
Extending a source-to-source compiler with XML capabilities

Sergio Aldea Diego R. Llanos Arturo González-Escribano
Dpto. de Informática Dpto. de Informática Dpto. de Informática

Univ. de Valladolid Univ. de Valladolid Univ. de Valladolid

saldeal@gmail.com diego@infor.uva.es arturo@infor.uva.es

Abstract

This paper presents an extension that adds
XML capabilities to Cetus, a source-to-source
compiler developed by Purdue University. In
this work, the Cetus Intermediate Represen-
tation is converted into an XML DOM tree
that, in turn, enables XML capabilities, such
as searching speci�c code features through
XPath expressions. As an example, we write
an XPath code to �nd private and shared vari-
ables for parallel execution in C source code.
Loopest is a Java program with embedded

XPath expressions. While Cetus needs 2573
lines of internal JAVA code to locate private
variables in an input code, Loopest needs a
total of only 425 lines of code to determine the
same private variables in the equivalent XML
representation.
Using XPath as search method provides a

second advantage over Cetus: extensibility.
Changes in Cetus requires a deep knowledge of
Java, Cetus internal structure, and its Inter-
mediate Representation. Moreover, changes
in Loopest are easier because it only depends
on XPath to generate reports. Finally, we
present Sirius, an XML DOM tree-to-C con-
verter, that allows to generate the new output
C code based on the annotations done in the
XML tree.

1 Introduction

This work aims to extend Cetus, a source-
to-source compiler developed by Purdue Uni-
versity [1, 2, 3], with XML capabilities. Ce-
tus Intermediate Representation (IR) can be
transformed in an XML DOM tree, which en-
ables to use powerful XPath features and tools.

XPath queries work in a similar way than re-
cursive searches in a directory-based �lesys-
tem structure, allowing to select nodes or set
of nodes in an XML document easily through
path expressions.

The goal of this paper is twofold: To pro-
vide an extension to Cetus which incorporates
XML capabilities, and to compare the advan-
tages of using XPath instead Cetus internal
mechanisms in terms of easy of programming,
and extensibility. As an example, we show the
bene�ts of XPath as an alternative to search
private variables for parallel execution in a C
source code.

This paper is structured as follows. Sec-
tion 2 introduces Cetus, with a brief descrip-
tion of its structure and IR. Section 3 de�nes
the System Architecture and also describes
XMLCetus as extension of Cetus (Cetus IR-
to-XML DOM tree converter). In this section
we also describe Sirius, an XSLT program that
transform the XML DOM tree in C source
code. As a case of use, Section 4 describes
Loopest, a program that uses XPath to clas-
sify variables as private or shared for paral-
lel execution. Section 5 shows an example of
C source code executed by this architecture
and the di�erences between Cetus and XML-
Cetus+Loopest in terms of number of lines
and extensibility. Finally, Section 6 summa-
rizes the results and provides the main con-
clusions of this work.

2 Understanding Cetus

The Cetus Project is developed by Purdue
University (Indiana, USA), written in Java
and distributed under a modi�ed Artistic Li-

...

Program

TranslationUnit

DeclarationDeclaration

Statement

ExpressionExpression

Expression Expression

...

...

TranslationUnit

...

Figure 1: Cetus IR.

cence [7]. Cetus is a compiler infrastructure for
source-to-source transformation of programs
written in C. Cetus provides several functions,
such as auto-parallelization of loops through
private- and shared-variables analysis, and au-
tomatic insertion of OpenMP Directives.

Cetus works with an Intermediate Represen-
tation (IR)(see Figure 1), an abstract repre-
sentation that holds the block structure of a
C program. It is implemented in the form of a
class hierarchy and accessed through the class
member functions.

In Cetus, the concept of statements and ex-
pressions are closely related to the syntax of
the C language, making the source-to-source
translation easy. However, there are some dis-
advantages: an increasing complexity for pass
writers (since they should think in terms of
C syntax) and limited extensibility to process
additional languages. Fortunately, this prob-
lem is mitigated by the provision of several ab-
stract classes, which represent generic control
constructs. Thus, generic passes can be writ-
ten using the abstract interface, while more
language-speci�c passes can use the derived
classes.

