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Abstract. This work presents a mining methodology designed to cope
with the usual data scarcity problems of intonation corpora which arises
from the high variability of prosodic information. The methodology is an
adaptation of a basic agglomerative clustering technique, guided by a set
of domain constraints. The peculiarities of the text-to-speech intonation
modelling problem are considered in order to fix the initial configuration
of the cluster and the criteria to merge classes and stopping their split-
ting. The scarcity problem poses the need to apply a sequential selection
mechanism of prosodic features, in order to obtain the initial set of classes
in the cluster. A searching strategy to select the best class among a set
of alternatives is proposed, which provides useful prediction models for
accurate synthetic intonation. Visualization of final classes by means of a
modified decision tree brings graphical cues about contrastable prosodic
information of the intonation corpus.

1 Introduction

Intonation is an important attribute of the human speech which brings relevant
information about many linguistic, emotional and social aspects. Despite of its
importance and of the number of different approaches which can be found in the
bibliography, the huge number of factors which have an effect on intonation make
its modelling a very difficult challenge (see [3] for a review). The availability of
recorded speech corpora opens way to data mining techniques in order to auto-
matically extract information and generate models of intonation. Nevertheless,
the nature of the problem makes it difficult to apply conventional techniques. In
this work, we introduce a knowledge driven clustering technique which outcomes
useful information about some intonation aspects, such as the relevance of the
features and its relation with the typical patterns of intonation.

Intonation has been a matter of interest for long time in linguistics (e.g [13]
for Spanish intonation). Intonation is related to the different kinds of intonation
information: linguistic information (e.g. interrogative vs. declarative sentences);
emotional information (e.g. the mood of the speaker) and sociolinguistic informa-
tion (e.g. social and geographical origin of the speaker). In the speech technology
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domain, the primary use of intonation has been related to the improvement of
naturalness of text-to-speech systems [18]. In speech recognition tasks, intona-
tion information could provide valuable clues to find sentence boundaries or to
identify the kind of sentence [16]. Speaker recognition systems have also bene-
fited from the inclusion of intonation information [15]. Nevertheless, the huge
number of variability dimensions of intonation phenomena and the difficulty to
represent them adequately, justify the lack of consensus on the best way to model
intonation information. The relative importance and even the right number of
factors which affect intonation is still a subject of debate in the bibliography.

Time evolution of the F0 value of a speech waveform is recognized as a valuable
source of information in the intonation literature. Although the first algorithm
to extract F0 appeared on the sixties, it is still a subject of improvement (see
[8] for a review). Moreover, there is no overall agreement on the way F0 con-
tours should be best parameterized from the extracted F0 magnitude. The goal
of Text-to-Speech (TTS) applications is to automatically obtain a mapping be-
tween a set of prosodic features affecting the shape of F0 contours and a set
of parameters representing the shape of the F0 contour. This mapping could
be adequately obtained using data mining techniques to intonation corpora. In
the modelling stage, a mapping is inferred from the samples in the corpus. In the
prediction stage, this correspondence is applied to get the synthetic contour pa-
rameters from the prosodic features derived from the labelled text. A variety of
mapping techniques can be found in the bibliography, from simplified basic rule-
based systems[2] to corpus based systems approaches using Neural Networks[12],
Decision Trees [19], Regression Trees [1] . . ..

Two main limitations affect traditional learning techniques. First, they do
not provide contrastable linguistic information about the intonation movements.
Second, they usually lack enough robustness to cope with data scarcity prob-
lems which, as a consequence of the high number of possible combinations of
potentially important prosodic features, heavily affect feature covering capabil-
ities of the corpora (using D prosodic factors with an average number of V
values each, would require unrealistic corpus sizes for typical situations in which
D > 10 and V > 5, leading to more than 105 different units). The scarcity prob-
lem could cause unrealistic prediction of F0 contours when the input is labelled
with a combination of prosodic features rarely observed or not present at all in
the corpus. This can dramatically decrease the naturalness of the synthesized
speech.

