
Computer Science Department
University of Valladolid

Valladolid - Spain

Calculating coarse communication code for parallel
distributed-memory systems

Ana Moreton-Fernandez, Arturo Gonzalez-Escribano, and Diego R. Llanos

Computer Science Department, University of Valladolid, Spain.
ana.moreton@alumnos.uva.es, {arturo, diego}@infor.uva.es.

Abstract This paper presents a technique that automatically calculates
at runtime, for affine expressions, the exact aggregated communications
needed in a distributed-memory programming model. This technique
generalizes and improves previous methods presented to compute ag-
gregated communications. It avoids duplicated data communications, it
reduces the number of communication operations, and allows dynamic
loops with data-dependent conditions. It is based on intersections of re-
mote and local footprints in terms of the mapping functions chosen. The
technique works with information about data accesses obtained from the
original input code, and relays on information about the mapping of the
distributed data structures provided by the runtime-system.

Technical Report No. IT-DI-2015-0002

1 Introduction

Parallel machines are becoming more heterogeneous, mixing devices with differ-
ent capabilities in the context of hybrid clusters, with hierarchical shared- and
distributed-memory levels. Also, the focus on parallel applications is shifting
to more diverse and complex solutions, exploiting several levels of parallelism,
with different strategies of parallelization. Therefore, it is increasingly interest-
ing to generate application programs with the ability of automatically adapt
their structure and computational load to any given target system. Many suc-
cessful parallel programming models and tools have been proposed for specific
environments. Message-passing paradigm (e.g. MPI libraries) have shown to be
very efficient for distributed-memory systems. Global shared memory models,
such as OpenMP, Intel TBBs, or Cilk, are commonly used in shared-memory
environments to simplify thread and memory management. Polyhedral model
provides a formal framework to develop automatic transformation techniques at
the source code level [Bas04]. The polyhedral model is applicable to codes based
on sequential static loops with affine expressions. Polyhedral model does not
support dynamic loops dependent on information not known or parametrizable
at compile-time. For distributed memory, the best communication calculation
methods so far (see e.g. [Bon13]) are based on run-time analysis per tile (group-
ing data after applying a tilling technique). They compute tile footprints and
use inverse mapping functions to locate remote data. Other previous polyhedral
tools for distributed-memory systems such as [BGH+06] generate also commu-
nication code. However, using these methods there are still cases for duplicated
or unnecessary data communications and, the time complexity of the generated
code, that do the analysis at runtime, is dependent on both the data size (tiles)
and the number of processing elements [MFGEL15].

In this report we present a technique that, for affine expressions, generates
code that computes exact aggregated communications at runtime, for the dis-
tributed runtime layer before applying tiling techniques. It uses intersection of
remote and local footprints in terms of the mapping policies selected. It gen-
eralizes and improves previous methods presented to compute aggregate com-
munications for code with affine expressions such as [Bon13,BGH+06], also sup-
porting dynamic loops with conditions dependent on data-values (or expressions
dependent on runtime parameters). It avoids duplicated or unnecessary data
communications and eliminates the data size dependence in the communication
calculation. Our approach computes communications only once for the whole
data space mapped to a local process, independently of the number of tiles gen-
erated inside, also allowing to use different tiling sizes for machines with different
architectures in the same computation. The technique works with information
about data accesses obtained from the original input code, and relays on infor-
mation about the mapping of the distributed data structures provided by the
runtime-system [GETFL13].

The rest of the paper is organized as follows: Section 2 discusses the tools
and notations used in the proposal. Section 3 describes the technique. Section 4
presents the conclusions and future work.

1

2 Background and Notation

2.1 Definitions and notation

In this work we will focus on arrays with regular dense and strided domains. Their
index Domain is a subspace of Zn. Rectangular n-dimensional parallelotope
domains, dense or strided, can be represented by a tuple of n Signatures. A
Signature is a triplet of integer numbers S < b, e, s > (meaning begin, end, and
stride). The set of indexes expressed by a signature is S < b, e, s >= {b ≤ i ≤
e : ((i− b) mod s) = 0}.