Figure 2 shows an example of Cetus IR from
a C source code. In Cetus terminology, a
�TranslationUnit� is a �le containing source
code. The syntax tree shown in Fig. 1 and the
class hierarchy are not completely equivalent.
For example, in the syntax tree, the parent of a
TranslationUnit is a Program, however neither

Program

TranslationUnit

DeclarationStatement Procedure

VariableDeclaration CompoundStatement

DeclarationStatement ForLoop

ExpressionStatement

AssignmentExpression

...

...

...

int temp;

int main(void){

 int i,c;

 c = 2;

 }

}

 for (i=0;i<100;i++){
 ...

Figure 2: IR Tree Structure Example.

TranslationUnit nor Program have a parent in
the class hierarchy.

3 System Architecture

Figure 3 shows the proposed system architec-
ture. The input of this system is the original
C �le. XMLCetus receives this �le and cre-
ates an XML �le that represents the original
source and contains all the information needed
to rebuild the code. At this point, using tools
for handling XML DOM trees, it is possible
to generate a report with relevant information
from the code. It is also possible to modify the
XML DOM tree with automatic XML tools,
in order to create a modi�ed C source �le (not
shown in the �gure). Once the transformation
is done, the modi�ed XML �le is the input of
Sirius, which rebuilds the C source code with
the XML information provided. For legibility,
we use the GNU tool indent to format the

XML SIRIUS (new C File) (result)

indent

(original C file) XMLCETUS

LOOPEST (XPath) : generating reports

Figure 3: System Architecture.

result. The following sections explain XML-
Cetus and Sirius in more detail.

3.1 XMLCetus

XMLCetus is a modi�cation of Cetus that also
generates an XML DOM tree based on Cetus
IR. Since Cetus is written in Java, it is easy
to add functionalities to the code. XMLCetus
is composed by a new class Xml included in a
new package cetus.xml. The package created
is imported by the Driver class, which is the
entry point of the system. The main changes
to Cetus are made just after Cetus has �nished
the analysis of the C source and has generated
the IR. At that point, the cetus.xml 's func-
tion called createDomTree() is invoked with
the �rst node of the tree (Program) as in-
put parameter. This function creates a new
DOM document with the XML tree, that can
be printed by the printDomTree() function.
Every node of the IR has a corresponding

representation in the XML DOM tree, pre-
serving the original structure of the Cetus IR.
The following steps explains the transforma-
tion procedure from Cetus IR to XML DOM
tree:

1. Beginning with the �rst node, Program,
we recursively descend all its children:
TranslationUnit nodes which represent
the source code �les passed to Cetus. The
tree is traversed with a preorder, depth-
�rst search. The getChildren() function
gets the children of each node as a list
of nodes. Through a casting operation,
the list is transformed into a Traversable-
type objects list. Traversable is the type
de�ned by Cetus as the generic class, rep-
resenting any kind of node.

2. Next, the type of the children nodes are
checked. This is done with the help
of a loop that traverse each node and
�nd, with subsequent checks, the class
this node is an instance of. (using the
instanceof Java operator). If one node
is an instance of a given class and its par-
ent class, two DOM elements that repre-
sents both nodes are created to re�ect the
original structure. A di�erent situation
arises when a node is an instance of a su-
perclass and not of any of its subclasses.
These facts, among others, are taken into
account when creating DOM nodes and
its relationships.

3. When the checking of the instance is pos-
itive with a particular class, an object in-
stance of this class is created, through the
node and a casting operation. Now, it
is possible to obtain relevant information
from the node and create a new DOM ele-
ment with attributes that re�ects this in-
formation.

4. Finally, after the creation of the element
with its attributes, the DOM element is
appended to its corresponding parent.

This procedure generates an XML �le which
represents the DOM tree. Using this �le as
input of Sirius, it is possible to rebuild the
original C source transformed by Cetus.

