following macro specifications:

#P The total number of processors available in this process.

#1i The value of the index of the overlap variable.

" The first index value in the original array.

#8 The last index value in the original array.

#<name> The name of a partition module to compute the layout. Parti-
tion modules should be provided by the compiler framework or supplied
by the programmer.

A.6 Parallel control structures

<PAR [p=""]> </PAR>
This tag represents an spawning of n tasks which may be executed in parallel.
Its content determines the exact code to be executed in each parallel branch.
The only allowed tags inside a PAR tag are PARBLOCK tags.
The p attribute is optional. If it does not appear, the number of parallel
branches should be deduced from the branches specifications inside the tag.
The PAR tag may also have the special macro value (#P) for the n attribute.
This value means that the number of parallel processes spawned is the same
as processors available to this part of the computation (process).
<PARBLOCK [index=""]> </PARBLOCK >
This tag may only appear inside a PAR tag. It defines the behavior of one
of the parallel branches spawned. It may contain CALL, LOOP, PAR, IF,
REPEAT or WHILE tags.
The index attribute is optional. If it appears its content must be an integer
number between 0 and n — 1, being n the content of the n attribute of the
PAR tag.

14

When the PAR tag has an n attribute, one and only one of the PARBLOCK
tags inside may have an special value for the index attribute. This value
is a star "*" representing a wildcard branch. The content of the wildcard
branch tag is used for as many branches as n minus the number of other
PARBLOCK tags inside the PAR. Inside the wildcard branch of a PAR tag,
the programmer may use the special index macro #i, which has the value of
the branch index.

A.7 Sequential control flow structures

<LOOP n=""> </LOOP>
This tag represents an n times sequential repetition of its content. The n
attribute may be an integer number or an SPC-XML variable with dimension
1, which basetype may be used in the native/target language as an integer
or loop limit.
The programmer must remember that in the first case the synchronization
structure of the program is static and in the second case dynamic.

<IF> </IF>
This tag represents conditional execution of one tag inside. The only tags
allowed inside an IF tag are a compulsory CONDITION tag, one THEN tag
and one optional ELSE tag.
The presence of an IF tag typically implies a dynamic synchronization struc-
ture program. However, the parser/compiler may apply transformations to
eliminate the dynamic structure (as IF reductions).

<CONDITION> </CONDITION>
The condition inside this tag is written in the native/target language, and
it may use SPC-XML variable references that must be translated properly
by the parser.

<THEN> </THEN>
The code to execute when the condition of an IF tag is evaluated to true. It
may contain CALL, LOOP, PAR, IF, REPEAT or WHILE tags.

<ELSE> </ELSE>
The code to execute when the condition of an IF tag is evaluated to false. It
may contain CALL, LOOP, PAR, IF, REPEAT or WHILE tags.

<WHILE> </WHILE>
This tag represents iterative execution of the inside tags. The compulsory
CONDITION tag inside is evaluated before beginning each execution. The
iteration continues while the condition is evaluated to true.
A WHILE tag may also contains CALL, LOOP, PAR, IF, REPEAT or
WHILE tags.
The presence of a WHILE tag typically implies a dynamic synchronization
structure program. However, the parser/compiler may apply transformations
to eliminate the dynamic structure.

<REPEAT> </REPEAT>
This tag represents iterative execution of the inside tags. The compulsory
CONDITION tag inside is evaluated after ending each execution. The iter-
ation continues until the condition is evaluated to true.

15

A REPEAT tag may also contains CALL, LOOP, PAR, IF, REPEAT or
WHILE tags.

The presence of a REPEAT tag typically implies a dynamic synchronization
structure program. However, the parser/compiler may apply transformations
to eliminate the dynamic structure.

A.8 Global named resources (optional)

<RESOURCES> </RESOURCES>
It contains a collection of RESOURCE tags, defining a collection of resources
to content for.

<RESOURCE name="" [units=""] />
A contention resource definition, including a name and an optional number
of units (1 by default).

<USES> </USES>
This tag contains a collection of USE tags.

<USE name="" [units=""] />
Each USE tag defines the name and units of a contention resource that a
function or process must lock to proceed. The units attribute is optional,
with a default value of 1.
The resources locking and unlocking operation must be atomic for all the
resources inside the USES tag.