In this work, we will describe a knowledge driven sequential clustering which
brings enough robustness to cope with data scarcity problem and provides the
core component of an intonation modelling methodology which can be success-
fully used in TTS applications with a high degree of speech naturalness. In
section 2, we formally describe the intonation modeling problem, focusing on
the goals, domain constraints and limitations which inspire the decisions to be
taken for the clustering procedure, which will be described in section 3. Results
and conclusions are reported in sections 4 and 6.
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2 Problem Statement

In corpus based intonation modelling, the corpus is considered a set of intona-
tion units IUi, C = {IUi, 1..N}. Every IUi is a pair IUi = (IUi.PF, IUi.AP ).
IUi.AP is an array of numerical values which provide the acoustic parameter-
ization of the F0 contour of IUi. IUi.PF is a set of numbers or strings which
gather the values of the set of prosodic features which label the prosodic function
of IUi. These features capture several characteristics of intonation like accent,
emotion, type of sentence or grammatical structure of the sentence, among oth-
ers. The prosodic features are either manually labelled in the corpus units or, in
a generation stage, are derived from text using a priori linguistic knowledge.

As far as intonation is concerned, the main goal in corpus-based TTS appli-
cations is learning the correspondence between AP and PF , given a set C of
labelled intonation units. Any model providing such correspondence should ade-
quately predict IUi.AP ′ given IUi.PF ′ in the generation stage. This set IUi.AP ′

of acoustic parameters could then be used to generate a synthetic F0 contour
close enough to intonation contours associated to the IUi.AP of the corpus which
are determined to be similar to the IUi.AP ′.

Any procedure designed to solve the correspondence learning problem should
take into account two main goals and fulfil two main constraints:

Goal 1 (G1) Prediction of synthetic F0 contours is to be as accurate as possible
for Text-To-Speech applications.

Goal 2 (G2) Results of the modelling stage should provide linguistically con-
trastable information.

Domain Constraint 1 (C1) Two different intonation units IUi and IUj, are
perceptually equivalent iff IUi.AP ∼ IUj .AP , provided the parameterization
technique has been properly selected[9].

Domain Constraint 2 (C2) The second constraint concerns to the function
of intonation and it establishes that if IUi.PF = IUj.PF then IUi.AP ∼
IUj .AP , given the parameterization technique and the prosodic features have
been properly selected.

Since the solution has to assume that prosodic knowledge is not complete and
that it is usually impossible to gather together in a corpus a set of instances
broad enough to cover all the possible prosodic configurations, two fundamental
drawbacks have to be taken into account:

Drawback 1 (D1) The ideal set of PF and AP is still an open question, so
that it would be desirable to obtain, as a product, information about the
number of features to use, their cardinality, and their relative importance.

Drawback 2 (D2) The high number of PF involved makes data scarcity prob-
lems a fundamental difficulty to tackle with.

Together, all these goals, constraints and drawbacks drive the design of a new
clustering process, adapted from basic clustering techniques [11], which will be
described in the next section. As we will show, this technique will also provide
visual cues which should be useful to interpret the nature of prosodic phenomena.
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3 Clustering Technique

In this section, we describe our proposal for a multilevel clustering technique,
driven by a forward sequential feature selection process, which correctly solves
the problem described previously. The technique is inspired by classic knowledge-
based agglomerative clustering techniques [11] in combination with widely ac-
cepted feature selection techniques[20].

Constraint C1 justifies the use of clustering techniques to build sets of classes
of IUi, grouped in terms of the similarity of their APs, since these sets of classes
will properly represent the typical movements of F0 contours observed in the
corpus. This clustering will also provide a means to find the characteristic in-
tonation profiles, abstracting the intrinsically high variability of the prosodic
events.

The process starts building an initial classification of the IUi from a single
prosodic feature LPF1 = {PF 1}. Each class corresponds to a given value of this
initial prosodic feature PF 1. An agglomerative clustering technique is iteratively
applied to this cluster using maximum similarity as the merging criterion and
prediction accuracy of F0 profile as the stopping condition. The prosodic feature
which gives the best overall prediction accuracy of F0 profile over the cluster is
selected as PF 1. An additional prosodic feature is added to LPF1 to construct
the next set of prosodic features LPF2 = {PF 1, PF 2} and a new cluster is build
repeating the previously described process. Again, the same criterion applies for
the selection of PF 2, resembling the typical forward sequential feature selection
process. The clustering process stops when all the possible prosodic features
have been included into LPFfin = {PF i|i = 1, . . . , Npf} and it results into a
multilevel set of clusters, each one corresponding to an increasingly more specific
set of prosodic features.

