
Computer Science Department

University of Valladolid

Valladolid - Spain

A Classification Framework and Survey for Design
Smell Management

Javier Pérez, Carlos López, Naouel Moha, Tom Mens

Departamento de Informática, Universidad de Valladolid, Spain.
jperez@infor.uva.es

Departamento de Ingenieŕıa Civil, Universidad de Burgos, Spain.
clopezno@ubu.es

Département d’informatique, Université du Québec à Montréal, Canada.
moha.naouel@uqam.ca

Service de Génie Logiciel, Université de Mons - UMONS, Belgium.
tom.mens@umons.ac.be

Abstract. Many approaches and tools have been developed to detect,
correct or reduce design smells. This technical report presents a taxon-
omy for design smell management approaches, using feature diagrams as
a graphical guidance to illustrate it. This taxonomy can help in various
ways. Newcomers in the domain can use it to get acquainted with the
important aspects of design smell management, tool builders may use it
to compare and improve their tools, and software developers may use it
to assess which tool or technique is most appropriate to their needs.

Technical Report No. IT-DI-2011-0001

Table of Contents

1 INTRODUCTION . 2
2 DESIGN SMELLS DEFINITIONS AND HISTORICAL BACKGROUND

3
2.1 Code Smells . 4
2.2 Design Smells . 5
2.3 Historical Background on Design Smells . 5

3 OVERVIEW OF THE TAXONOMY . 7
3.1 Feature modelling notation . 7
3.2 Top level features of the design smell management taxonomy 8

4 DESIGN SMELL . 10
5 TARGET ARTEFACT . 12

5.1 Type of Artefact . 13
5.2 Versions . 13
5.3 Type of Representation . 14

6 ACTIVITY . 15
6.1 Specification . 16
6.2 Detection . 17
6.3 Visualisation . 19
6.4 Correction . 20
6.5 Impact Analysis . 21

7 CONCLUSIONS AND FUTURE WORK . 23
7.1 Open problems and future trends . 23
7.2 Conclusion . 23

8 ACKNOWLEDGEMENTS . 24

List of Figures

1 Feature diagram notation used throughout this survey. 8
2 Top-level variation points for comparing design smell management ap-

proaches. 9
3 Top-level Design Smell feature, and its subfeatures. 10
4 Top level Target Artefact feature, and its subfeatures. 12
5 Top level Activity feature, and its subfeatures. 15
6 Degree of automation support of a design smell management activity. . . 16
7 Summary of the current situation for the specification activity. 17
8 Summary of the current situation for the detection activity. 18
9 Summary of the current situation for the visualisation activity. 20
10 Summary of the current situation for the correction activity. 21
11 Summary of the current situation for the impact analysis activity. 22

1 INTRODUCTION

Software evolution is a fundamental activity of software development that often
results in an increase of software entropy and, as a consequence, in the decay of
software structure. As a software system evolves, its structure tends to deteri-
orate because the evolution efforts concentrate more on the correction of bugs
and on the addition of new functionality than on the control and improvement
of the software’s architecture and design [Bro75].

Design smells are problems encountered in the design of a software system,
and stem from “poor” design choices, leading to ill-structured software. This
may hinder further development and evolution by making it harder for soft-
ware developers to change the software. Design smells can arise at different
levels of granularity, ranging from high level design problems, such as antipat-
terns [BMMIM98], to low-level or local design problems, such as code smells
[FBB+99].

Bad design practices, often due to inexperience, insufficient knowledge or
time pressure, are at the origin of design smells [PW92]. Often, these are not
isolated problems, but symptoms or precursors of more global defects. Design
smells are quite different from software defects (also referred to as bugs) which
are “deviations from specifications or expectations which might lead to failures
in operation” [FN99,Hal77].

An increasing number of approaches have been proposed for both the detec-
tion and correction of design smells. The proposed detection techniques consist
mainly in defining and applying rules for identifying design smells. As for the
correction techniques, they often consist in suggesting which refactorings could
be applied to the source code of a system to restructure it, thereby correct-
ing, or at least reducing, its code and design problems. In this technical report,
we refer to design smell management as the collection of techniques, tools
and approaches to detect, correct or reduce design smells. Correcting, or at
least, reducing smells can improve software quality. As such, the goal of a smell
management process is to change the system’s structure to improve its internal
quality factors, in particular its understandability and maintainability1.

This technical report presents the results of a literature study that we have
carried out on design smell management techniques. We have also downloaded
and evaluated numerous tools that automate some of the design smell manage-
ment activities. The results of our taxonomy are presented as a concise multi-
dimensional classification framework, using feature diagrams as a graphical rep-
resentation [CE00]. Our framework can be used, among others, to compare the
commonalities and variabilities of different approaches and tools based on par-
ticular criteria of interest.

Due to the abundance of research literature available on the subject, we have
deliberately restricted our study in various ways. First of all, we only consider
approaches that are directly related to the management of structural problems

1 A good reference on software quality factors can be found in the ISO 9126 stan-
dard [ISO01].

2

that can be detected in software code and design, in particular for object-oriented
software. A lot of related work exists on the identification and correction of dif-
ferent kinds of problems in specific types of software-related systems, such as
databases [BGQR07,JFRS07], and networks [PP07], but these are outside the
scope of this technical report. The specification and detection of design smells
relate more generally to the field of design pattern specification and detection
(e.g., [GA08]). Such approaches are also outside the scope of our technical re-
port. Finally, two major approaches to design smell management can be dis-
tinguished: preventing smells before they occur; and correcting them once they
have appeared. These two approaches are so different by nature that a taxonomy
covering both of them would not be very meaningful. The taxonomy presented
in this technical report therefore focuses on the second approach only.

The remainder of the technical report is structured as follows. Section 2 in-
troduces the necessary terminology and historical background on design smells.
Section 3 explains how our taxonomy is structured and illustrated, using the
feature diagram notation. The next three sections each focus on a major vari-
ation point enabling to distinguish smell management approaches: the design
smells addressed (Section 4) , the targeted artefact(s) (Section 5), and the sup-
ported activities (Section 6). Finally, Section 7 concludes the technical report,
by discussing open problems and by presenting challenging avenues of future
research.

2 DESIGN SMELLS DEFINITIONS AND
HISTORICAL BACKGROUND

First of all, a precise definition of the term “smell” is needed. A “smell” describes
a situation suggesting a potential problem. To decide whether the problem is
real and relevant, the situation has to be examined in more detail. Since the
introduction of the term “smell”, there has been a plethora of different terms
to refer to a family of very similar concepts. This section aims to clarify the
terminology and proposes a way to unify the different terms appearing in the
“smell” literature.

The term “defect” has also been used to refer to these kind of design problems
in some articles [GAA01,MGLM+09], but the term is more often used to refer to
other problems. Travassos et al. [TSFB99], for example, use the term “defect”
to describe quality problems caused mainly by inconsistencies between system
requirements and system design. In [RSS+04] the authors present an approach to
detect software errors which are also referred as “defects”. These errors include
resource management bugs, concurrency problems, server side poor performance,
persistent data management bugs and implementation contract violation. This
is how “defect” is understood, in general, standing for “software defects” or
software “bugs” [RSG08]. According to Fenton et al. [FN99] “software defects”
are “deviations from specifications or expectations which might lead to failures
in operation”. In this technical report we do not pretend to cover approaches
related to this kind of problems. The term “flaw” has also been used to refer to

3

“smells” [CLMM06,LWN07a,Mar02,Tri08]. However, it is more often associated
with run-time and compile-time errors [EGR+06].

For all of the above reasons, we consistently use the term “smell” to distin-
guish it from “defect” or “flaw”. Moreover, as stated previously, we only focus
on smells related to object-oriented software. We present in the following two
categories of smells: code and design smells.

2.1 Code Smells

The term “code smell” was introduced by Kent Beck2 to define structural prob-
lems in source code that can be detected by experienced developers:

“A code smell is a hint that something has gone wrong somewhere in
your code.”

The suspect structure may not be causing serious harm (in terms of bugs and
failures) at the moment, but it has a negative impact on the overall structure of
the system and, as a consequence, on its quality factors. Code smells can clutter
the design of a system, making it harder to understand and maintain. Moreover,
the presence of code smells can warn about wider development problems such as
wrong architectural choices or even bad management practices. The term became
popular with the book from Fowler et al. [FBB+99], where a compilation of “bad
smells in code” can be found. A brief description of the term can also be extracted
from the book:

“. . . structures in the code that suggest (or sometimes scream for) the
possibility of refactoring.”

This description states the relationship between code smells and refactorings.
Code smells reveal where and how to refactor, and inversely, refactorings become
the preferred way to remove code smells.