A data structure or Tile (T : D → type) is an object that associates data
elements of a given type to index elements of a domain. Array tiles associate one
data element to each domain element. The domain of a tile is denoted as D(T).
Hierarchical tiling is a technique that allows to hierarchically declare new Tile
structures with a subset of the domain of another Tile. The subtile maps the
index elements of its subdomain to the same data elements of the root tile r(T)
(the ancestor of the subtiling chain). The Selection function s : T × D? → T ,
is used to declare a new subtile: s(t, d) = t′ : r(t) = r(t′), D(t′) = D(t) ∩ d. A
Working set (W) is a set of Tiles. A Logical process is a tuple P < f,WI ,WO >
where f is a function or subprogram, WI is the working set of tiles that P
receives as input (data is read), and WO is the set of tiles used as output (data
is written). The intersection of WI and WO can be a set not empty. Logical
processes may be composed in sequential, or in parallel. A sequential composition
P1 . P2 indicates that f1 is executed before f2, and that data modifications
introduced in the output tiles of P1 are propagated in the corresponding input
tiles of P2. Sequential composition is associative but not commutative. A parallel
composition P1 ◦P2 indicates that f1 and f2 can be executed in parallel. Parallel
composition is associative and commutative.

A Virtual Topology V (N,R) is a graph where the vertices N represent virtual
processes, associated to computational resources (groups of processors), and the
edges R represent neighbor relations. A Layout L : D → V is a function that
maps domain subspaces to the virtual processes in a virtual topology. These
functions can be used to map indexes, of logical processes or tiles, to virtual
processes.

2.2 Hitmap

Hitmap [GETFL13] is a library for management, and run-time mapping, of hi-
erarchical tiling arrays. It is based on a SPMD model, and the message-passing
paradigm. Hitmap has three main functionality modules: (a) Domains and tiles
management; (b) Mapping modules; and (c) Communication patterns. Hitmap
defines objects to declare and manipulate multidimensional index domains, and
different types of indexed data structures [FGEL13]. Hitmap defines a plug-in
system to include new mapping modules: Virtual topology constructors that
arrange the physical processes in meshes or graphs defining neighborhood rela-
tions, and mapping functions named Layouts that distribute tile domains across

2

Figure 1. A representation of the distribution of an array among the processors and
the data propagation between two sequential stages.

the processes of a virtual topology. These modules generate objects that can be
queried at run-time to obtain information about the result of the mapping to
know which part of a domain is assigned to the local or a remote process. Finally,
it contains functionalities to build reusable communication patterns for tiles or
subtiles across virtual processes. These functions internally use the MPI stan-
dard, exploiting efficient techniques like derived data types, and asynchronous
communications.

3 Proposal

Using the functionalities given by Hitmap is possible to create some heuristics to
calculate at runtime the necessary communications between two or more stages of
a parallel computation in a distributed-memory system. These communications
redistribute the data written in one parallel computation step to the following
steps where data, recently modified, is read. The information needed to calculate
these communications is the data dependences among sequential computations.
We can obtain data dependences from explicit details expressed in specific par-
allel languages, or using dependence analysis techniques on a sequential code.

3.1 Illustrating example

Distributed programming models, based on message-passing, divide the data
domain among the different processors. Dependences only exist when the local
process needs to read data, which has been written by other process.

Figure 1 represents an array V distributed using a blocks partition and map-
ping policy across four processes. The first sequential step updates each element
of the array applying an arbitrary function f1 to each element. Each process
updates its part directly. However, in a second stage each element is updated
on function of the previous and next elements in the domain (Indexed i− 1 and
i+ 1). The updates to the elements in the border of the blocks depend on data

3

** Case 1: JACOBI SOLVER
1. While not converge and iterations < limit

1.1. For each i,j in M.domain
M2[i][j] = M[i][j]

1.2. For each i,j in M.domain
M[i][j] = (M2[i-1][j] + M2[i+1][j]
+ M2[i][j-1] + M2[i][j+1]) / 4;

Figure 2. Sequential algorithm of Jacobi solver.

** Case 1: JACOBI SOLVER
1. While not converge and iterations < limit

1.1. For each i,j in M.domain
M2[i][j] = M[i][j]

1.1C Communication stage (WI_1.2, WO_1.1, M2)
1.2. For each i,j in M.domain

M[i][j] = (M2[i-1][j] + M2[i+1][j]
+ M2[i][j-1] + M2[i][j+1]) / 4;

1.2C Communication stage (WI_1.1, WO_1.2, M)

Figure 3. Parallel Algorithm of Jacobi solver with the communications stages.

updated in neighbor processes. Thus, communication is needed, and the exact
data to be communicated is defined by the data dependences. The first step
to generate these communications is to calculate the domains of the data writ-
ten (named Output Working Set or WO in this work) and read (named Input
Working Set or WI in this work) in each sequential phase.