3.2 Sirius

Once XMLCetus creates the XML output �le
with the DOM tree, it may be necessary to
transform this tree to a di�erent format. The
best way to perform this process is using

XSLT. We built an XSLT program with tem-
plate rules to translate the XML output �le
again to C. These rules guide the transforma-
tion from the DOM tree to a compilable source
code that should be equivalent to the original
source code after Cetus processing. To execute
the XSLT program, we chose the Saxon [4]
tool, due to its open-source nature and be-
cause it implements XPath and XSLT 2.0.

The structure of the XSLT program devel-
oped consists in a set of template rules, one for
each element of the DOM tree that should be
transform to C language constructions. This
template rules generate the C code that cor-
responds to the DOM element identi�ed, and
indicate the application of another rule where
necessary. For example, in the case of a Bina-

ryExpression element, the corresponding tem-
plate rule generates the correct binary opera-
tor, according to the value of the correspond-
ing attribute, and decide the application of the
appropriate template rules to the left and right
side expressions of the binary operator.

As an example of use the XML DOM tree,
together with the information obtained by its
analysis, can be used to generate modi�ed
versions of the original C code, for example
to parallelize loops with additional directives.
We have developed a tool, called Loopest, that
explores this possibility. This tool is described
in the following section.

4 Loopest

Loopest is an experimental tool to automat-
ically analyze the XML output �le generated
by XMLCetus, in order to classify the use of
variables inside for loops. Loopest is written
in Java and executes a set of XPath queries
which determine the variables being read, be-
ing written, being read-and-written, and some
other queries useful to �nd private variables
in a loop. Once the queries �nish, the sets
of variables obtained are used to generate re-
ports, thanks to the use of the package List-

Utils, provided by Apache Commons [5].

Loopest was developed using XPath because
it provides simplicity and extensibility. XPath
syntax is easy to learn and provides enough

int main() {

 int i, a, b=10;

 for (i=0; i<b; i++) {

 a=b+1;

 }

}

Figure 4: Example of C code.

functionality. It is possible to build complex
queries with few words or lines. The result of
these queries can be new node-sets that can
be easily combined to search for new results.
One of the main advantages of using such a
tool is that its functionality can be modi�ed
easily, detecting new language constructions
by adding or modifying queries.
The following example shows the entire pro-

cess, analysing the XML representation of an
original C code and generating a report.

5 An Example of the XML DOM

Tree and XPath Capabilities

The main di�erences between Cetus and
XMLCetus+Loopest are simplicity and exten-
sibility. Detection of private variables is devel-
oped in Cetus too, but the code required to im-
plement this functionality is much longer and
complex than Loopest's code. Also, perform-
ing changes to Cetus' functionality requires
a deep knowledge about Cetus software and
its intermediate representation. Changes in
Loopest software are much easier, because it
is developed with XPath, not even requiring a
widespread knowledge about Java or XML.
Figure 4 shows a simple C source code, with

only a loop and three variables involved. The
XML representation of this code is shown in
Figure 5. Only the main elements which help
to better understand Loopest functionality are
shown in the example. The name of these
nodes are the same as the nodes of Cetus Inter-
mediate Representation, and the value of their
attributes are also extracted from Cetus IR.
The entire code is represented with a simple

<Program>
<TranslationUnit filename="example1.c">
<Declaration>
<Procedure name="main" numParameters="1">
...

<CompoundStatement>
<Statement>

...
<VariableDeclaration numDeclarators="3">

<Declarator>
...

<Identifier array="" name="i" opUnary="" type="int"/>
</Declarator>
<Declarator>

...
<Identifier array="" name="a" opUnary="" type="int"/>

</Declarator>
...

<Statement lineNumber="3">
<ForLoop condition="i<b" initial="i=0;" lineNumber="3" step="i ++ ">

<Statement>
...

<BinaryExpression operator="=">
<Expression>

...
<Identifier array="" name="i" opUnary="" type="int"/>

</Expression>
<Expression>

...
<IntegerLiteral value="0"/>

</Statement>
<Expression>

<BinaryExpression operator="<">
<Expression>

...
<Identifier array="" name="i" opUnary="" type="int"/>

<Expression>
...