A well-known example of code smell is the presence of duplicated code. This
situation appears when a concept, an expression or an algorithm is used in
many places across a software system. Because it has not been correctly iden-
tified within the design, it has been copied wherever needed. Duplicated code
makes the system’s structure unnecessarily more difficult to maintain because it
becomes a source of multiple problems. Errors in the duplicated code can spread
over the system, changes to be made to a duplicated portion of code should also
be applied to the copies, etc. The code should therefore be refactored in order
to unify the duplicated structures into a single definition of the concept it rep-
resents. Duplicated code can be the consequence of a design error, a quick patch
to achieve a tight deadline, or a deep-rooted bad practice of copy-paste reuse.
Various tools and techniques have been proposed to detect duplicate code, such
as DupLoc [DRD99] and its descendants, or the Copy-Paste Detection (CPD)
part of the PMD tool [PMD09].

2 See http://c2.com/cgi/wiki?CodeSmell

4

2.2 Design Smells

We refer to “design smells” as a concept that includes “code smells”, while
being more general. The term covers the whole range of problems related to the
software’s design structure.

Different smells affect the software at a different granularity level, from meth-
ods (e.g., Long Parameter List [FBB+99, page 78]) to the whole system ar-
chitecture (e.g., Stovepipe System [BMMIM98, page 159]). Due to this, differ-
ent authors have made further additions to the smell terminology. The design
smell concept appears in the literature with a variety of terms, for example de-
sign flaws in [SLT06,Tri08] disharmonies in [LM06], or defects in [TMMM07].
In [MGDLM10], a distinction is made between smells appearing in the refac-
toring book from Fowler et al. [FBB+99], and in the antipatterns book from
Brown et al. [BMMIM98], being identified as code smells and design smells, re-
spectively. Martin [Mar03] refers to “design smells” as higher-level smells that
cause the decay of the software system’s structure, which can be detected when
software starts to exhibit the following problems:

– Rigidity: The design is hard to change because every change forces many
other changes to other parts of the system.

– Fragility: The design is easy to break. Changes cause the system to break
in places that have no conceptual relationship to the part that was changed.

– Immobility: It is hard to disentangle the system into components that can
be reused in other systems.

– Viscosity: Doing things right is harder than doing things wrong. It is hard
to do the right thing because sometimes it’s just easier to do “quick hacks”.

– Needless Complexity: The system is over-designed, containing infrastruc-
ture that adds no direct benefit.

– Needless Repetition: The design contains repeating structures that could
be unified under a single abstraction.

– Opacity: The system is hard to read and understand and does not express
its intent well.

In spite of the different terminology used in the literature, all aforementioned
terms have in common that they describe problems related to a bad design, such
as a misidentified or overlooked abstraction, a misused pattern, an under- or
over-engineered design, etc. For the sake of simplicity, and in order to unify the
existing terminology, we use the term “design smell” to represent:

a problem encountered in the software’s structure (code or design), that
does not produce compile-time or run-time errors, but negatively affects
software quality factors. This negative effect could lead to errors in the
future.

2.3 Historical Background on Design Smells

Several books relate to design smells. Webster [Web95] wrote the first book
on smells in the context of object-oriented programming, including conceptual,

5

political, coding, and quality-assurance pitfalls. Riel [Rie96] defined 61 design
heuristics characterising good object-oriented programming, enabling software
engineers to assess the quality of their systems manually, and providing a basis
for improving design and implementation.

Beck [FBB+99] compiled 22 code smells, which suggest where and when the
engineers should apply refactorings. Code smells are described in an informal
style and associated with a process to locate them through manual inspections
of the source code.

Brown et al. [BMMIM98] provided “antipatterns” as another type of smell
specification. They focused on the whole software development process of object-
oriented systems and textually described 41 antipatterns, which are general
object-oriented smells. Fourteen of these antipatterns relate to software develop-
ment (design smells), 13 of them relate to software architecture, and the remain-
ing 14 relate to project management. Belonging to the software development
category are the well-known antipatterns Blob and Spaghetti Code. In this tech-
nical report, we are not interested in managerial antipatterns since they are quite
difficult to detect in design workproducts.

Tiberghien et al. [TMMM07] described 47 design smells, most of which taken
from the other smell catalogues. They use the French term “défauts de concep-
tion”. The smells listed are all about bad design, except for “code level defects”,
which address low-level code problems not so much related to design.

These books and catalogues provide in-depth views on heuristics, code smells,
and antipatterns aimed at a wide audience for educational purposes. However,
manual inspection of the code for searching smells based only on textual descrip-
tions is a time-consuming and error-prone activity. Some works have analysed
and compiled design smells with more detailed and structured descriptions to
ease their manual or automated detection and correction.

Kerievsky [Ker04] added some new smells to Beck’s catalogue, such as: So-
lution Sprawl, Oddball Solution, Indecent Exposure and Combinatorial Explo-
sion. In addition, he related code smells to refactorings and design patterns.
Some smells can originate from the misuse or the absence of design patterns,
and therefore these smells can be corrected by introducing or removing design
patterns. For example, Move Creating Knowledge to Factory is a refactoring
that solves the smell of sprawling object creation responsibility by introducing
a factory design pattern.

Lanza and Marinescu [LM06] presented a catalogue of design smells called
“disharmonies”, along with the definition of detection strategies and recommen-
dations for the correction process. This approach introduces metrics-based rules
to capture deviations from “good” design principles. The term “disharmony”
can be understood more as an intent to unify the terminology than as a kind
of defect on its own. Many disharmonies are similar to code smells in terms of
their abstraction level. Indeed, 7 out of 11 disharmonies are problems already
referenced in [FBB+99]. The definition of “detection strategies” is a step towards
precise specifications of design smells that can allow the automated smell detec-

6

tion. The recommendations for correction are not so suitable to automation, but
are sufficiently structured to guide the developer through the correction process.

Trifu [Tri08] described a set of 10 design smells, which he coined “design
flaws”, and provided “restructuring patterns” to detect and correct them. Re-
structuring patterns identify not only the smell, but also the intent of the design.
This is then used to propose a correction strategy, which is a pseudo-code algo-
rithm based on the application of refactorings and on the introduction of design
patterns.

Moha et al. [MGDLM10] proposed a method and a technique to specify, de-
tect and visualise design smells. They used a domain-specific language to allow
the user to specify smells. These specifications are transformed into generated
Java source code, which can be compiled and run to search for smells. The speci-
fication process is manual but the detection and visualisation are fully automated
through DECOR, the tool that implements the approach.

From the above, it should be clear that the research in the field of design
smells has evolved to propose more automated approaches, not only to smell
detection, but also to the other activities of smell management, such as specifi-
cation and correction.

3 OVERVIEW OF THE TAXONOMY

The goal of this technical report is to present a taxonomy of design smell man-
agement approaches, providing a framework to compare and analyse the current
and future design smell management techniques and tools. This taxonomy can
be used for a wide variety of purposes. Among others, it can help software de-
velopers choosing a particular approach that is best suited for their needs, it can
help tool builders to assess the strengths and weaknesses of their tool compared
to other tools, and it can help scientists to identify limitations across tools or
technology that need to be overcome by improving the underlying techniques
and formalisms.

3.1 Feature modelling notation

As a visual aid to guide our design smell management taxonomy, we rely on
a visual notation called feature diagrams, that is inspired by the one used by
Czarnecki and Helsen to present their survey on model transformation [CH06].
Feature diagrams are a visual representation of feature models. Different symbols
and notations for feature diagrams can be found in the literature. The notation
used in this technical report is shown in Figure 1.

Feature modelling [CE00] is the activity of modelling the common and vari-
able properties of concepts and their interdependencies by organising them into
a coherent model referred to as a feature model. This model is used to repre-
sent a hierarchy of features, representing the common and variable properties of
concept instances and the dependencies between the variable features.

7

Mandatory Feature

Optional Feature

Grouped Feature

An instance should implement
this feature

This feature belongs to a set
of grouped features

An instance can optionally
implement this feature

An instance should implement
a subset of 1..* features from
the set of grouped features

An instance should implement
exactly 1 feature from the set
of grouped features

Reference to feature model X

An instance can implement a
range from n to m clones of
this feature

[n..m]

Feature X

Feature X

Fig. 1. Feature diagram notation used throughout this survey.

Feature models are a nice and intuitive way to represent a family of systems,
or a concept such as design smell management, through the analysis of the com-
monalities and differences between the wide variety of approaches supporting it.
Features are important properties of a concept, and the aim of feature modelling
is to describe a family or a concept, within a given domain, through the analy-
sis and specification of its particular occurrences. Features also serve to capture
and model the knowledge and terminology of that domain. The basis for feature
modelling can be found in Czarnecki and Eisenecker’s book [CE00].