We are going to analyse the pseudo-code of a PDE solver using a Jacobi
iterative method to compute the heat transfer equation in a discretized two-
dimensional space as an illustrating example (see Fig. 2).

We should add a potential communication stage between each two consecu-
tive computation phases. In the case of this example there should be communi-
cations between sequential stages 1.1 and 1.2 on each iteration, and between 1.2
and the execution of stage 1.1 on next iteration.

Each communication stage takes into account the WO of the previous se-
quential step and the WI of the next computation stages.

The own or local domain is the domain assigned to each process during
the application of the distribution policy at the beginning of the program. We
represent the own domain on an array M by d ∈ D, where d is the set of
two signatures that represent the part of M assigned to the local process. Let
d < s0, s1 >∈ D, be a two dimensional domain, being s0 < b, e, s >∈ S and s1 <
b, e, s >∈ S the signatures that define the domain. The Output Working sets
(WO) of the two computation stages (1.1 and 1.2) are always the local domain
(writes only occur in the elements associated to the local domain, M2[i][j] and
M [i][j], ∀(i, j) : i ∈ [s0.b, s0.e], j ∈ [s1.b, s1.e], see Fig. 4 left side).

We also have to calculate the input Working set (WI) for each computation
stage. Stage 1.1 only reads over its own domain, M [i][j] being s0.b ≤ i ≤ s0.e

4

Local
domain

Local
domain

Local
domain

Local
domain

s0.b

s0.e

s1.b s1.e

s0.b

s0.e

s1.es1.b

Figure 4. Example of output and input working sets of the stage 1.2, for a given local
domain

and s1.b ≤ j ≤ s1.e. Thus,WI = d. However, stage 1.2 needs a deeper discussion.
In stage 1.2 each process reads data defined by the access expressions:

ρ1 = M2[i − 1][j], ρ2 = M2[i + 1][j], ρ3 = M2[i][j − 1], ρ4 = M2[i][j +
1] ∀(i, j) : i ∈ [s0.b, s0.e], j ∈ [s1.b, s1.e]

We apply these expressions to create a shape for each access expression from
the local domain that represent the set of indexes accessed due to the expressions
applied to the local subset of indexes (as wee see in Figure 5):

ρ1 = [i− 1][j]→W 1
I = (i, j) ∀(i, j) : i ∈ [s0.b− 1, s0.e− 1], j ∈ [s1.b, s1.e]

ρ2 = [i+ 1][j]→W 2
I = (i, j) ∀(i, j) : i ∈ [s0.b+ 1, s0.e+ 1], j ∈ [s1.b, s1.e]

ρ3 = [i][j − 1]→W 3
I = (i, j) ∀(i, j) : i ∈ [s0.b, s0.e], j ∈ [s1.b− 1, s1.e− 1]

ρ4 = [i][j + 1]→W 4
I = (i, j) ∀(i, j) : i ∈ [s0.b, s0.e], j ∈ [s1.b+ 1, s1.e+ 1]

The final WI is the union of the working sets derived from each read expres-
sion: WI = W 1

I ∪W 2
I ∪W 3

I ∪W 4
I . According with the access expressions of the

Jacobi solver algorithm we obtain WO and WI of the stage 1.2. See an example
in Fig. 4. For the 1.1 stage the WO and WI are equal to the local domain .

After calculating the shapes of WI and WO of each computation stage, we
have all the needed information to generate the communications code. Data
should be sent from process P1 to process P2 between stages 1.1 and 1.2 if the
intersection betweenWO of stage 1.1 at P1 andWI of stage 1.2 at P2 is not empty.
A communication pattern is formed by: (1) The sends that the local process has
to issue to other processes in order to allow them to compute its next stage, and
(2) the data that the local process needs to receive in order to perform its next
computation. The general technique used to calculate a communication stage is
presented in the section below.

5

Figure 5. Calculate Input working set from access expressions for Jacobi Solver.