<Identifier array="" name="b" opUnary="" type="int"/>
</Expression>
<Expression>

<UnaryExpression expression="i" operator="post ++">
...

<Identifier array="" name="i" opUnary="" type="int"/>
</Expression>
<Statement lineNumber="3">

<CompoundStatement>
...

<BinaryExpression operator="=">
<Expression>

<Identifier array="" name="a" opUnary="" type="int"/>
<Expression>

<BinaryExpression operator="+">
<Expression>

<Identifier array="" name="b" opUnary="" type="int"/>
<Expression>

<IntegerLiteral value="1"/>
...

Figure 5: XML example.

Number of ForLoop: 1

���������������������-

3: Line number: 3

3: Loop Control Variable:(int) i.

3: Variable involved in the Loop

Control:(int) b.

3: Variables only read:(int) b.

3: Variables only written:(int) a.

3: Private Variables:(int) a,(int) i.

3: Shared Variables:(int) b.

Figure 7: Report generated by XML-

Cetus+Loopest for the program shown in

Fig. 4.

XML tree structure, enabling to use XPath ca-
pabilities to generate reports. XPath queries
work in a similar way than recursive searches
in a directory-based �lesystem structure, al-
lowing to select nodes or set of nodes in an
XML document easily. Figure 6 shows some
queries used in Loopest.
The for loop constructors have their own

nodes in the tree. A for loop node has always
the same structure and children nodes:

• A Statement node which represents the
initial statement.

• A Expression node which represents the
loop condition.

• A second Expression node, which is the
loop step.

• A Statement node which contains the loop
body.

Returning to Figure 4 code, if -privatize
option of Cetus is activated, Cetus detects a

and i as private variables, and adds the fol-
lowing line into the code:

#pragma cetus private(a, i)

Loopest identi�es the same variables as pri-
vate and produces the report shown in Fig-
ure 7:
As can be seen, both Cetus and XML-

Cetus+Loopest produce the same results with
respect to private variables identi�cation.

However, the di�erence is the e�ort needed to
carry out this task. We may use the number
of code lines needed as an e�ort indicator. In
Cetus, at least eight java classes take part di-
rectly to locate the private variables of a given
loop, consuming 2573 lines of code (calculated
by SLOCCount [6]). However, Loopest only
needs 425 lines of a lower complexity to carry
out the same task.

6 Conclusions

The aim of this paper is to explore the advan-
tages of using XML representation of C pro-
grams to generate reports easily and to allow
automatic modi�cations to its structure. To
do so, we have developed XMLCetus, a modi-
�ed version of Cetus that uses its Internal Rep-
resentation to generate an XML document,
and Loopest, an experimental application that
process this document in order to classify the
use of variables in for loops. Regarding this
particular problem, we have shown that the
combined use of XMLCetus+Loopest solves
the problem easier than invoking Cetus in-
ternal methods, allowing a 85% reduction of
the number of code lines needed. Another ad-
vantage of processing the XML document in-
stead of working directly with Cetus is that
the latter option requires a deep knowledge
about Java, Cetus Intermediate Representa-
tion, and its associated data structures. On
the other hand, new functionalities can be
added in Loopest simply by adding new XPath
queries, only requiring some basic knowledge
about XPath and Java to combine the results
into meaningful reports.

Finally, the XML document generated by
XMLCetus can be easily processed to modify
the C code or to add new directives. Again,
these modi�cations can be done much easily
than modifying Cetus internal structure di-
rectly. We have developed a third tool, called
Sirius, that handles an XML document with
XMLCetus format and produces a new C pro-
gram based on it.