During the analysis of the surveyed design smell management approaches
and tools, we have detected many commonalities shared between all of them,
or between some subsets. For example, all approaches address a certain type of
target artefact. In the same way we have identified relevant differences that can
be used to characterise each approach. As an example (see Section 5), an ap-
proach can search for design smells in source code, or in executable code, models,
etc. Consequently, for this taxonomy, we have found feature diagrams to be an
appropriate and useful notation. Moreover, since all design smell management
tools belong to a “family” of approaches, they can be naturally described with
feature diagrams.

The reader should note that this survey, and the feature diagrams that il-
lustrate it, reflect the current state of the art. Therefore, the features identified
in some categories, such as “Smell Property” in Section 4 or “Type of Repre-
sentation” in Section 5, may be extended by future approaches. For this reason,
we have sometimes added to the feature diagrams elements that do not match
current approaches, but rather illustrate what we consider to be feasible or desir-
able in future approaches. Such is the case of the “Target Artefact” multiplicity
in Figure 2.

3.2 Top level features of the design smell management taxonomy

The proposed feature diagram notation allows us to group design smell manage-
ment activities, tools, techniques or formalisms based on their commonalities.
We adopt a multi-dimensional classification, allowing us to describe and compare
different approaches, based on the criteria of interest. Within our classification,
we do not consider general properties such as interoperability, usability, or ex-
tensibility because these are tool-specific properties that can apply to any kind

8

of tools regardless of the domain of interest. As such, they are not specific or
intrinsic to design smell management approaches per se.

To present our survey in a structured way, each of the following sections dis-
cusses the main features with respect to design smell management that can be
used to group together approaches sharing these features. We start by describing
the top level features, constituting the main common properties of our field of
study. We then descend down the model to describe each of the subfeatures.
The root feature of our model is Design Smell Management. It represents any
approach dealing with design smell management. An instance of the model will
represent an incarnation of an existing approach, or even a non-existing one that
would be feasible and interesting to develop. The three top-level features of the
Design Smell Management root feature are shown in Figure 2 and explained be-
low. These features describe properties common and mandatory to every design
smell management approach.

[1..*]

Design Smell

Design Smell
Management

[1..*]

Target Artefact

[1..*]

Activity

Fig. 2. Top-level variation points for comparing design smell management approaches.

Design Smell. A wide range of design smells can be managed by different
approaches. The nature of the smells each approach addresses is a major top-
level variation point.

Target Artefact. Any design smell management tool requires at least one soft-
ware artefact on which the smell can be observed. We will refer to this (set of)
software artefact(s) as the Target Artefact of the approach.

Activity. The third top-level variation point for design smell management ap-
proaches is the set of activities explicitly supported by each approach. An exam-
ple activity is smell specification. Every approach requires a definition of design
smells in order to be able to detect them, but only some approaches present
explicit support for the smell specification activity.

The next three sections of this technical report will discuss each of these
three main features in detail, by further decomposing them into subfeatures and
using them to survey the state of the art in design smell management.

9

4 DESIGN SMELL

As introduced by the root feature diagram in Figure 2, a design smell manage-
ment approach can cover several smells. The Design Smell feature, depicted in
Figure 3, allows to describe in more detail the nature of those smells. This feature
is split into five branches of mandatory features. Most approaches are specialised
in: (1) a certain type of smells, (2) smells at different levels of abstraction, (3)
smells affecting several program entities at a particular level of granularity, and
(4) smells that have internal properties of different natures. This classification
of design smells extends those proposed in [MLC06,MGDLM10]. Although we
use it for the purpose of establishing a classification framework for design smell
management approaches, it is also useful on its own, for classifying design smells
themselves.

Design Smell

Low Level Smell High Level Smell Method

Class

Package

Subsystem

Structural

Lexical

Measurable

Level of Smell Smell Scope Smell Property

System

Type of Smell

[1..*]

Disharmony

Code Smell

Antipatterns

Bad Pattern
Usage

Architecture
Smell

[1..*][1..*]

Fig. 3. Top-level Design Smell feature, and its subfeatures.

Type of Smell. This feature describes the type of design smells addressed by
an approach. By “type of smell” we refer to the catalogue in which the smell
is defined. Some design smell management approaches define their own set of
smells [LM06], but we the vast majority of them are focused in those smells
described in a small number of catalogues. Those represented in the feature
diagram of Figure 3 are the most widely referenced catalogues. To characterise
a design smell management approach, we should describe which catalogue(s) of
smells it addresses.

Marinescu et al. [LM06] define disharmonies as design smells that affect single
entities such as classes and methods. The particularity of these disharmonies is
that their negative effect on the quality of design elements can be noticed by
considering these design elements in isolation. They identify three aspects that
contribute to identify disharmony of a single entity: its size, its interface and its
implementation. iPlasma [Gro], InCode and InFusion [Int08] are three tools
that detect these disharmonies, using object-oriented metrics with customized
filters.

10

Most of the studied approaches focus on code smells specified in the catalogue
of Fowler [FBB+99], such as [AS09,CLMM06,TCC08,Mun05,Sem07]. Munro pro-
posed metric-based heuristics with thresholds to detect code smells [Mun05],
which are similar to Marinescu’s detection strategies [Mar02]. Alikacem and
Sahraoui [AS09] proposed a language to detect smells and violations of quality
principles in object-oriented systems. This language allows the specification of
rules using metrics, inheritance, or association relationships among classes, ac-
cording to the user’s expectations. It also uses fuzzy logic to express the thresh-
olds of rule conditions.

The DECOR method developed by Moha et al. [MGDLM10] focuses mainly
on Brown’s antipatterns [BMMIM98]. As another example, Analyst4j [Ana08]
allows the identification of antipatterns and code smells in Java systems using
metrics.

Some approaches use design patterns to search for design smells [GHJV95],
either to look for opportunities to apply a design pattern or to detect misappli-
cation of patterns [GAA01,Ker04,TM03]. Guéhéneuc et al. [GAA01] use design
patterns as reference structures, and detect design smells as failed intents of ap-
plying design patterns. For this, they search for structures that ressemble design
patterns but slightly deviate from them. To correct these smells, they suggest
to transform these structures so they match the intended design pattern prop-
erly. In [Ker04], Kerievsky proposes a more manual approach for detection and
correction of design-pattern-related smells. He instructs the developer to search
for structures that reveal that a design pattern has been misapplied, but he also
describes situations where a design pattern is absent and can be introduced, and
situations where a design pattern is cluttering the design and therefore, should
be completely removed.

Roock and Lippert [SR06] present a catalogue of ‘architecture smells” related
to the organization of subsystems. Among these smells we can find dependency-
related problems such as cyclic dependencies. Such smells can be detected by
tools like [Con99,STA,Tes08].

Level of Smell. Another way to classify design smells is through the distinc-
tion between low-level and high-level smells. Low-level smells focus on a single
very specific problem. Code smells [FBB+99] such as are “long methods”, “data
classes”, and “large classes” are examples of low-level smells that refer to very
specific situations observed in the code. High-level smells are design smells that
are composed of other smells, such as antipatterns. They focus on a variety of
similar (but different) problems. An example of a high-level smell is the Blob an-
tipattern [BMMIM98], also known as God Class. It reveals a procedural design
(and thinking) implemented with an object-oriented programming language. It
manifests itself through a large controller class that plays a God-like role in the
program by monopolizing the computation, and which is surrounded by a num-
ber of smaller data classes providing many attributes but few or no methods.
This high-level smell is composed of other low-level smells such as the code smells
“data class” and “large class”.

11

Smell Scope. This feature is used to describe the extent or scope of the different
types of entities involved in the supported smells. For most object-oriented lan-
guages, the different scopes would be system, subsystem, package, class, method
and statement. High-level smells usually represent design problems with a wide
scope, affecting several and/or large entities. Low-level smells, on the contrary,
have an effect over a well-defined and limited scope, i.e., within a single and small
entity. As illustrated by the multiplicity associated to this feature, a design smell
can extend over several entities belonging to different levels.

Smell Properties. The nature of a code smell can be summarised and repre-
sented by the smell indicators orproperties used in its specification. These prop-
erties can be decomposed into: structural descriptions of “smelly” structures in
the design of code; measurable specifications based on metrics and measurable
properties of the system; and lexical definitions based on the names of the soft-
ware entities. Design smell management approaches benefit from those properties
in order to tackle a particular activity. For example, in the Blob description, the
large class corresponds to a measurable property that can be easily computed
by counting the number of methods and attributes, whereas the data class is a
structural property consisting of identifying accessor methods. A lexical property
in the Blob corresponds to the use of procedural names (such as Main, Make,
Create, Exec) used in the classes affected by such smell. iPlasma [Gro,LM06]
uses the measurable properties of a Blob – referred to as God Class – to detect
it, while DECOR [MGDLM10,Tea09] additionally uses the lexical property to
perform the detection.

