
Support for Thread-Level Speculation into
OpenMP

Sergio Aldea, Diego R. Llanos and Arturo Gonzalez-Escribano
Universidad de Valladolid, Spain

{sergio|diego|arturo}@infor.uva.es
8th International Workshop on OpenMP, IWOMP 2012, June 11-13, 2012, Rome, Italy.

Introduction
• Manual development of parallel versions of sequential applications is

a difficult task. It requires:

– In-depth knowledge of the problem.

– Understanding of the underlying architecture.

– Knowledge on the parallel programming model.

• OpenMP allows to parallelize code “avoiding” these requirements.

• Compilers’ automatic parallelization only proceed when there is
no risk.

• Thread-Level Speculation (TLS) can extract parallelism when
a compile-time dependence analysis can not guarantee that the code
is safely parallelizable.

• We have already developed a TLS runtime library.

• Current goal: To automatically transforms loops written in
OpenMP syntax to benefit from speculative parallelization.

Our proposal
• Goal: Add TLS support into OpenMP.

• New OpenMP clause:

#pragma omp parallel for \
speculative(variable[,var list])

• Speculative variables are those whose use can potentially lead
to a dependence violation. They need to be monitored at run-
time in order to obtain results.

• Programmer classifies variables in private, shared, and a new
category: speculative.

• TLS should be transparent from the point of view of the pro-
grammer. If he/she is unsure about the use of a certain struc-
ture, he/she could simply label it as speculative. The compiler
automatically will transform the code in order to speculatively
parallelize the loop.

How Thread-Level Speculation works?

t0

LocalVar1 = SV[x]t1

t3

t2

t4

t6

t5

t8

t10

t6

t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

Speculative store + dependence detection

In−order commit of data from correctly−executed blocks

Speculative load: Most recent value retrieval

(iter. 1, x = 1) (iter. 2, x = 1) (iter. 3, x = 2) (iter. 4, x = 2)

Thread 3Thread 2 Thread 4 (most−spec)Thread 1 (non spec)

Time

Our TLS is implemented using OpenMP for thread management.

Modifying GCC
• Use GCC as reference compiler.

• Since version 4.5, GCC can be extended by plugins:

– Faster prototyping.

– Easier modifications.

– Extensibility: new compiler passes.

• The parser recognizes the new clause, and a new pass performs
the transformations needed.

• Transformations are done before the compiler optimization
passes.

• The new pass works with the GIMPLE representation.

GCC Architecture

C parser

 Java parser

Fortran parser

C++ parser

GENERIC

Front End

GIMPLE

Interprocedural
Optimizer

SSA
Optimizer

RTL

RTL
Optimizer

Final Code
Generation

Assembly

Middle End Back End

Call Graph
Manager

Pass
Manager

Plugin pass main OpenMP
related parts

*

*
*

*

*

Code Example

#pragma omp parallel for \
 private(a), shared (b) \
 speculative(v)

for (i=0; i < N; i++) {
 a = v[i];
 v[i] = b;
}

Original annotated

specinit();
omp_set_num_threads(T);
specstart(N);
#pragma omp parallel for \
 private(a), shared (b) \
 private(engine_vars), shared(engine_vars) \
 shared(v)
{
 initSpecLoop(v, 1);
 specload(a, v, i);
 specstore(v, i, b);
 endSpecLoop(v, N);
}

Code generated

• This transformations are done by the new pass automatically.

• It detects each reading from and writing into the speculative variable and replaces
them for specstore() and specload() functions.

• It also add all the structures and functions needed to speculatively parallelize the code.

Acknowledgements
This work has been partially supported by MICINN (Spain) and the European Union FEDER (CENIT OCEANLIDER, CAPAP-H3 network, TIN2010-12011-E,

TIN2011-25639), and the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission - Capacities Area - Research Infrastructures
Initiative. Sergio Aldea is supported by a research grant of Junta de Castilla y León, Spain.

Conclusions

• Adding speculative support to OpenMP would
greatly increase the number of loops that
could be parallelized with this programming
model.

• The programmer may label some of the vari-
ables involved as private or shared, using spec-

ulative for the rest.

• The parser detects the new speculative

clause, and the new compiler pass performs
automatically all the transformations
needed to speculatively parallelize the loop.

• This process is transparent to program-
mers. They do not need to know anything
about the speculative parallelizing model.

• Our proposal would let to transform any loop
into a parallel loop.

1