3.2 General model

We present here a generic model for calculating coarse grain communications for
affine expressions in distributed-memory systems. First, we generate code that
(1) queries the corresponding Hitmap layout objects to obtain the local assigned
domain for a given tile; and (2) applies at runtime the affine expressions used
in the sequential computations, to transform the domain signatures and obtain
the input and output working sets (WI , WO). Each communication stage takes
into account the WO of the previous sequential step (stage j) and the WI of the
next computation stage (stage j+1).

For simplicity the model will be first described for unidimensional array do-
mains. It is straightforward to extend it for domains and expressions involving
more dimensions, as it will be shown in section 3.3. Let A be an array distributed
using the map MA. Let d < s0, s1 >∈ D be the local domain of A obtained from
MA at run-time. Let ρx = A[α∗i+β] be the x-th affine access expression used as
a read access in a computation stage. The resulting index domain space needed
by the whole local process due to that expression is:

W x
I = i,∀i : i ∈ [min(α∗s0.b+β, α∗s0.e+β),max(α∗s0.b+β, α∗s0.e+β)].

Output domains due to write access expressions will be calculated in the same
way for expressions used in write accesses. Let k′ be the number of write access
expressions and k′′ is the number of read access expressions in a computation
stage. The final output and input working sets will be the union of all domains
obtained from all the write and read access expressions in the computation stage,
respectively.

WO =

k′⋃
x=1

W x
O WI =

k′′⋃
x=1

W x
I

We can symbolically generate code to compute the aggregated domain corre-
sponding to the working sets of all the logical processes assigned to a whole real
distributed process. The complexity to compute them at run-time is bounded
by the amount of code expressions k = k′′ + k′ in the code. It is O(log k) for
non-strided or block domains and distributions.

Let P be the number of active processes at run-time. The Hitmap layout
objects can be also queried to obtain the domain mapped to any other remote
process in O(1) . It is possible to generate the working sets WIi and WOi

of
any process p with exactly the same asymptotic time cost than for the local

6

ALGORITHM 1: General model to calculate communication patterns
Input: Number of processes (P),
Working Set of outputs of each process (WOp ; p = 1..P) at stage j,
Working Set of inputs of each process (WIp ; p = 1..P) at stage j+1,
Local process id: local,
Output: Pattern communication (Set to send (CS), Set to receive (CR) for

each process)
for each p in [1..P] do

if p != local then
CS = CS ∪ < p, (WIp ∩WOlocal) >

end
end
for each p in [1..P] do

if p != local then
CR = CR ∪ < p, (WOp ∩WIlocal) >

end
end

3

0 1 2

5

876

4

CR1 =<1, >

CR5 =<5, >

CR3 =<3, >

CR7 =<7, >

Figure 6. Calculation of receives according to algorithm 1 for Jacobi Solver.

process. As it is shown in Alg. 1, we can generate a loop in the code that
traverses all the other P − 1 processes, computing the intersections of the local
process input and output working sets with the opposite sets in the remote
process, generating an exact communication pattern in O(P × (k log k)). In the
algorithm, communication patterns are represented by a set of comm-tuples
(communication tuples). A comm-tuple < p,W > contains: The index p of the
process to which local data has to be sent to, or received from; and the working
set W that identifies the domain of the data that should be transferred. The
result of the algorithm includes up to two sets of comm-tuples for each remote
process, one for the data to be sent, and another for the data to be received.

However, this algorithm is not valid for expressions with data-flow depen-
dences. We consider data-flow dependences when a computation step need to
wait for values of data updated at other process in the same computational

7

** Case 4: GAUSS SEIDEL SOLVER
1. While iterations < limit

For i = 0 .. M.rows
For j = 0 .. M.columns

M[i][j] = (M[i-1][j] + M[i+1][j]
+ M[i][j-1] + M[i][j+1]) / 4;

Figure 7. Sequential algorithm expression with data-flow dependences.

** Case 4: GAUSS SEIDEL SOLVER
1. While iterations < limit

1.1CW Data-flow Communication of stage (WIF_1.1, WO_1.1, M)
1.1 For i = 0 .. M.rows

For j = 0 .. M.columns
M[i][j] = (M[i-1][j] + M[i+1][j]
+ M[i][j-1] + M[i][j+1]) / 4;

1.1C Communication stage (WI_1.1 \ WIF_1.1, WO_1.1, M)

Figure 8. Parallel algorithm expression with data-flow dependences.

stage. This situation appears for example in codes that parallelize a loop, but
inherit form sequential semantics a loop-carried dependence due to a given ex-
pression. See an example of an algorithm with data-flow dependences in Fig 7. It
is a simple Gauss Seidel solver for the Poisson Equation. In codes with such ex-
pressions, we use Alg. 2. In this case, we calculate a pattern to be executed before
computation (CRF), and another to be executed after computation (CR, CS),
see Fig 8.