5 TARGET ARTEFACT

The Target Artefact feature is a major variation point to distinguish design
smell management approaches. This feature refers to the software artefacts on
which the smells can be observed. It is shown in Figure 4, and its subfeatures
are presented below.

Target Artefact

Versions

Model Source Code Executable Code Test AST Object Model Graphs Logic Formulas

Type of
RepresentationType of Artefact

Relational
Database

Fig. 4. Top level Target Artefact feature, and its subfeatures.

12

5.1 Type of Artefact

Any approach addressing the management of design smells, should focus on,
at least, one type of software artefact. The types of artefacts supported by an
approach, and the way they are represented internally, are tightly coupled to
which smells can be managed and how.

A particular tool or technique often targets only a single type of artefact. In
fact, we could not find a tool that supports many types of artefacts. Nevertheless,
it is feasible and desirable to build a tool that uses different types of artefacts
as complementary sources of information, thereby improving its results. The
manual detection process described by Travassos et al. [TSFB99] illustrates the
feasibility of this. To identify code smells, the developer is instructed to examine
different types of models, such as requirements descriptions, use cases, class
diagrams, class descriptions, state diagrams, and interaction diagrams. This is
shown in Figure 4 as a decomposition of feature Type of Artefact into a set of or
grouped subfeatures. The most common types of artefacts are source code and
bytecode or executable code. In addition, several approaches support detection
of design smells by analysing software models. A tendency of modelling tools is,
for example, to provide model warnings, so-called “critics”, to the user. This is
done by ArgoUML [Arg] and Together [Bor].

The vast majority of available tools aim at managing source code smells.
CheckStyle [Che04] and Hammurapi [Ham07], for example, load Java code
and search for violations of coding standards. The concept of design smell is
language-agnostic, so many other programming languages may be supported as
well. For example, Reek [Rut] and Roodi [Roo] search for design problems
in Ruby source code. Some authors, such as Ciupke [Ciu99] and Sahraoui et
al. [SGM00] analyse smells in C++. FXCop [FXC06] and StyleCop [Sty] find
deviations from code conventions in C# code. Some tools provide multi-language
support, such as Decor [MGDLM10], iPlasma [Gro,LM06] and the newest
iPlasma versions InCode-InFusion [Int08], which supports the analysis of
C++, Java and C# programs.

Another widely supported type of artefact is executable code –e.g., binary
code or bytecode–. Tools such as RevJava [Rev] and Stan4J [STA]. analyse
Java bytecode. The advantage of addressing executable code is that these tools
can be used even when the source code is not present.

An emerging trend in many software fields, and especially in agile software
development, is to treat tests, and more precisely scripted tests [Mes07], as first-
class citizens. An increasing number of authors have addressed the problem of
smells in scripted tests [Mes07,vMvK01] and propose approaches that provide
support for managing design smells in scripted tests [NB07,VRDBDR07].

5.2 Versions

A design smell management approach can benefit from the additional informa-
tion that can be extracted from a version repository that stores multiple versions

13

of the target artefact(s) under study. Some code smells from [FBB+99], such as
Shotgun Surgery3 are more easily identified by analysing the change history of
the system. Support for multiple versions of an artefact is an optional subfeature
that it is applicable to any type of artefact.

Several approaches [GDMR04,RSG08,XS04] propose to use different versions
of the target artefact as input. Their supporting tools often include support
to access version repositories (e.g., CVS, SVN, GIT, etc.), and to extract and
analyse the software artefacts and their metadata from these repositories. Some
of these approaches [GFGP06,LWN07a] even claim that this is the only way to
detect some particular smells or to obtain a wider picture of a certain problem.

5.3 Type of Representation

Every design smell management approach is based on an internal representa-
tion of the software artefact the approach is dealing with. In order to analyse
and process the targeted artefact, its internal representation will be used. This
feature is relevant because there is a strong dependency between the internal
representation and other aspects such as the technique, the expected results or
the automation support.

A common way of representing a software artefact is by means of an Ab-
stract Syntax Tree (AST). This type of representation is especially frequent in
approaches that target source code or executable code. A typical AST repre-
sentation will keep the complete information available in the examined artefact.
Different approaches [TCC08,Sli05,TK04,TCC08] can simplify the AST to keep
just the relevant information needed for the task at hand, or even augment
the AST with additional details in order to ease the design smell management
activities.

Other tools rely on a representation based on some Object Model. They use
a specific metamodel of the targeted artefact, such as MOON [Cre00,CLMM06],
FAMIX [Tic01,LM06] or MEMORIA [Raţ04,Gro] This type of representation is
mostly used to simplify the target artefact. Just the information needed by the
approach is extracted from the targeted artefact. Analysis and manipulation of
the targeted artefact is performed by programmed procedures using a wide va-
riety of programming languages, even custom-built Domain-Specific Languages
(DSL) [Gué03,MGLM+09].

Graph-based approaches can also be employed to analyse the target arte-
fact in search of design smells [vM02]. Graph theory can help analyse arte-
facts in search of defects, and graph transformation techniques to apply correc-
tions [MVDJ05]. De Lucia et al. [DLOV08] represent classes as graphs and use
measurable properties of these graphs to find refactoring opportunities that will
improve the cohesion of that classes.

Logic Formulas offer a similar formal support to represent software. This
type of representation enables the use of logic-based techniques to manage design
smells [Ciu99,TM03].
3 Whenever a change has to be made to a part of the system, many more little changes

to other parts of the system are needed too.

14

Some tools store the information extracted from the targeted artefact in a Re-
lational Database. This usually speeds up the task of querying the software model
by taking advantage of a dedicated and specialised query engine. This type of
representation can be used just internally by a tool [GFGP06,SSL01,TSG04], or
even be offered to its final users, enabling them to analyse the artefact by means
of structured and composable queries. For example, with SemmleCode [Sem07],
engineers can execute queries against source code, using a declarative query lan-
guage called .QL, to detect code smells.

These different types of representation can be combined. An artefact rep-
resented as an AST can be analysed with graph algorithms, if it is formalised
with graphs, or logic formulas. A model can be stored in a relational database in
order to provide an easy and efficient way to access it by querying the database.

6 ACTIVITY

The Activity feature, depicted in Figure 5, represents a major variation point
among design smell management approaches. The design smell management pro-
cess can be decomposed into different types of activities that can be supported
by a particular approach. We have decomposed this feature into 5 types of ac-
tivities that we have found in all approaches we have surveyed. For each type of
activity we describe the techniques used to support it, the automation support
achieved and the type of results that the different approaches produce.

Specification Detection CorrectionVisualisation Impact Analysis

Activity

Fig. 5. Top level Activity feature, and its subfeatures.

The automation support of an activity reflects the maturity of the studied
approach in supporting this activity. We distinguish between the following levels
of automation, depicted in Figure 6, which simplify the ones defined by Sheri-
dan [She00]:

Manual: The activity is carried out in a manual way.
Suggest Alternatives: The tool can execute the activity automatically and sug-

gest options or alternatives to the user. The user still needs to select and
apply the suggestion manually.

15

Manual Fully Automated

Suggest
Alternatives

Select
Alternatives

Execute on
Approval Just Inform

Automation
Support

Semi-Automated

Fig. 6. Degree of automation support of a design smell management activity.

Select Alternatives: The tool suggests and selects the alternative tasks to be
performed. The user needs to confirm this selection.

Execute on Approval: The tool presents the user the activity that is going to
be executed, but requests permission. The user can only choose to apply the
activity as a whole, or to cancel it.

Just Inform: The tool decides and executes the activity without asking the
user, but informs the user about the process.

Fully Automated: The tool performs the activity in a fully automatic way,
without informing the user of what is happening.

Any design smell management approach must produce some results when
applied to a software artefact. To compare approaches, we found it necessary to
describe the type of result that is being, or can be, obtained from each activity.
Analysing an approach or a tool according to this dimension is important in
order to determine whether it is useful to solve a particular problem, or whether
it can be combined with another approach or tool.

In each of the following subsections, we survey the current state-of-the-art of
supporting a particular design smell management activity, in the level of detail
that we have explained above.

6.1 Specification

The specification activity is implemented by those approaches that provide the
developers the necessary support to extend or adapt it to their particular needs,
by specifying new design smells or modifying existing smells.

Technique. Most of the surveyed approaches that support the activity of spec-
ification include a description, at least textual, of the design smell for detect-
ing or correcting it. Typically, the technique used by tools to specify design
smells is through the use of (possibly customisable) rules expressed in some
formal language (e.g. OCL, SQL, XPath, logic formulas), programming lan-
guage (e.g. Java), or domain-specific language ([MGLM+09]). The design smell
specifications in [FBB+99], include a description of general guidelines to correct
them. Wake [Wak03] specifies these correction guidelines in the form of recipes.