We believe that the use of XML tools, such
as XPath, is an interesting alternative to per-
form code analysis and modi�cation, and that

// Variables written.
// Variables as indexes in a ArrayAccess are not written.
XPathExpression varLeftLoop =

xpath.compile("Statement[2]/CompoundStatement//
((AssignmentExpression/Expression[1]//Identifier[

not(ancestor::AccessExpression) and not(ancestor::ArrayAccess)
])

| (VariableDeclarator[descendant::Initializer]/
Expression//Identifier[

not(ancestor::AccessExpression) and not(ancestor::ArrayAccess)
])

| (FunctionCall/Expression[position()!=1]//
UnaryExpression[@operator='&']//Identifier[

not(ancestor::AccessExpression) and not(ancestor::ArrayAccess)
])

)");

// ArrayAccess written.
XPathExpression varLeftArrayLoop =
xpath.compile("Statement[2]/CompoundStatement//

((AssignmentExpression/Expression[1]//
ArrayAccess/Expression[1]//

Identifier[not(ancestor::AccessExpression)])
| (VariableDeclarator[descendant::Initializer]/

Expression//ArrayAccess/Expression[1]//
Identifier[not(ancestor::AccessExpression)])

| (FunctionCall/Expression[position()!=1]//
UnaryExpression[@operator='&']//ArrayAccess/Expression[1]//

Identifier[not(ancestor::AccessExpression)])
)");

// AccessExpression Variables written.
// The option "VariableDeclarator + Initializer" is not considered because that

construction is not possible.(example long date.r1 = 5).
XPathExpression varLeftAccessLoop =

xpath.compile("Statement[2]/CompoundStatement//
((AssignmentExpression/Expression[1]//

AccessExpression[not(ancestor::AccessExpression)])
| (FunctionCall/Expression[position()!=1]//

UnaryExpression[@operator='&']//
AccessExpression[not(ancestor::AccessExpression)])

)");

// Variables read and written (from unary increments or decrements).
XPathExpression varUnary =
xpath.compile("Statement[2]//ExpressionStatement/Expression//(UnaryExpression[

@operator='post ++' or @operator='post --'
or @operator='pre ++' or @operator='pre --'

])//((Identifier[not(ancestor::AccessExpression)])
| (AccessExpression[not(ancestor::AccessExpression)])
)");

Figure 6: XPath example: Search for variables written inside a loop. Code is indented for readability

it opens new possibilities to extend the origi-
nal capabilities provided by Cetus.

Acknowledgements

This research is partly supported by the Minis-
terio de Educación y Ciencia, Spain (TIN2007-
62302), Ministerio de Industria, Spain (FIT-
350101-2007-27, FIT-350101-2006-46, TSI-

020302-2008-89, CENIT MARTA, CENIT
OASIS), and Junta de Castilla y León, Spain
(VA094A08).

References

[1] Hansang Bae and Leonardo Bachega and
Chirag Dave and Sang-Ik Lee and Seyong
Lee and Seung-Jai Mind and Rudolf Eigen-
mann and Samuel Midki�, Automatic Par-

allelization with Cetus, HPCLAB, ECE,
Purdue University, 2008.

[2] Chirag Dave and Hansang Bae and Seung-
Jai Mind and Seyong Lee and Rudolf
Eigenmann and Samuel Midki�, Cetus: A
Source-to-Source Compiler Infrastructure

for Multicores, IEEE Computer, 42(12):36-
42, December, 2009.

[3] Hansang Bae and Leonardo Bachega and
Chirag Dave and Sang-Ik Lee and Sey-
ong Lee and Seung-Jai Mind and Rudolf

Eigenmann and Samuel Midki�, Cetus: A
Source-to-Source Compiler Infrastructure

for Multicores, Proceedings of the 14th
Int'l Workshop on Compilers for Parallel
Computing, CPC, 2009.

[4] Saxonica Limited, Saxonica. XSLT

and XQUERY Processing, http:

//www.saxonica.com.

[5] Apache Commons, http://commons.

apache.org/collections.

[6] David A. Wheeler, SLOCCount: Count-

ing Source Lines of Code, http://www.

dwheeler.com/sloccount.

[7] Purdue University, Cetus Licence, http://
cetus.ecn.purdue.edu/download.html.

[8] Michael Kay, XPath 2.0 Programmer's

Reference, John Wiley & Sons, 2004.