The set of comm-tuples CRF contains the communications corresponding to
the receives derived from the data-flow dependences. This pattern is executed
before the computation to wait for the needed values. The set of comm-tuples
CR contains the communications associated to all data that has to be received,
excluding data corresponding to the data-flow dependences already involved in
CRF . We obtain this information subtracting the working set of the former data-
flow dependences, from the total input working set. This pattern is executed after
the computation to relocate data before the next sequential computation.

Calculating these patterns at run-time and always just before computation
allow us to support dynamic loops with conditions evaluated in terms of data
values (e.g. convergence checking for the Jacobi solver (see Fig. 2)) unlike other
parallelizing-compilers based on the polyhedral model (see e.g. [Bon13]).

3.3 Applying general model to Jacobi Solver

In this section we show how to apply the algorithms presented in section 3 for
the illustrating example of the Jacobi 2-D solver.

In section 3.1 we show how to place the communications stages, and how to
calculate the input and output Working set which are taken into account for
each communication stage. With this information is possible to automatically
calculate the communications. For the Jacobi solver example, the communication

8

ALGORITHM 2: General model to calculate communication patterns
including wave-fronts

Input: Number of processes (P),
Working Set of outputs of each process (WOp ; p = 1..P) at stage j,
Working Set of inputs of each process (WIp ; p = 1..P) at stage j+1,
Working Set of inputs of which implies data-flow dependencies of each process
(WIFp ; p = 1..P) at stage j,
Local process id: local
Output: Pattern communication (Set to send (CS), Set to receive (CR) and

Set to receive before computation (CRF) for each process)
for each p in [1..P] do

if p != local then
CS = CS ∪ < p, (WIp ∩WOlocal) >

end
end
W ′

Ilocal
= WIlocal \ WIFlocal

for each p in [1..P] do
if p != local then

CR = CR ∪ < p, (WOp ∩W ′
Ilocal

) >
CRF = CRF ∪ < p, (WOp ∩WIFlocal) >

end
end

step added after Stage 1.2 must look forward WI of the following computation
phases, in this case, the phase 1.1 at the next iteration of the outer loop. In this
phase, there is no dependences because of 1.2 stage writes only in its domain,
and 1.1 stage reads also only in its domain. Then, there is no communication
stage after computation stage 1.2. However, in the communication between the
1.1 and 1.2 stages this situation does not occur, so we have to apply the Alg. 1.

We show a pseudo-code of the communication stage 1.1C in figure 9. Here,
input and output working sets are calculated with the functions named calcu-
lateWI and calculateWO, which are generated at compile-time from the access
expressions in the sequential code. This functions are evaluated at runtime al-
lowing the use of expressions dependent on runtime parameters.

According to Alg. 1 the first step is to calculate the set of comm-tuples to
send (CS). In order to do this, we inspect all the other processes to know which
one needs data that belongs to the output working set of the local process. Each
process intersects its output working set with the input working set of the rest
of the processes. When the intersection is not null, the process, which is being
inspected, needs data from the local process to perform its next computations
(see Fig.10). The data that exactly needs to be sent is the data in the shape
delimited by the intersection previously computed. Thus, we add to CS the
comm-tuple formed by the index of the process that will receive the data and
the domain resulted from the intersection (see 1.1C.1 in figure 9).

9

** Case 1: JACOBI SOLVER
1. While not converge and iterations < limit

1.1. For each i,j in M.domain
M2[i][j] = M[i][j]

1.1C ** Communication stage
1.1C.1 WO_1.1_local = calculateWO_1.1(local)

For each p in Processors
if p != local

WI_1.2_p = calculateWI_1.2(p)
W_Aux= intersect(WI_1.2_p, WO_1.1_local)
CS=union(CS,W_Aux,p)

1.1C.2 WI_1.2_local = calculateWI_1.2(local)
For each p in Processors
if p != local

WO_1.1_p = calculateWO_1.1(p)
W_Aux= intersect(WI_1.2_local, WO_1.1_p)
CR=union(CR,W_Aux,p)