16

The antipatterns book [BMMIM98] provides a specification in terms of counter-
examples.

Automation. Several approaches or tools allow writing user-defined detection
or correction rules such as PMD [PMD09], Eclipse’s Metrics plugin [Ecl],
RefactorIt [Aqr02], iPlasma [Gro,LM06], Decor [MGDLM10] and
CoderAider [Dur07]. However, this activity is intrinsically manual. The ability
to define or tune the smell detection rules is common to most approaches that
deal with smells based on metric warnings. SemmleCode [Sem07] provides a
quite versatile interface to specify design smells, through its built-in query lan-
guage that can be used to write complex queries to detect smells.

Result. The specification activity produces either a purely descriptive and non
automatable design smell specification, or some kind of design smell detection
rules that can be automated or even consists of an executable detection program.

Figure 7 summarises the techniques, automation support and results for the
specification activity.

Automation
SupportTechnique

Specification

Detection RulesDesign Smell
Specification

Detection
Programs

Result

ManualFormal
Language

Textual
Description

Programming
Language

DSL
Language

Fig. 7. Summary of the current situation for the specification activity.

6.2 Detection

The vast majority of existing design smell management approaches focus on the
activity of design smell detection.

Technique. One of the approaches to detect design smells is through manual
code inspection [TSFB99]. Most detection approaches, though, are based on the
use of metrics. The vast majority of metric-based approaches rely on structural
metrics [CK91], such as [BEG+06,LM06,SLT06] but some recent approaches
are taking into account semantic metrics as well [DLOV08,ED00]. Structural
metrics correspond to metrics derived from syntactic aspects of object-oriented
code, such as the analysis of relationships among the methods and attributes of
a class. The metrics defined by Chidamber and Kemerer [CK91] such as Depth
of Inheritance Tree (DIT), Lack of Cohesion of Methods (LCOM), and Cou-
pling Between Objects (CBO) are typical examples of structural metrics. Se-
mantic metrics are based on the analysis of the semantic information embedded

17

Detection

Automation
SupportTechnique

Entity-Smell
Relationships

Result

ManualCode Inspection

Rules -
Heuristics

Data Mining

Numerical
Analysis

Probabilistic
Techniques

Metrics

Bayesian Belief
Networks

Fully Automated

Semantic MetricsStructural Metrics

Fig. 8. Summary of the current situation for the detection activity.

in the code, such as comments and identifiers [ED00]. Knowledge-based, pro-
gram understanding, and natural language processing techniques are used to
compute such metrics. For example, the semantic LORM (Logical Relatedness
of Methods) metric [ED00] measures the cohesion of a class, and more pre-
cisely the conceptual relatedness of the methods of the class, as determined by
the understanding of the class methods represented by a semantic network of
conceptual graphs. Several approaches use rules or heuristic knowledge to de-
tect design smells [Ciu99,KRW07,LM06,MGDLM10]. Some approaches resort to
more advanced techniques coming from the field of artificial intelligence, such
as the use of data mining techniques [XS04]; from the probabilistic field, such
as Bayesian belief networks [KVGS09]; or from numerical analysis, such as B-
Splines [OKAG10]. However, these techniques may be insufficient to detect some
code smells such as Shotgun Surgery [FBB+99] and Divergent Change [FBB+99],
where the design change propagation probabilities between artefacts have to be
considered when an artefact changes. Rao et al. [RR08] proposed a quantita-
tive method for detecting these code smells using a design change propagation
probability matrix.

Automation. Some of the proposed approaches are theoretical, aiming to get
a scientific understanding of the intrinsic difficulties involved in detecting de-
sign smells. Other approaches are fully manual, such as the use of manual
code inspection techniques to find design smells [TSFB99]. Most of the sur-

18

veyed approaches, however, provide explicit tool support, as is the case for
[Chi02,Gro,MLC05,MGDLM10,Sli05,Tri08,TCC08,WP05].

Result. The detection activity produces, in all the the approaches we surveyed
(for example in InCode-InFusion [Int08]), lists of entity-smell relationships
for each detected smell. Those results are presented in a variety of textual and
graphical ways.

Figure 8 summarises the techniques, automation support and results for the
detection activity.

6.3 Visualisation

The visualisation activity produces some kind of graphical representation of the
target artefact, allowing quick and easy identification of some of its properties.
Many approaches address the visualisation activity in the context of design smell
management, mostly to present detected smells in a graphical way. A visualisa-
tion tool can also provide other kinds of information. It can help the developer
to decide which are the best modifications in order to remove a given smell. It
can be used for evolution or for explaining the causes and impacts of smells.
Visually summarising the properties and characteristics of the system and its
parts can ease the realisation of any other activity.

Technique. The type of visualisation technique used mainly depends on the
type of information that needs to be visualised. If this information is essentially
a spreadsheet table, one can visualise it as pie charts, bar charts, line charts
and the like. If the information is essentially a graph, one needs graph-based
visualisation techniques and more or less sophisticated graph layout algorithms.
This is the case, for example if one needs to represent (part of the) software
structure, such as the dependency relationships [Con99,Tes08]. Some approaches
[LM06] define new visualisation techniques, such as the Overview Pyramid. It
is a metrics-based means to both describe and characterize the structure of
an object-oriented system by quantifying its complexity, coupling and use of
inheritance.

Automation. The activity of visualisation typically requires human interven-
tion, either during the construction of the visual representation (e.g. by selecting
the areas of interest, or choosing the most appropriate visual representation or
layout algorithm) or during its use. If the visualisation is static, it can only be
viewed [Con99,Tes08]. If it is dynamic, there is typically a direct and explicit
link back to the target artefact under study (eg, InCode-InFusion [Int08]).
This facilitates and speeds up detection and correction of design smells.

Result. Many of the surveyed approaches support some kind of visualisation by
producing different types of diagrams to offer different types of general artefact
visualisation in order to assist the comprehension of the target artefact. For
example, in DECOR, systems are represented as class diagrams and classes
infected by smells are highlighted in red. Other kinds of visualisation aids in
design smell management include entity-property visualisation and design smell

19

visualisation [vM02] such as Overview Pyramid and Polymetric views [LM06] or
dependency graphs [Con99].

Figure 9 summarises the techniques, automation support and results for the
visualisation activity.

Visualisation

Automation
SupportTechnique Result

Artefact
Visualisation

Entity Property
Visualisation

Design Smell
VisualisationSemi-AutomatedGraphChart Pyramid Class Diagram

Suggest
Alternatives

Select
Alternatives

Fig. 9. Summary of the current situation for the visualisation activity.

6.4 Correction

Approaches supporting the correction of design smells, provide a way to (suggest
how to) modify the target artefact, in order to remove smells and improve its
design. During our survey, we found considerably less approaches supporting a
(partially) automated correction of design smells, so this activity is clearly less
mature than the smell detection or visualisation activity.

Technique. During our survey we have encountered mainly four different tech-
niques for correcting design smells. The first technique is aimed at applying rules
or refactoring strategies to design smells that have been previously detected
[MGDLM10,TM03,TSG04]. These approaches have the advantage to provide a
comprehensive process both for the detection and correction of smells. The sec-
ond category suggests corrections (called refactoring opportunities) by relying
only on metric values or the presence of certain patterns, without explicitly
identifying design smells [BCT07,DLOV08,GAA01,SGM00,SSL01,SS07,TK04].
The third technique relies on ideas coming from the machine learning field,
where genetic algorithms and other types of automated learning are exploited
[BCT07,BAMN06]. Formal Concept Analysis (FCA) [GW99] is a fourth tech-
nique that has been intensively investigated for restructuring class hierarchies
[ADN05,SLMM99,ST00] and classes affected by smells [MHVG08].

Automation. Various tools support smell correction in a semi-automated way,
such as [BEG+06,TSG04,TCC08]. All of them need some additional interaction
by the user.

20

Result. The correction of design smells can produce different types of results
depending mostly on the degree of automation provided by each particular tool.
Some tools can provide just correction suggestions, while others can produce
some kind of correction plans, or specifications of the transformation sequence
needed to improve the target artefact’s design. For example, Trifu et al. [TSG04]
proposed correction strategies mapping design smells to possible solutions. How-
ever, a solution is only an example of how the program should have been imple-
mented to avoid a smell rather than a list of steps that a software engineer could
follow to correct the smell.

Some tools can apply the computed changes to their internal artefact repre-
sentation, therefore, producing a transformed artefact model. The fully-automated
tools can operate straight over the target artefact, generating a transformed arte-
fact.

Figure 10 summarises the techniques, automation support and results for the
correction activity.

