
Simple and Efficient Parallel
Programming for

Distributed-memory Systems
Ana Moreton-Fernandez Arturo Gonzalez-Escribano Diego R. Llanos

Twelfth International Summer School on Advanced Computer Architecture and Compilation for
High-Performance and Embedded Systems (ACACES), 10-16 July 2016, Fiuggi, Italy

Introduction

Several techniques and frameworks have been
proposed to automatically generate parallel
programs for hybrid distributed-memory sys-
tems from high-level parallel languages or se-
quential codes. These techniques should take
into account the combination of data com-
munication across distributed processes, and
the exploitation of shared-memory models in-
side each process.
Trasgo is a new programming model and
compilation framework to generate parallel
programs from a high-level parallel specifi-
cation, based on the SPMD (Single Program
Multiple Data) model. It proposes the use
of a global-view approach, with flexible and
explicit mechanisms to deal with locality.

Trasgo

High level source code

SPC-XML specification

Mapped program

SMP Code + HIT calls

Multilevel code

Binary executable
HITmap library

e.g C + runtime HITmap + OpenMP

e.g cMAPS

e.g C + runtime HITmap

Native compiler

Expression builder
+ plug-in transformation

Front-end translator

Polyhedral model: Pluto

Xslt

Back-end
Xslt

Program representations Transformations

XML

XML

Shared memory

Figure 1 : Trasgo architecture.

Trasgo [1] is a source-to-source parallel compila-
tion system for distributed- and shared-memory
machines.
• Front-end generates SPC-XML intermediate
code.

• Expression builder adds annotations, new
tags, and transforms the initial SPC-XML
document into a new one.

• Back-end translates this XML code into a
target code. The code generated by Trasgo
uses the Hitmap library [2] to perform
efficient data distributions and
communications.

• Pluto is a state-of-the-art tool based on
polyhedral model, to automatically parallelize
sequential parts [3]. We integrate it to
parallelize code for shared-memory platforms.

Compiler-Runtime system

We have developed and implemented in Trasgo several techniques to transform a high-level code to a low-level
program. For example, one of this techniques calculates automatically at runtime the communications needed in
a distributed programming model between two SPMD blocks with distributed data structures. The technique is
based on a compile-time analysis that, from a set of affine expressions generates tailored functions to calculate
at runtime the set of indexes accessed to read or to write in a SPMD block.

(1) SPMD:
 Update

(2) SPMD:
 Computation

for(i=lower_x; i<upper_x; i++)
 for(j=lower_y; i<upper_y; j++)
 M[i][j]= 0.25* (M2[i-a][j] + M2[i+b][j]
 M2[i][j-a] + M2[i][j+b])

for(i=lower_x; i<upper_x; i++)
 for(j=lower_y; i<upper_y; j++)
 M2[i][j]= M[i][j]

Communication
stage

Distribute comp.
among processes

}

Communication
stage

for(t=0;t<limit;t++){

// map_lower(first, last, process id, number of processes)
lower_x=lower_y= map_lower(a, n-b, myRank, num_processes)
upper_x=upper_y= map_upper(a, n-b, myRank, num_processes)

Calculate communication pattern 1
Execute communication pattern 1

Calculate communication pattern 2
Execute communication pattern 2

Calculated at runtime automatically in Trasgo

Figure 2 : Scheme of a code programmed with the SPMD model.

Conclusions

• We have designed and developed a framework to help to the programmer to deal with the main challenges
on distributed-memory systems, data partition and communication.

• The techniques implemented in our framework enable to exploit many capabilities of the execution machines
in an abstract way to the programmer (as for example, choosing the tile size at runtime).

References

[1] A. Gonzalez-Escribano and D. Llanos, “Trasgo: A nested-parallel programming system,” The Journal of Supercomputing, vol. 58, no. 2, pp. 226–234, 2011.
[2] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. Llanos, “An extensible system for multilevel automatic data partition and mapping,” IEEE TPDS, vol 5,
no. 5, pp. 1145–1154, 2013.
[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, "A practical automatic polyhedral program optimization system". In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), June 2008.

Performance

We show the sequential, communication
calculation and communication execu-
tion times for several number of dis-
tributed processes, using our runtime
approach in two representative applica-
tions.
The results indicate that our runtime
calculation is insignificant compared
with the sequential, and communication
times.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processes

Heat-2d: Communication and sequential times

Sequential
Comm. Execution

Comm. Calculation

Figure 3 : Execution times for the Heat-2d
example (Size=8000x8000, iter=500).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

1 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processes

Heat-3d: Communication and sequential times

Sequential
Comm. Execution

Comm. Calculation

Figure 4 : Execution times for the Heat-3d
example (Size=500x500x500, iter=100).

Acknowledgements This research has been partially supported by MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), and COST Program Action IC1305: Network for Sustainable
Ultrascale Computing (NESUS). by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT
and the Government of Spain.