16

LT

9INJONIYS JUSWNIOP TINX-DJS “T “Srq

HEAD

e | | LANG | |DES(;RIPTION

PARAMETERS

\

SPC-XML

-

UNIT-BODY

P ! [INcLUDE] ["cope | [REsouRces |
T

I
RESOURCE

oy || USES |

// !
[N | [out]| [INouT |

| PARAMETERS | | cope | | USEs |
7 \ T

| LocaL | | BO
T T T >
| I 1 - / \ |
[vAR | ! [use | [mn][out] [INouT] [usk |
|
|
|
D 1 Blocktags SPC-XML v0.4
" | cALL | [vAR-OVERLAP| | PAR | [Loor| | IF | | wHILE | | REPEAT |
S e ——— S Sy B T~]
! —— Onlyone

.............. Zero or one (Optional)

- — - - Zero or more

B DTD (Data Type Definition)

<?7xml version="1.0"7>
<!DOCTYPE SPC-XML [

<!ELEMENT SPC-XML (HEAD, UNIT-BODY) >
<!ATTLIST SPC-XML version CDATA #FIXED "0.4">

<!ELEMENT HEAD (TITLE, LANG, DESCRIPTION?) >
<!ELEMENT TITLE (#PCDATA) >
<!ELEMENT LANG EMPTY >

<!'ATTLIST LANG name (C|CC|F90|F95) #REQUIRED >

<!ELEMENT DESCRIPTION (#PCDATA) >

<!ELEMENT UNIT-BODY ((INCLUDE |CODE|RESOURCES|PROCESS|FUNCTION)*) >
<!ELEMENT INCLUDE (#PCDATA) >
<!ELEMENT CODE (#PCDATA) >

<!ELEMENT RESOURCES (RESOURCE*) >
<!ELEMENT RESOURCE EMPTY >
<'ATTLIST RESOURCE name CDATA #REQUIRED >
<YATTLIST RESOURCE units CDATA "1" >
<!ELEMENT USES (USEx) >
<YATTLIST USES name CDATA #REQUIRED >
<YATTLIST USES units CDATA "1" >

<!ELEMENT PROCESS (DESCRIPTION?,USES?,PARAMETERS,BODY) >
<YATTLIST PROCESS name ID #REQUIRED >

<!ELEMENT FUNCTION (DESCRIPTION?,USES?,PARAMETERS,CODE) >
<VATTLIST FUNCTION name ID #REQUIRED >
<'ATTLIST FUNCTION workload CDATA #IMPLIED >

<!ELEMENT PARAMETERS (IN|OUT|INQUT)* >
<!'ELEMENT IN EMPTY >
<'ATTLIST IN name CDATA #REQUIRED >
<YATTLIST IN basetype CDATA #REQUIRED >
<'ATTLIST IN dim CDATA #IMPLIED >
<!ELEMENT OUT EMPTY >
<'ATTLIST OUT name CDATA #REQUIRED >
<'ATTLIST OUT basetype CDATA #REQUIRED >
<'ATTLIST OUT dim CDATA #IMPLIED >
<!'ELEMENT INOUT EMPTY >
<'ATTLIST INOUT name CDATA #REQUIRED >
<'ATTLIST INOUT basetype CDATA #REQUIRED >

18

<YATTLIST INOUT dim CDATA #IMPLIED >

<!ELEMENT LOCAL (VARx) >

<!ELEMENT VAR EMPTY >
<'ATTLIST VAR name CDATA #REQUIRED >
<!'ATTLIST VAR basetype CDATA #REQUIRED >
<V'ATTLIST VAR dim CDATA #REQUIRED >
<!ATTLIST VAR shared (yes|no) "no" >

<!ELEMENT BODY (CALL|VAR-OVERLAP|PAR|LOOP|IF|WHILE|REPEAT)* >

<!ELEMENT CALL (PARAMx*) >
<!ATTLIST CALL name CDATA #REQUIRED >
<!-- Cannot be an IDREF to allow calls to elements in other documents -->
<VATTLIST CALL exclusive CDATA #IMPLIED >

<'ELEMENT PARAM EMPTY >
<V'ATTLIST PARAM value CDATA #REQUIRED >
<YATTLIST PARAM target CDATA #IMPLIED >

<!ELEMENT VAR-OVERLAP EMPTY >
<VATTLIST VAR-OVERLAP srcVar CDATA #REQUIRED >
<'ATTLIST VAR-OVERLAP name CDATA #REQUIRED >
<VATTLIST VAR-OVERLAP layour CDATA #IMPLIED >

<1ELEMENT PAR (PARBLOCK*) >
<YATTLIST PAR p CDATA #IMPLIED >

<'ELEMENT PARBLOCK (CALL|VAR-OVERLAP|PAR|LOOP|IF|WHILE|REPEAT)* >
<'ATTLIST PARBLOCK index CDATA #IMPLIED >

<!ELEMENT LOOP (CALL|VAR-OVERLAP|PAR|LOOP|IF|WHILE|REPEAT)* >
<'ATTLIST LOOP n CDATA #REQUIRED >

<!ELEMENT IF (CONDITION,THEN,ELSE?) >
<!ELEMENT THEN (CALL|VAR-OVERLAP|PAR|LOOP|IF|WHILE|REPEAT)* >
<!ELEMENT ELSE (CALL|VAR-OVERLAP |PAR|LOOP|IF|WHILE|REPEAT)* >