Correction

Automation
SupportTechnique Result

Correction PlansCorrection
Suggestions

Transformed
Artefact Model

Transformed
Artefact

Suggest
Alternatives

Rules

Refactoring
Opportunities

Refactoring
Strategies

Machine Learning

Formal Concept
Analysis Semi-Automated

Fig. 10. Summary of the current situation for the correction activity.

6.5 Impact Analysis

The activity of impact analysis refers to the ability of an approach to compute
the change impact of a design smell [vM02,VRDBDR07] or the actions performed
to remove it [FTC07,LWN07b,TSG04].

Technique. This feature is offered mainly by approaches based on quality mod-
els [BAMN06,LM06,RSS+04,SGM00,TK04]. In [TK04], Tahvildari et al. present
an approach based on soft-goal models. With soft-goal models they define the
effects of design smells over metrics and system quality factors in a way that this
information can be used automatically by a detection or a correction tool. Using
soft-goal models the impact of design smells can be automatically computed to

21

assist the detection and correction activities. Marinescu introduces in [Mar02]
how quality models can be used to estimate the impact of a design smell.

Deligiannis et al. [DSA+04] presented a controlled experiment on the impact
of design smells, in which they studied 20 subjects to evaluate the impact of God
Classes on the maintainability and understandability of object-oriented systems.
The results of their study show that the Blob antipattern affects the evolution of
design structures and the subjects’ use of inheritance. Other similar approaches
based on controlled experiments studied the impact of design smells on software
quality factors such as comprehensibility [DDV+06] and maintenance [OCBZ09].
Some approaches used statistical models to investigate the relationship of design
smells with class error probability [LS07] or with change-proneness [KPG09].

Recent works have studied the impact of design smells on software evolution
by analyzing several versions of software systems [OCBZ09,VKMG09]. These
approaches identify mainly evolution patterns of smells, which are then used to
explain the impact of smells on the rest of the system. For example, Olbrich
et al. [OCBZ09] analysed the historical data over several years of development
of two large scale open source systems. They concluded that God Classes and
Shotgun Surgery have a higher change frequency than other classes; and thus,
may need more maintenance than non-infected classes.

Automation. Most of approaches evaluate the impact of design smells manually
by conducting controlled experiments with subjects [DSRS03,DSA+04,DDV+06].
Some approaches integrate this activity in a fully automated way [TK04] to assist
the detection and correction process.

Result. During our survey, we found that the most common results of impact
analysis are the list of entities affected by a smell (Entity Impact) and the effect
that a smell, or its removal, has over a metric value (metric impact) [DSRS03]
or over a quality factor (quality impact) [DSA+04,DDV+06].

Figure 11 summarises the techniques, automation support and results for the
impact analysis activity.

Impact Analysis

Technique

Quality ImpactMetric ImpactEntity Impact

Result

Empirical
EvaluationQuality Models Evolution of

Smells Statistic Models

Automation
Support

Manual Fully Automated

Fig. 11. Summary of the current situation for the impact analysis activity.

22

7 CONCLUSIONS AND FUTURE WORK

7.1 Open problems and future trends

Based on the findings of our survey, we discuss the remaining open problems
in the field of design smell management, and present some avenues of future
research to tackle these open challenges.

During our survey we have observed that not many of the studied approaches
allow to reason about design smells at the level of design models (as opposed to
source code and executable code). With the ever increasing importance of model-
driven software engineering, it is imperative to have better future support for
design smell management at the modeling level.

Related to the above challenge is the fact that almost none of the surveyed
approaches is able to deal with design smells that involve different types of
artefacts (e.g. a smell that involves both code, models and tests). Support for
such types of smells will continue to gain importance, in the presence of multi-
view and multi-language development environments.

Only a small fraction of the surveyed approaches took into account the version
history. Such a rich data source is able to provide much more relevant information
about why a particular design smell occurs, and how it may be corrected. As
such, this can give rise to better and more reliable design smell detection and
correction tools.

Most of the approaches we surveyed that support the activity of design smell
correction were research prototypes. The next generation of commercial design
smell management tools should therefore strive to integrate and automate cor-
rection techniques, rather than only supporting the detection activity.

Another challenge is to come up with better and more language-agnostic
design smell management approaches. Most of the surveyed approaches focus on
a specific programming language. A few of the tools, though, are applicable on
more than one language.

As a final challenge, while the main purpose of current-day design smell
management approaches is to improve the software product quality (by detecting
and correcting “smelly” parts of the software), they could also be used to improve
the software process quality. In many situations, the cause of a design smell may
be a suboptimal software process. (For example, if the software process does not
discourage copy-paste reuse, the software is likely to suffer from code duplication
and high coupling between modules. Similarly, if the process does not encourage
modular design, the software is likely to suffer from cyclic dependencies.) Hence,
the smell correction activity should not only suggest to correct the detected
problem itself, but also its cause, by providing concrete suggestions on how
to improve the software process to avoid introducing design smells before they
occur.

7.2 Conclusion

In this technical report we presented a structured taxonomy of object-oriented
design smell management approaches, using the technique of feature modelling.

23

Our taxonomy allows researchers, developers and tool vendors to: (1) position
concrete approaches within the domain; (2) use the proposed framework for com-
paring and combining individual tools and approaches; (3) identify and evaluate
tools for a specific design smell management activity; (4) provide an overview of
the research field of design smell management; (5) identify open problems and
challenges and suggest new avenues of research.

As part of our survey, we have proposed a unifying terminology for design
smells. This can be helpful for researchers in this field, since design smells have
been given many different names and have been described in many different
ways. We hope that this unifying terminology will by adopted by tool developers
in order to avoid any future confusion or misunderstanding, and to facilitate
communication and tool comparison.

8 ACKNOWLEDGEMENTS

Javier Pérez and Carlos López are partially funded by the Spanish government
(Ministerio de Ciencia e Innovación, project TIN2008-05675). Tom Mens is sup-
ported by the F.R.S.-FNRS through FRFC project 2.4515.09; by ARC project
AUWB-08/12-UMH financed by the Ministère de la Communauté française -
Direction générale de l’Enseignement non obligatoire et de la Recherche scien-
tifique; and by FEDER portefeuille TIC - project CEIQS financed by the Walloon
Region.

References

[ADN05] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. Discovering
unanticipated dependency schemas in class hierarchies. In 9th European
Conference on Software Maintenance and Reengineering (CSMR), pages
62–71, 2005.

[Ana08] Analyst4j. http://www.codeswat.com, February 2008. [Accessed: 2010-
04-06].

[Aqr02] Aqris. RefactorIT. http://www.refactorit.com, 2002. [Accessed: 2010-
04-06].

[Arg] ArgoUML. http://argouml.tigris.org. [Accessed: 2009-10-23].
[AS09] El Hachemi Alikacem and Houari A. Sahraoui. A metric extraction

framework based on a high-level description language. In 9th IEEE
International Working Conference on Source Code Analysis and Manip-
ulation (SCAM), pages 159–167, Washington, DC, USA, 2009. IEEE
Computer Society.

[BAMN06] Salah Bouktif, Giuliano Antoniol, Ettore Merlo, and Markus Neteler.
A novel approach to optimize clone refactoring activity. In 8th annual
conference on Genetic and evolutionary computation, pages 1885–1892,
New York, NY, USA, 2006. ACM.

[BCT07] Thierry Bodhuin, Gerardo Canfora, and Luigi Troiano. Sormasa: A
tool for suggesting model refactoring actions by metrics-led genetic al-
gorithm. In 1st Workshop on Refactoring Tools [DC07], pages 23–24.

24

[BEG+06] P. Baker, D. Evans, J. Grabowski, H. Neukirchen, and B. Zeiss. Trex -
the refactoring and metrics tool for ttcn-3 test specifications. In Test-
ing: Academic and Industrial Conference - Practice And Research Tech-
niques, pages 90–94, Aug. 2006.

[BGQR07] Giulia Bruno, Paolo Garza, Elisa Quintarelli, and Rosalba Rossato.
Anomaly Detection in XML Databases by means of Association Rules.
In 18th International Conference on Database and Expert Systems Ap-
plications, pages 387–391, Washington, DC, USA, 2007. IEEE Computer
Society.

[BMMIM98] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley and Sons, March 1998.

[Bor] Borland. Together. http://www.borland.com/us/products/together.
[Accessed: 2010-04-06].

[Bro75] Frederick P. Brooks. The Mythical Man-Month: Essays on Software En-
gineering. Addison-Wesley Publishing Company, Reading, MA , USA,
1975.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Feature Modeling, chap-
ter 5, pages 83–116. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, June 2000.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[Che04] CheckStyle. http://checkstyle.sourceforge.net, 2004. [Accessed: 2010-04-
06].