Constraint C2 implies that two different intonation units sharing the same set
of prosodic features are to be in the same class, since they should be similar in a
way consistent with the similarity measure used to merge classes. That justifies
why we choose the set of classes induced by LPF as the initial set for any cluster
level.

Since the main application of this clustering will be TTS generation (see goal
G1), it is clear that the stopping condition for the agglomerative process should
be related to the prediction accuracy of the clusters when used to generate F0
profiles: agglomeration should stop when the prediction results using a set of
clusters after merging are worse than using the present ones.

The agglomeration still provides a correspondence between APs and PFs, if
we keep track of the different values of the PF associated to a class after merging.
The list PLj = {PFk|k = 1, . . . , Kmax(j)} associated to a class Cj provides an
index to it which can be used in TTS to retrieve the APs which correspond to the
given sequence of PF annotated in the input text. The APs retrieved sequence
will be used to generate F0 contour (G1). We call dictionary the set of pairs
Dk = {(PLj , Cj), j = 1, . . . , N(k)}. A dictionary is the explicit representation
of the correspondence between function of intonation (PF ∈ PLj) and its shape
(AP ∈ Cj in the class) and bring a way to fulfil goal G2.
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As the number of prosodic features increases, the data scarcity problem gets
worse (drawback D2). The multilevel clustering technique provides a different
clustering for every LPF0, LPF1, . . . , LPFfin and each of them has been opti-
mally adapted to cover the IUi set in the corpus for a given level of detail in
the set of prosodic features. Since the lists LPFj are orderly enlarged adding
the next best predicting feature at each stage, we can use the corresponding or-
dered set of dictionaries LDk = {Dj |j = 1, . . . , k} to guide a searching strategy
for alternatives to unseen (or infrequent) PFj combinations, selecting the best
predicting dictionary which subsumes PFj (refer to [4] [7] for details)

The ordered list of dictionaries provides a way to build a decision tree which
gives visual information easy to contrast that schematically represents the in-
tonation patterns found in the corpus (see section 5). The ordered set of lists
LPF0, LPF1, . . . , LPFfin provides a ranking of importance of the various
prosodic features, which besides the previous visualization capabilities provides
good fulfilment of goal G2 and adequately copes with drawback D1.

4 Experimental Results

For the experimental validation of the clustering technique, we have used an in-
tonation corpus which contains more than 700 sentences (4363 intonation units)
recorded by a professional actress in studio conditions1. High quality F0 contours
were obtained using a laringograph. Sentences has been segmented and labelled fol-
lowing a semiautomatic process. We selected only the declarative sentences, which
represent about 95% of the whole corpus. The sentences has been segmented into
different types of intonation units: intonation groups (IG), stress groups (SG) and
syllables (see [13] for a definition of this units). In this study the basic unit of ref-
erence has been the SG, defined as the combination of a stressed syllable of a word
plus the preceding and following one. The acoustic parameters are the control
points of the Bzier curves of degree 3 fitting the F0 contours in the intonation units
(more details in [6]). The following prosodic features were considered: type of sen-
tence typeSE (1 value), position of the tonic syllable in the first SG posSTiniSG (3
values) and in the last one posSTfinSG (3 values), number of IGs nIGSE (5 values),
SGs nSGSE (6 values), syllables nSylSE (6 values) and phonemes PhonSE (6 val-
ues) in the sentence, number of stress groups nSGIG (6 values), syllables nSylIG (6
values), and phonemes nPhonIG (6 values) in the IG, position of the IG in the sen-
tence posIGSE (7 values), position of theSG in its IGposSGIG (6 values),SGBorder
indicating the configuration of the SG, number of syllables nSylSG (9 values) and
phonemes nPhonSG (6 values) in theSG, positionof the stressed syllableposSTSG (3
values). For the experiments, the corpus was split into 3 subsets: modelling, train-
ing and testing sets.