<!ELEMENT WHILE (CONDITION, (CALL|VAR-OVERLAP|PAR|LOOP|IF|WHILE|REPEAT)x*) >
<!ELEMENT REPEAT (CONDITION, (CALL|VAR-OVERLAP |PAR|LOOP|IF|WHILE|REPEAT)*) >

1>

19

C Previous version: Transitional documentation

The changes from version v0.3 to v0.4 include minor tag renaming and new
unified syntax for the inclusion of dynamic data-layouts and partition modules
extensions (see the description of the new VAR-OVERLAP tag).

C.1 Tags renamed or substituted from v0.3

— OVERLAP element is substituted by VAR-OVERLAP. The VAR-OVERLAP ele-
ment is not a processing statement, as the previous OVERLAP tag. It is a
declaration statement and may only appear inside the LOCAL element.

— BRANCH element is renamed as PARBLOCK.

— BODY element only exists now inside a PROCESS element.

— BODY element inside SPC-XML element is renamed as UNIT-BODY.

— Attribute shared of the VAR element is now a boolean value "true" or "false";
instead of using as values the words "yes", "no".

— Tag MAIN has been eliminated. Now, a PROCESS element which have a name
attribute with value "main” is considered the process which is run to begin
the program’s execution.

C.2 Version 0.3.1: Dynamic data-layouts

This is an obsolete transitional documentation. Version v0.4 has included most
of these features in the new VAR-OVERLAP tag.

Dynamic data-layouts: Dynamic overlaps

<OVERLAP srcVar="" overlapVar="" layout=""/>

This form of the OVERLAP tag is thought for dynamic even partitions.

The dynamic back-end of the compiler should create the appropriate target

code to create an overlap of the source variable accordingly with the source

variable dimensions, the number of processors/threads available to this part

of the computation and the layout type.

Partitions type are well-known data layout forms:

blockR : Each part of the overlap has the same size (approximately if not
even) and its data pieces are consecutive.
If multidimensional variables are used, the first dimension (rows) is the
one chosen to split in blocks (more efficient for row oriented memory
layouts, like C language).

blockC : Each part of the overlap has the same size (approximately if not
even) and its data pieces are consecutive.
If multidimensional variables are used, the last dimension (columns) is
the one chosen to split in blocks (more efficient for column oriented
memory layouts, like Fortran language).

strideR : Each partition is a collection of rows (first dimension elements)
with stride equal to the number of available processors/threads.

20

strideC : Each partition is a collection of columns (last dimension elements)
with stride equal to the number of available processors/threads.

Other more complex layout types (as tiles) may be defined (and included
preferred as compiler plug-ins) in the future.
The programmer may use a dimensionless overlap variable. The dimension of
the overlap variable is computed accordingly with the number of processors
available. The macro SPClast may be used to refer to the last valid index
of an overlap.

<BORDER borderVar="" layoutVar="" type="" size=""/>
This last form of overlapping is thought to create the appropriate layout over-
laps needed to communicate border information of a previous data-layout.
The borderVar attribute is the name of a new overlap variable in which to
store the border shape information. The layout attribute is the name of the
overlapping variable associated with a previous layout, using an OVERLAP
tag.
The new border overlap will contain as many parts as the original layout, and
each part will contain only a subset (border) of the same indexed part. The
border position is determined by the type attribute, and the size attribute
determines how many elements (on the appropriate dimension) are included
in the border.
Valid border types are:
first : First elements of a block partition (rows or columns).
last : Last elements of a block partition (rows or columns).
More types could be defined (and included prefer ed as compiler plug-ins)
in the future.

21

References

1. J.A. Caminero-Granja. SPCC, un protipo de un compilador de SPC-XML. M.sc.
thesis, E.T.S. de Ingenieria Informatica, Sep 2004.

2. C. Lazaro de la Osa and P. Collazos Fernandez. Técnicas de compilacion para
lenguajes de paralelismo Anidado. M.sc. thesis, E.T.S. de Ingenieria Informatica,
Sep 2002.

3. D. Gelernter and N. Carriero. Coordination languages and their significance. Com-
munications of the ACM, 35(2):97-107, Feb 1992.

4. A.J.C. van Gemund. The importance of synchronization structure in parallel pro-
gram optimization. In Proc. 11th ACM ICS, pages 164-171, Vienna, Jul 1997.

5. R. Portales-Fernandez. Compilador estdtico-dindmico de SPC-XML (Estudio e im-
plementacion). M.sc. thesis, E.T.S. de Ingenieria Informéatica, Sep 2003.

22

