
Simple and efficient parallel
programming for
distributed-memory systems
Ana Moreton-Fernandez∗, Arturo
Gonzalez-Escribano∗,1, Diego R.
Llanos∗,1

∗ Departamento de Informática, University of Valladolid, Campus Miguel Delibes,
47011 Valladolid, Spain

ABSTRACT

Several techniques and frameworks have been proposed to automatically generate parallel pro-
grams for hybrid distributed-memory systems from high-level parallel languages or sequential
codes. These techniques should take into account the combination of data communication across
distributed processes, and the exploitation of shared-memory models inside each process.

Trasgo is a new programming model and compilation framework to generate parallel pro-
grams from a high-level parallel specification, based on the SPMD (Single Program Multiple
Data) model. This transformation system includes several techniques to generate code that is able
to compute at runtime exact coarse-grained communications for distributed message-passing pro-
cesses. In this work we discuss a technique to calculate the communications needed in distributed
systems between SPMD blocks, for codes with regular (affine) data accesses. It improves previ-
ous methods avoiding to take compile-time tiling decisions, such as the tile size chosen for each
process. It adapts their communication, synchronization, and optimization structures to the target
system, even when computing nodes have different capabilities.

We show an excerpt of a complete experimental study. Our framework can automatically pro-
duce efficient programs compared with MPI reference codes, and with codes generated with auto-
parallelizing compilers.

KEYWORDS: Distributed-memory systems, Communication calculation

1 Introduction

Many automatic code generation approaches have been proposed to transform high-level
parallel expressions or sequential codes to parallel programs for distributed-memory sys-
tems. These techniques avoid to the programmer to deal with issues that are key to ob-
tain a good performance. Many of these approaches are based on new programming lan-
guages [CDIC10, EGCSY03] or automatic solutions [CG06, Bon14, YR13, KJEM12]. The most
sophisticated automatic solution (in terms of data volume communicated, parametric in the

1E-mail: {ana,arturo,diego}@infor.uva.es



number of processes and problem sizes) still needs to fix a single tile size at compile time,
even if the distributed system has nodes with different capabilities.

Trasgo [GEL11] is a programming model and compilation framework for distributed-
memory systems based on the SPMD (Single Program Multiple Data) model. It has been
designed to generate parallel programs from a high-level parallel specification. The Trasgo
transformation system includes several techniques to transform the code to compute at run-
time exact coarse-grained communications for distributed message-passing processes.

In this work we discuss a technique of our compiler-runtime system that calculates at
runtime the exact data to be received or sent for each process just before computing a SPMD
block. Our runtime approach enables to use different tile sizes in the same computation
at the same hierarchical level. Our experimental results show that our approach produces
efficient programs compared with codes generated with auto-parallelizing compilers and
MPI reference codes.

2 Trasgo and its automatic compiler-runtime tools

2.1 Challenges on distributed-memory systems

Programming for distributed memory systems has two main challenges that are key for
obtaining a good performance in terms of runtime execution and memory allocation: (1)
Distributing data: An efficient approach is one where each process allocates only the data
that it computes and the data that needs to perform such computation. (2) Communicating
data among process: As the data and computation are distributed among the processes, it is
possible that a process needs a datum that is allocated or was updated in another process.
Communications between processes allow to exchange data in distributed-memory systems.
However, calculating and expressing these communications is not a simple task.

2.2 Trasgo

The Trasgo model [GEL11] proposes the use of an explicitly parallel (SPMD model) but
high-level and structured representation of parallel algorithms. Trasgo transforms a global
address space into a partitioned address space, building the functions to compute commu-
nications across virtual processes. The code is rewritten by a back-end that generates C code
with calls to the Hitmap run-time library [GETFL13]. The resulting sequential code gen-
erated for the local distributed process can be finally optimized through polyhedral tools
(Pluto compiler [BHRS08]) to generate tiled and optimized parallel code for shared memory
using OpenMP [MFGEL14].

2.3 Compiler-runtime tool

We have developed and implemented in Trasgo a new technique to calculate automatically
at runtime the communications needed in a distributed programming model among two
SPMD blocks with distributed data structures. The technique is based on a compile-time
analysis that, from a set of affine expressions generates tailored functions to calculate at
runtime the set of indexes accessed to read or to write in a SPMD block.



Table 1: Study 2: Performance (in seconds) for Jacobi-2d solver (N=5000, T=800), generated
for distributed-memory by Trasgo, and by Pluto-distmem.

Jacobi-2d
Trasgo Pluto

Machine Seq. Comm. Seq. Comm.
CETA-4 53.04 8.09 36.88 15.98
CETA-8 36.17 13.19 22.15 17.87
CETA-16 20.24 13.14 16.49 30.66
CETA-32 8.63 9.40 8.54 22.41
CETA-64 5.77 12.29 8.55 25.39

Trasgo introduces, between two SPMD blocks, a communication stage where calculates
at runtime a communication pattern using the functions generated at compile time. The
communication pattern contains the information needed to marshal and unmarshal the data
to be received and sent. The data to be received by a local process from a process p is cal-
culated intersecting the set of indexes written by p in the first SPMD with the set of indexes
read by the local process in the second SPMD. The data to be sent is calculated by the oppo-
site intersection (set of indexes written by the local process with the set of indexes read by
p). Performing these operations for each remote process p, we obtain an exact coarse-grained
communication pattern per each process where no data are communicated twice.

