

Universidad de Valladolid

Implementation of a Motion Estimation Algorithm for Intel FPGAs using OpenCL

Manuel de Castro¹, Roberto R. Osorio², Yuri Torres¹, Arturo González-Escribano¹, Diego R. Llanos¹ ¹**Universidad de Valladolid, Spain**, ²**Universidade da Coruña, Spain** mdcc.prof@gmail.com roberto.osorio@udc.es {yuri.torres|arturo|diego}@infor.uva.es

CMMSE 2022, July 2022

Universidad de Valladolid

INTRODUCTION

- Block-matching Motion Estimation is widely used in advanced video codecs to achieve high compression rates
 - / Blocks of pixels compared between current and reference frame; allows to encode blocks as motion vectors (spatial references)
 - Responsible for most of the compression in any video codec
 - × Computationally intensive task, usually implemented by means of application specific hardware (ASICs, FPGAs, ...)
- FPGA solutions are mostly developed using hardware description languages (Verilog and VHDL)
 - $\sqrt{}$ Allow for **low-level optimizations**
 - × High development complexities, specially for HPC software developers
 - Solutions using higher-level languages are desired

• **Proposal: OpenCL** [1] solution targeting Intel FPGAs

- Intel FPGA SDK for OpenCL with task kernels
- Test the expressiveness of OpenCL as a design language for video processing applications

CURRENT & REFERENCE FRAME BLOCKS

- Divide current frame in equally-sized macroblocks
- Search for closest match in nearby area in reference frame
 - All possible matches within the search area are candidate blocks
 - \Rightarrow candidate motion vectors

BLOCK-MATCHING MOTION ESTIMATION

- Sum of Absolute Differences (SAD) as similarity metric between blocks
 - \Rightarrow Lower SAD = higher similarity
 - ⇒ Less costly than Sum of Squared Errors (SSE).
- Straightforward **full-search** algorithm

Search area

Search area

Proposal

- Works with Full HD frames (1920 \times 1080 pixels), luminance component only
- Uses 16×16-pixels macroblocks and 46×46-pixels search areas (961 motion vectors tested per macroblock)
- Two alternatives developed to address macroblocks at the borders of the frames
 - b) Add logic to **detect frame borders**
 - a) Work with expanded frames by repeating border pixels
- Computes each candidate motion vector fully in parallel
- **Comparison** with references
 - Compiled with gcc 7.5.0 and at least -O2 optimizations
 Intel Xeon Platinum 8256 CPU vs Intel Stratix 10 FPGA

Version	ms/frame	frames/s
Sequential reference	1627.39	0.614
MMX vector registers (8 bytes)	145.31	6.882
SSE vector registers (16 bytes)	126.64	7.896
-03 optimizations (uses SSE)	89.49	11.174
FPGA border detection logic	90.12	11.096
FPGA expanded frames	88.43	11.309

EVALUATION

- Compiled for Intel Stratix 10 FPGA [2]
- Version with additional logic for border detection
 - Working frequency: 308 MHz
 - Resource usage:

	ALM	REG	MLAB	RAM	DSP
Entire system	247 311 (27%)	433 503 (12%)	783 (1%)	1 198 (10%)	3 (0%)
Kernel system	52 468.9 (6%)	149 222 (4%)	783 (1%)	767 (7%)	5 (0%)
ME kernel logic (estimated)	24 122 (3%)	92840 (2%)	1 294 (1%)	678 (6%)	2.5 (0%)
Available	933 120	3 732 480	93 312	11721	5 760

- Version that works with expanded frames
 - Working frequency: 316 MHz
 - Resource usage:

	ALM	REG	MLAB	RAM	DSP
Entire system	244 913 (26%)	421 377 (11%)	990 (1%)	1 187 (10%)	0 (0%)
Kernel system	50 536 (5%)	137 020 (4%)	990 (1%)	756 (6%)	0 (0%)
ME kernel logic	20 922.5 (2%)	72 446 (2%)	1 440 (2%)	663 (6%)	0 (0%)
(estimated)	20922.3(270)	72440 (270)	1440 (270)	003 (070)	0 (070)
Available	933 120	3 7 3 2 4 8 0	93 312	11 721	5 760

CONCLUSION AND FUTURE WORK

- We present a block-matching motion estimation implementation for Intel FPGAs using OpenCL that is fully parallel.
- Two versions have been developed, that deal differently with the borders of the frames
- OpenCL easens development of FPGA applications and offers competitive results
- OpenCL presents some downsides: high compilation times and lack of estimated design latency
- **Future work:** performance comparison with **parallel** (OpenMP) and **GPU** implementations.

References

[1] KHRONOS OPENCL WORKING GROUP ET AL. The OpenCL Specification, version 1.0.29, 8 December 2008
[2] INTEL Intel Stratix 10 FPGAs & SoC FPGA, https://www.intel.com/content/www/us/en/ products/details/fpga/stratix/10.html

Acknowledgements

This research has been partially funded by the Spanish Ministerio de Economía, Industria y Competitividad with the ERDF program of the European Union, project PCAS (TIN2017-88614-R); Junta de Castilla y León - FEDER Grants, projects PROPHET and PROPHET-2 (VA082P17, VA226P20); the Fundación General de la Universidad de Valladolid by means of the contract 062/204051; the Spanish Ministerio de Ciencia e Innocación (PID2019-104184RB-I00, AEI/FEDER/EU, 10.13039/501100011033); and by the Xunta de Galicia and FEDER Grants (Centro de Investigación de Galicia 2019-2022, ref. ED431G 2019/01, as well as the Programa de Consolidación y Estructuración de Unidades de Investigación Competitivas, ref. ED431C 2017/04).