We use the centroid to represent the samples of each class in the clusters.
The Euclidean distance between the respective centroids of the classes was used
as the inter-class similarity metric to guide the merging process. The prediction
1 Gently provided to us by the research group TALP of the Polythecnic University of

Catalonia, Spain.
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Fig. 1. Building the list of dictionaries: each curve represents the effect of adding
dictionary Di to the list of dictionaries LDi, (i = 1, . . . , Npf ). The name of the PF
added to build Di is the legend of the curve. Each curve represents the prediction
error of the training samples as a function of the number of classes at each step of
agglomeration, starting at the right end with the maximum number of classes for that
set of PF . The optimal number of classes for dictionary Di corresponds to the minimum
of the associated curve.

error is computed as the distance between the points of the real F0 contour and
the points of the corresponding synthetic one. This distance is measured using
the recommended RMSE and Pearson Correlations [10].

Figure 1 monitors the building process of the list of dictionaries. Error values
were obtained by averaging the prediction error over the set of SG in the training
corpus. As the number of PF grows the impact of new PF decreases mainly
due to the fact that some of the PF are redundant or they introduce few extra
information (e.g. nPhonSG and nSylSG are correlated features: when one of
them is considered, the incremental procedure rejects the other).

Prediction errors showed in table 1 indicate that the TTS results obtained us-
ing our clustering technique are comparable with other approaches found in the
bibliography (see [14] for a ranking). Informal listening tests have been done to
assess the goodness of the synthetic intonation. The over-training effect observed
in the table could be acceptable in TTS applications where imitating the into-
nation patterns in the corpus does not incur any noticeable loss of naturalness.

Table 2 shows the success of using an multilevel approach. Less specific dic-
tionaries (the ones with less number of PF ) are used frequently to predict any
IU , both for the testing and training corpora. The difference is more obvious for
the testing set, since the number of unseen PF combinations increases for more
specific dictionaries.
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Table 1. Prediction Errors: RMSE y Pearson Correlation (Corr) versus the number
of prosodic features in training and in testing stage. The metrics are computed using
all the F0 contours of the training and testing corpus respectively.

Train Test
List of Dict. RMSE(Hz) Corr RMSE(Hz) Corr

LD1 21.47 0.59 21.53 0.60
LD2 19.20 0.69 19.66 0.68
LD3 18.55 0.71 18.58 0.72
LD4 18.30 0.72 18.49 0.72
LD5 17.94 0.74 18.49 0.72
LD6 17.23 0.76 18.66 0.72
LD7 16.51 0.78 18.94 0.71

Table 2. Level of use of the dictionaries in a list: each cell contains the percentage of
intonation units that are predicted using each of the dictionaries of the list

Use of the Dictionary (%)
LD7 D1 D2 D3 D4 D5 D6 D7

Train 0.0 2.8 3.4 14.8 6.1 16.1 56.8
Test 0.2 4.5 6.4 17.4 10.7 18.7 42.2

Table 3 shows the impact of the agglomerative process in the final number of
representative classes: D7 has 1795 classes in the initial configuration and 190
at the end of the agglomeration process. Note that the initial number of classes
is far away from the maximum: if the corpus would have samples to cover all the
possible combinations of PF , the number of classes would be 2 (accent) ×
6 (posSGIG) × 7 posIGSE × 9 (nSylSG) × 6 (nSylSE)× 6 (nSGSE) × 6
(nPhonSG) = 163296. Although some of the combinations are impossible, we
can easily figure out the magnitude of the corpus needed to cover them all and
the importance of designing a robust strategy to cope with scarcity, as the one
proposed in this work. Finally, not all the classes in the final configuration are
used since this is decided through the dictionary based selection mechanism for
every intonation unit: we see that only 24 out of the 190 available classes are
used in D7. This significant reduction helps simplifying the visual representation
of the clusters which will be presented in the next section.