3 Experimental study

In this section we show an excerpt of an experimental study where we compare a compile-
time state-of-the-art tool that also generates communication code, Pluto [DRRB13], with our
runtime proposal. We have performed the experimentation in a homogeneous distributed-
memory system called CETA. The cluster nodes are connected by Infiniband technology, and
they have two Intel Nehalem-based Xeon 5520 CPUs at 2.27 GHz, with 4 cores each using
mpich3 v3.1.3 as MPI implementation.

Table 1 shows the performance results for a Jacobi-2d solver. The results indicate that
the code generated by Pluto is more efficient for a low number of processes, but does not
scale as well as Trasgo. The code transformations performed by Pluto include skewing the
time outer-most loop to parallelize the complete affine-nest-loop. It derives in a lot of re-
utilization and memory hierarchies exploitation inside the processes. On the other hand,
Trasgo codes have a hierarchical approach in which only spatial parallelism is exploited at
the distributed-level, like in classical manual message-passing approaches. This derives in
coarse communications, and less opportunities to exploit the shared-memory level due to
extra synchronizations. However, as the number of processes grows, Pluto reveals its more
clumsy communications calculations, while the granularity of the Trasgo communications
decreases, and its reduced cost for communications becomes much more relevant.

4 Conclusion

We have designed and developed a framework to help to the programmer to deal with
the main challenges on distributed-memory systems, data partition and communication.



The new technique implemented in our framework calculates exact coarse-grained commu-
nications in terms of data volume (no data is communicated twice). Moreover, it applies
tiling technique after the data structures have been parted. This enables to use different tile
sizes in the same computation, an important feature to achieve a good performance on dis-
tributed systems with nodes of different capabilities. The Trasgo framework is available at
http://trasgo.infor.uva.es.

Acknowledgements
This research has been partially supported by MICINN (Spain) and ERDF program of the European Union:
HomProg-HetSys project (TIN2014-58876-P), and COST Program Action IC1305: Network for Sustainable Ul-
trascale Computing (NESUS). by the computing facilities of Extremadura Research Centre for Advanced Tech-
nologies (CETA-CIEMAT), funded by the European Regional Development Fund (ERDF). CETA-CIEMAT be-
longs to CIEMAT and the Government of Spain.

References
[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic

polyhedral program optimization system. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2008.

[Bon14] U. Bondhugula. Compiling affine loop nests for distributed-memory parallel architectures. In
Proc. SC’2014, Denver, CO, USA, 2014. ACM.

[CDIC10] B.L. Chamberlain, S.J. Deitz, D. Iten, and S-E. Choi. User-defined distributions and layouts in
Chapel: Philosophy and framework. In 2nd USENIX Workshop on Hot Topics in Parallelism, June
2010.

[CG06] Michael Claßen and Martin Griebl. Automatic code generation for distributed memory architec-
tures in the polytope model. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, pages 7–pp. IEEE, 2006.

[DRRB13] Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula. Generating effi-
cient data movement code for heterogeneous architectures with distributed-memory. In Parallel
Architectures and Compilation Techniques (PACT), 2013 22nd International Conference on, pages 375–
386. IEEE, 2013.

[EGCSY03] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC : distributed shared-memory programming.
Wiley-Interscience, 2003.

[GEL11] A. Gonzalez-Escribano and D.R. Llanos. Trasgo: A nested-parallel programming system. The
Journal of Supercomputing, 58(2):226–234, 2011.

[GETFL13] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D.R. Llanos. An extensible system for
multilevel automatic data partition and mapping. IEEE TPDS, 25(5):1145–1154, 2013.
(doi:10.1109/TPDS.2013.83).

[KJEM12] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. A hybrid approach of
OpenMP for clusters. In ACM SIGPLAN Notices, volume 47, pages 75–84. ACM, 2012.

[MFGEL14] A. Moreton-Fernandez, A. Gonzalez-Escribano, and D.R. Llanos. Exploiting distributed and
shared memory hierarchies with Hitmap. In Proc. HPCS’2014, pages 278–286, Bologna (Italy),
2014.

[YR13] Tomofumi Yuki and Sanjay Rajopadhye. Parametrically Tiled Distributed Memory Parallelization
of Polyhedral Programs. Technical Report CS13-105, Colorado State University, June 2013.

http://trasgo.infor.uva.es

	Introduction
	Trasgo and its automatic compiler-runtime tool
	Challenges on distributed-memory systems
	Trasgo
	Compiler-runtime tool

	Experimental study
	Conclusion