1.1C.3 Execute(CS,CR)

1.2. For each i,j in M.domain
M[i][j] = (M2[i-1][j] + M2[i+1][j]

+ M2[i][j-1] + M2[i][j+1]) / 4;
1.2C ** Communication NULL

** WI Calculation of stage 1.2
calculateWI_1.2(process p)

** Return the domain assigned to process p
shapeOtherP = hit_shape(p)
** Applying affine expressions
Aux= union(

Affine(shapeOtherP, 1, -1, 1, 0) // Dim 0, alpha 1, beta -1
// Dim 1, alpha 1, beta 0

Affine(shapeOtherP, 1, 1, 1, 0) // Dim 0, alpha 1, beta 1
// Dim 1, alpha 1, beta 0

Affine(shapeOtherP, 1, 0, 1, -1) // Dim 0, alpha 1, beta 0
// Dim 1, alpha 1, beta -1

Affine(shapeOtherP, 1, 0, 1, 1) // Dim 0, alpha 1, beta 0
// Dim 1, alpha 1, beta 1

)

return Aux

Figure 9. Parallel Algorithm of Jacobi solver after applying Alg 1.

The second part of Alg. 1 calculates the data which the local process must
receive before performing its next computation (set of comm-tuples to receive,
CR). In the same way that CS calculation, we inspect all the other processes
to know which ones have in their WO data needed by the local process. Each
process intersects its input working set with the output working set of the other
processes. When the intersection is not null, the process, which is being in-
spected, has data which the local process needs to perform its next computation
(see Fig.6). The data that needs to be received locally is the data in the shape
delimited by the intersection previously performed. Thus, we add to CR the
comm-tuple formed by the index of the process that will send the data to the
local process and the domain resulted from the intersection (see 1.1C.2 in fig-
ure 9).

10

3

0 1 2

876
CS3=<3, >

local
process

WOlocal

WI3
5

Figure 10. Calculation of sends from P4 (local process) to P3 according to Alg. 1, for
the Jacobi Solver.

The execution of the communications indicated by CS and CR allows to
relocate the data before the next sequential computation (see 1.1C.3 in figure 9).

4 Conclusions

This report describes a transformation technique for codes based on affine expres-
sions to generate communications code for distributed-memory systems, gener-
ating exact aggregated communications at the distributed level. This technique
generalizes and improves previous methods proposed to compute aggregated
communications. It is based on intersections of remote and local footprints at
run-time in terms of the mapping functions chosen. Future work includes the im-
provement of this technique to support periodic and different types of non-affine
expressions.

Acknowledgement

This research has been partially supported by the Ministerio de Economía y
Competitividad (Spain) and the ERDF program of the European Union: CAPAP-
H5 network (TIN2014-53522), MOGECOPP project (TIN2011-25639), HomProg-
HetSys project (TIN2014-58876-P); the Junta de Castilla y León (Spain): AT-
LAS project (VA172A12-2).

References

[Bas04] C. Bastoul. Code generation in the polyhedral model is easier than you
think. In Proc. PACT’04, pages 7–16. ACM Press, 2004.

[BGH+06] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi,
Basilio B. Fraguela, María J. Garzarán, David Padua, and Christoph von
Praun. Programming for parallelism and locality with hierarchically tiled
arrays. In Proc. of the ACM SIGPLAN PPoPP, pages 48–57, New York,
New York, USA, 2006. ACM.

11

[Bon13] U. Bondhugula. Compiling affine loop nests for distributed-memory par-
allel architectures. In Proc. SC’2014, Denver, CO, USA, 2013. ACM.

[FGEL13] J. Fresno, A. Gonzalez-Escribano, and D.R. Llanos. Blending extensibility
and performance in dense and sparse parallel data management. IEEE
TPDS, 25(10):2509 – 2519, Oct 2013.

[GETFL13] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D.R. Llanos. An exten-
sible system for multilevel automatic data partition and mapping. IEEE
TPDS, 25(5):1145–1154, 2013. (doi:10.1109/TPDS.2013.83).

[MFGEL15] A. Moreton-Fernandez, A. Gonzalez-Escribano, and D.R. Llanos. On the
run-time cost of distributed-memory communications generated using the
polyhedral model (to appear). In Proc. HPCS’2015, 2015.

12