Table 3. Description of the dictionaries in terms of the number of classes and of the
number of samples per class

List of Dictionaries LD7 D1 D2 D3 D4 D5 D6 D7
Number of eligible classes 2 4 17 30 26 21 24

Number of grouped classes 2 5 40 111 83 80 190
Initial number of nlasses 2 10 68 230 631 1068 1795

Mean number of samples per class 1235 494 113 42 35 32 16
Mean intra-class dispersion (Hz) 37 33 31 26 21 20 17
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Fig. 2. Models of the dictionary represented as a decision tree. We have selected a part
of the whole tree. Normalized x axis, y axis scale: 100-220Hz.

5 Visualization Cues

Figure 2 shows a tree-like graphical representation of the classes in the list of
dictionaries. Each node represents a class in the clusters. For every class, we
show the Bzier curve representing the F0 profile of the centroid and the stan-
dard deviation of each control point. The graph at each node provides a visual
representation of the prototypical F0 patterns of the IU belonging to that class.

The classes belonging to the level i are the selected classes for dictionary Di.
Only classes which have been effectively used for prediction and contain more
than 10 samples have been represented. The labels of tree branches give the
values of the PF . The path going from the root to a given node provides one of
the sequences of prosodic features which correspond to the node class.

This tree representation differs from a conventional regression tree in many
aspects. Here the same class could appear in different nodes if more than one
PF combination indexes it. Furthermore, the parent-child relationship does not
imply the splitting of the samples of the parent node. Here the hierarchy is de-
termined by the PF and the contents of the nodes by the agglomerative process.
The tree is an easy to read representation of the information of the dictionaries.

The visualization of the information in the tree allows us to contrast some of
the assessments found in the bibliography about Spanish Intonation. In [5], an
overview of the proposals of several authors can be found. Here we review the
main assessments and we contrast them with plots in figures 2.

– The importance of the prominence. We have labelled this function with
PF = accent. Figure 2 shows that this feature is essential: it is in the top of
graph separating two sets of classes clearly different. Patterns with accent
property, are characterized by high F0 values and by a rising pattern.
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– Position of the stressed syllable: Prototypical patterns associated to the
Spanish stress groups are L ∗+H and the less frequent H∗ (using TOBI no-
tation). To analyze this fact, nSilGA has 4 possible values: a , a, a , a),
where means un-stressed syllable and a means stressed one. In this con-
text, F0 contour evolution can be easily aligned with respect to the stressed
syllable. The majority of the classes fit with the L*+H symbol and some of
them with H∗ according to the observations of [17].

– Influence of the juncture: Patterns in the IU boundaries have a de-
creasing trend (node C3 21) of the tree 2), anticadence (node C3 25) and
semicadence (node C3 33) (see [13]).

– Type of sentence: affecting mainly the last part of the F0 contour. Typical
final juncture of declarative sentences L ∗ +L% is clearly seen in figure 2.

Finally, we remark that the visualization of figure 2 will probably let the
experts to conclude about the intonation phenomena, although a thorough dis-
cussion of this is out of the scope of the present paper.

6 Conclusions and Future Work

The peculiarities of the intonation modelling problem have inspired the definition
of an ad-hoc clustering methodology. The methodology provides synthetic F0
contours of a comparable quality to the ones found in the state of the art.

The methodology does not depend on the selection of the prosodic features,
acoustic parameters, and type of intonation unit. This could be exploited to
experiment the effect of those prosodic factors on quality intonation modelling.

Extracting contrastable information from the corpus of study was also a goal,
in a field where many conceptual questions are still open. The proposed clustering
procedure provides a ranking of importance of the prosodic features typically
used to classify intonation patterns.

Furthermore, the tree-like representation of the result classes provides vi-
sual cues which aid contrast relationships between prosodic features and typical
F0 contours patterns, as found in the working corpus. This information could
be most valuable as an objective means to test the intonation of a given cor-
pus against others or to validate the linguistically correct intonation of a given
corpus, with respect to a set of recognizable theoretical prosodic assessments.
The results presented for Spanish show good agreement with accepted prosodic
knowledge for this lenguage.
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