[Chi02] Ciprian-Bogdan Chirila. Automation of the design flaw detection process
in object-oriented systems. International Conference on Technical Infor-
matics (CONTI); Periodica Politechnica – Transactions on Automatic
Control and Computer Science, 47, October 2002.

[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-
oriented reengineering. In International Conference on Technology of
Object-Oriented Languages and Systems, pages 18–32, Washington, DC,
USA, 1999. IEEE Computer Society.

[CK91] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for
object oriented design. ACM SIGPLAN Notices, 26(11):197–211, 1991.

[CLMM06] Yania Crespo, Carlos López, Esperanza Manso, and Raúl Marticorena.
From bad smells to refactoring, metrics smoothing the way. In Object-
Oriented Design Knowledge. Principles, Heuristics and Best Practices,
Object-Oriented Design Knowledge. Principles, Heuristics and Best
Practices, chapter VII, pages 193–249. Idea Group Publishing, 2006.

[Con99] Clarkware Consulting. JDepend. http://clarkware.com/software/JDepend.html,
1999. [Accessed: 2010-04-06].

[Cre00] Yania Crespo. Incremento del potencial de reutilización del software
mediante refactorizaciones. PhD thesis, Universidad de Valladolid, 2000.

[DC07] Danny Dig and Michael Cebulla. 1st workshop on refactoring tools.
Technical Report 2007-8, TU Berlin, July 2007.

[DDV+06] Bart Du Bois, Serge Demeyer, Jan Verelst, Tom Mens, and Mar-
ijn Temmerman. Does god class decomposition affect comprehensi-
bility? In IASTED Conf. on Software Engineering, pages 346–355.
IASTED/ACTA Press, 2006.

25

[DLOV08] Andrea De Lucia, Rocco Oliveto, and Luigi Vorraro. Using structural
and semantic metrics to improve class cohesion. In International Con-
ference on Software Maintenance, pages 27–36. IEEE, October 2008.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language
independent approach for detecting duplicated code. In International
Conference on Software Maintenance, pages 109–118, 1999.

[DSA+04] Ignatios Deligiannis, Ioannis Stamelos, Lefteris Angelis, Manos Roume-
liotis, and Martin Shepperd. A controlled experiment investigation of an
object oriented design heuristic for maintainability. Journal of Systems
and Software, 72(2):129–143, July 2004.

[DSRS03] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, and Ioannis
Stamelos. An empirical investigation of an object-oriented design heuris-
tic for maintainability. Journal of Systems and Software, 65(2):127–139,
2003.

[Dur07] Nakul Durve. Coderaider: Automatically improving the design of code.
diploma thesis, June 2007.

[Ecl] Eclipse Metrics Plugin. http://eclipse-metrics.sourceforge.net. [Ac-
cessed: 2010-04-06].

[ED00] L. Etzkorn and H. Delugach. Towards a semantic metrics suite for
object-oriented design. In 34th International Conference on Technology
of Object-Oriented Languages and Systems, pages 71–80, 2000.

[EGR+06] Janees Elamkulam, Ziv Glazberg, Ishai Rabinovitz, Gururaja Kowlali,
Satish Chandra Gupta, Sandeep Kohli, Sai Dattathrani, and Claudio Pa-
niagua Macia. Detecting design flaws in uml state charts for embedded
software. In Eyal Bin, Avi Ziv, and Shmuel Ur, editors, Haifa Verifi-
cation Conference, volume 4383 of Lecture Notes in Computer Science,
pages 109–121. Springer, 2006.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Object
Technology Series. Addison-Wesley, June 1999.

[FN99] Norman E. Fenton and Martin Neil. A critique of software defect pre-
diction models. IEEE Transactions on Software Engineering, 25(5):675–
689, 1999.

[FTC07] Marios Fokaefs, Nikolaos Tsantalis, and Alexander Chatzigeorgiou.
JDeodorant: Identification and removal of feature envy bad smells. In In-
ternational Conference on Software Maintenance, pages 519–520. IEEE,
Oct. 2007.

[FXC06] FXCop. http://msdn.microsoft.com/en-
us/library/bb429476(VS.80).aspx, June 2006. [Accessed: 2010-04-06].

[GA08] Yann-Gaël Guéhéneuc and Giuliano Antoniol. DeMIMA: A Multi-
layered Framework for Design Pattern Identification. IEEE Transactions
on Software Engineering, 34(5):667–684, September/October 2008.

[GAA01] Yann-Gaël Gueheneuc and Hervé Albin-Amiot. Using design patterns
and constraints to automate the detection and correction of inter-class
design defects. 39th International Conference on Technology of Object-
Oriented Languages and Systems, pages 296–305, 2001.

[GDMR04] Tudor Girba, Stéphane Ducasse, Radu Marinescu, and Daniel Ratiu.
Identifying entities that change together. In 9th IEEE Workshop on
Empirical Studies of Software Maintenance, Chicago, 2004.

26

[GFGP06] Reto Geiger, Beat Fluri, Harald C. Gall, and Martin Pinzger. Relation
of code clones and change couplings. In 9th International Conference
of Funtamental Approaches to Software Engineering, number 3922 in
Lecture Notes in Computer Science, pages 411–425. Springer, 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Addison-Wesley Professional, January 1995.

[Gro] LOOSE Research Group. iPlasma. http://loose.upt.ro/iplasma. [Ac-
cessed: 2010-04-06].

[Gué03] Yann-Gaël Guéhéneuc. A framework for design motif traceability. PhD
thesis, École des Mines de Nantes; University of Nantes, July 2003.

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer, Berlin/Heidelberg, 1999.

[Hal77] Maurice H. Halstead. Elements of Software Science (Operating and pro-
gramming systems series). Elsevier Science Inc., New York, NY, USA,
1977.

[Ham07] Hammurapi. http://www.hammurapi.biz, October 2007. [Accessed:
2010-04-06].

[Int08] Intooitus. Incode infusion. http://www.intooitus.com/, 2008. [Accessed:
2010-04-06].

[ISO01] ISO and IEC. ISO/IEC 9126-1:2001, software engineering – product
quality, part 1: Quality model, 2001.

[JFRS07] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan.
Automating the Detection of Snapshot Isolation Anomalies. In 33rd

International Conference on Very Large Databases, pages 1263–1274.
VLDB Endowment, 2007.

[Ker04] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley Signature
Series. Addison-Wesley Professional, August 2004.

[KPG09] Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc. An
exploratory study of the impact of code smells on software change-
proneness. In 16th Working Conference on Reverse Engineering
(WCRE), pages 75–84. IEEE Computer Society, 2009.

[KRW07] Douglas Kirk, Marc Roper, and Murray Wood. A heuristic-based ap-
proach to code-smell detection. In 1st Workshop on Refactoring Tools
[DC07], pages 55–56.

[KVGS09] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari A.
Sahraoui. A bayesian approach for the detection of code and design
smells. In International Conference on Quality Software, pages 305–314.
IEEE Computer Society, 2009.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice
- Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer, 2006.

[LS07] Wei Li and Raed Shatnawi. An empirical study of the bad smells and
class error probability in the post-release object-oriented system evolu-
tion. Journal of Systems and Software, 80(7):1120–1128, July 2007.

[LWN07a] Ángela Lozano, Michel Wermelinger, and Bashar Nuseibeh. Assessing
the impact of bad smells using historical information. In 9th Interna-
tional Workshop on Principles of Software Evolution, pages 31–34, New
York, NY, USA, 2007. ACM.

[LWN07b] Ángela Lozano, Michel Wermelinger, and Bashar Nuseibeh. Evaluating
the harmfulness of cloning: a change based experiment. In 4rd Interna-
tional Workshop on Mining Software Repositories, May 2007.

27

[Mar02] Radu Marinescu. Measurement and Quality in Object-Oriented Design.
PhD thesis, University of Timisoara, October 2002.

[Mar03] Robert Cecil Martin. Agile Software Development: Principles, Patterns,
and Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[Mes07] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, May 2007.

[MGDLM10] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-
Françoise Le Meur. Decor: A method for the specification and detection
of code and design smells. IEEE Transactions on Software Engineering,
36(1):20–36, January/February 2010.

[MGLM+09] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur, Lau-
rence Duchien, and Alban Tiberghien. From a domain analysis to the
specification and detection of code and design smells. Formal Aspects of
Computing, May 2009.

[MHVG08] Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, and
Yann-Gaël Guéhéneuc. Refactorings of design defects using relational
concept analysis. In Raoul Medina and Sergei Obiedkov, editors, 4th

International Conference on Formal Concept Analysis, pages 289–304.
Springer-Verlag, February 2008.

[MLC05] Raúl Marticorena, Carlos López, and Yania Crespo. Par-
allel inheritance hierarchy: Detection from a static view of
the system. In 6th International Workshop on Object Ori-
ented Reenginering (WOOR), Glasgow, UK., page 6, July 2005.
http://smallwiki.unibe.ch/woor/workshopparticipants/.

[MLC06] Raúl Marticorena, Carlos López, and Yania Crespo. Extending a taxon-
omy of bad code smells with metrics. In 7th International Workshop on
Object-Oriented Reengineering, page 6, Nantes, France, July 2006.

[Mun05] Matthew James Munro. Product metrics for automatic identification
of “bad smell” design problems in java source-code. Software Metrics,
2005. 11th IEEE International Symposium, pages 9 pp.–, Sept. 2005.

[MVDJ05] Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. For-
malizing refactorings with graph transformations. Software Maintenance
and Evolution: Research and Practice, 17(4):247–276, July/August 2005.

[NB07] Helmut Neukirchen and Martin Bisanz. Utilising Code Smells to De-
tect Quality Problems in TTCN-3 Test Suites. In 19th IFIP Interna-
tional Conference on Testing of Communicating Systems and 7th Inter-
national Workshop on Formal Approaches to Testing of Software, vol-
ume 4581/2007 of Lecture Notes in Computer Science, pages 228–243.
Springer, Heidelberg, June 2007.

[OCBZ09] Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka.
The evolution and impact of code smells: A case study of two open
source systems. In 3rd International Symposium on Empirical Software
Engineering and Measurement, ESEM’09, pages 390–400, Washington,
DC, USA, 2009. IEEE Computer Society.

[OKAG10] Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. Numerical signatures of antipatterns: An approach based
on b-splines. In 14th European Conference on Software Maintenance and
Reengineering, pages ??–?? IEEE Computer Society, March 2010.

[PMD09] PMD. http://pmd.sourceforge.net, June 2009. [Accessed: 2010-04-06].

28

[PP07] Animesh Patcha and Jung-Min Park. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Computer
Networks, 51(12):3448–3470, 2007.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software Engineering Notes,
17(4):40–52, October 1992.

[Raţ04] Daniel Raţiu. Memoria: A Unified Meta-Model for Java and C++. Mas-
ter’s thesis, Faculty of Automatics and Computer Science, “Politehnica”
University of Timişoara, 2004.

[Rev] RevJava. http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm.
[Accessed: 2010-04-06].

[Rie96] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, April 1996.

[Roo] Roodi. http://roodi.rubyforge.org. [Accessed: 2010-04-06].
[RR08] A. Ananda Rao and K. Narendar Reddy. Detecting bad smells in ob-

ject oriented design using design change propagation probability matrix.
In Proceedings of the International MultiConference of Engineers and
Computer Scientists, March 2008.

[RSG08] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. On the relation
of refactorings and software defect prediction. In International workshop
on Mining Software Repositories, pages 35–38, New York, NY, USA,
2008. ACM.

[RSS+04] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan,
Bowen Alpern, Robert D. Johnson, Aaron Kershenbaum, and Larry
Koved. Saber: Smart analysis based error reduction. ACM SIGSOFT
Software Engineering Notes, 29(4):243–251, 2004.

[Rut] Kevin Rutherford. Reek. http://wiki.github.com/kevinrutherford/reek.
[Accessed: 2010-04-06].

[Sem07] SemmleCode. http://semmle.com/semmlecode, October 2007. [Ac-
cessed: 2010-04-06].

[SGM00] Houari A. Sahraoui, Robert Godin, and Thierry Miceli. Can metrics
help to bridge the gap between the improvement of oo design quality and
its automation? In International Conference on Software Maintenance,
pages 154–162, Washington, DC, USA, 2000. IEEE Computer Society.

[She00] Thomas B. Sheridan. Function allocation: algorithm, alchemy or apos-
tasy? Int. J. Hum.-Comput. Stud., 52(2):203–216, 2000.

[Sli05] Stefan Slinger. Code smell detection in eclipse. Master’s thesis, Faculty
of Electrical Engineering, Mathematics and Computer Science - Delft
University of Technology, 2005.

[SLMM99] Houari A. Sahraoui, Hakim Lounis, Walcélio L. Melo, and Hafedh Mili. A
concept formation based approach to object identification in procedural
code. Automated Software Engineering, 6(4):387–410, 1999.

[SLT06] Mazeiar Salehie, Shimin Li, and Ladan Tahvildari. A metric-based
heuristic framework to detect object-oriented design flaws. In 14th IEEE
International Conference on Program Comprehension, 2006.

[SR06] Martin Lippert Stefan Roock. Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. John Wiley & Sons,
2006.

[SS07] G. Snelting and M. Streckenbach. Kaba: Automated refactoring for
improved cohesion. In 1st Workshop on Refactoring Tools [DC07], pages
1–2.

29

[SSL01] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Metrics based
refactoring. In 5th European Conference on Software Maintenance and
Reengineering, pages 30–38, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[ST00] Gregor Snelting and Frank Tip. Understanding class hierarchies using
concept analysis. ACM Transactions Programming Languages Systems,
22(3):540–582, 2000.

[STA] STAN. http://stan4j.com. [Accessed: 2010-04-06].
[Sty] StyleCop. http://code.msdn.microsoft.com/sourceanalysis. [Accessed:

2010-04-06].
[TCC08] Nikolaos Tsantalis, Tsantalis Chaikalis, and Alexander Chatzigeorgiou.

JDeodorant: Identification and removal of type-checking bad smells. In
12th European Conference on Software Maintenance and Reengineering,
pages 329–331, April 2008.

[Tea09] Ptidej Team. DECOR. http://www.ptidej.net/research/decor, 2009.
[Accessed: 2010-04-06].

[Tes08] Jean Tessier. Dependency Finder. http://depfind.sourceforge.net, 2008.
[Accessed: 2010-04-06].

[Tic01] Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engi-
neering and Refactoring. PhD thesis, University of Bern, 2001.

[TK04] Ladan Tahvildari and Kostas Kontogiannis. Improving design quality
using meta-pattern transformations: a metric-based approach. Journal
of Software Maintenance and Evolution: Research and Practice (JSME),
16(4-5):331–361, 2004.

[TM03] Tom Tourwé and Tom Mens. Identifying refactoring opportunities us-
ing logic meta programming. In 7th European Conference on Software
Maintenance and Reengineering, pages 91–100, Washington, DC, USA,
2003. IEEE Computer Society.

[TMMM07] Alban Tiberghien, Naouel Moha, Tom Mens, and Kim Mens. Répertoire
des défauts de conception. Technical Report 1303, University of Mon-
treal, 2007.

[Tri08] Adrian Trifu. Towards Automated Restructuring of Object Oriented Sys-
tems. PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik,
2008.

[TSFB99] Guilherme Travassos, Forrest Shull, Michael Fredericks, and Victor R.
Basili. Detecting defects in object-oriented designs: using reading tech-
niques to increase software quality. In 14th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and applications,
pages 47–56, New York, NY, USA, 1999. ACM.

[TSG04] Adrian Trifu, Olaf Seng, and Thomas Genssler. Automated design flaw
correction in object-oriented systems. In 8th European Conference on
Software Maintenance and Reengineering, pages 174–183. IEEE Com-
puter Society Press, March 2004.

[VKMG09] Stephane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gaël
Guéhéneuc. Tracking design smells: Lessons from a study of god classes.
In Proceedings of the 16th Working Conference on Reverse Engineer-
ing (WCRE’09), pages 145–154, Los Alamitos, CA, USA, October 2009.
IEEE Computer Society.

[vM02] Eva van Emden and Leon Moonen. Java quality assurance by detecting
code smells. In 9th Working Conference on Reverse Engineering, pages
97–107. IEEE Computer Society, October 2002.

30

[vMvK01] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok.
Refactoring test code. In 2nd International Conference on Extreme Pro-
gramming, 2001.

[VRDBDR07] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias Rieger.
On the detection of test smells: A metrics-based approach for general
fixture and eager test. IEEE Transactions on Software Engineering,
33(12):800–817, 2007.

[Wak03] William C. Wake. Refactoring Workbook. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[Web95] Bruce F. Webster. Pitfalls of Object Oriented Development. M & T
Books, February 1995.

[WP05] Bartosz Walter and Blazej Pietrzak. Multi-criteria detection of bad
smells in code with UTA method. In 6th International Conference on Ex-
treme Programming and Agile Processes in Software Engineering, volume
3556 of Lecture Notes in Computer Science, pages 154–161. Springer,
June 2005.

[XS04] Zhenchang Xing and Eleni Stroulia. Data-mining in support of detect-
ing class co-evolution. In 16th International Conference on Software
Engineering & Knowledge Engineering, pages 123–128, 2004.

31

