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Introduction
• Manual development of parallel versions of sequential applications is

a difficult task. It requires:

– In-depth knowledge of the problem.

– Understanding of the underlying architecture.

– Knowledge on the parallel programming model.

• OpenMP allows to parallelize code “avoiding” these requirements.

• Compilers’ automatic parallelization only proceed when there is
no risk.

• Thread-Level Speculation (TLS) can extract parallelism when
a compile-time dependence analysis can not guarantee that the code
is safely parallelizable.

• We have already developed a TLS runtime library.

• Current goal: To automatically transforms loops written in
OpenMP syntax to benefit from speculative parallelization.

Our proposal
• Goal: Add TLS support into OpenMP.

• New OpenMP clause:

#pragma omp parallel for \
speculative(variable[,var list])

• Speculative variables are those whose use can potentially lead
to a dependence violation. They need to be monitored at run-
time in order to obtain results.

• Programmer classifies variables in private, shared, and a new
category: speculative.

• TLS should be transparent from the point of view of the pro-
grammer. If he/she is unsure about the use of a certain struc-
ture, he/she could simply label it as speculative. The compiler
automatically will transform the code in order to speculatively
parallelize the loop.

How Thread-Level Speculation works?
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Our TLS is implemented using OpenMP for thread management.

Modifying GCC
• Use GCC as reference compiler.

• Since version 4.5, GCC can be extended by plugins:

– Faster prototyping.

– Easier modifications.

– Extensibility: new compiler passes.

• The parser recognizes the new clause, and a new pass performs
the transformations needed.

• Transformations are done before the compiler optimization
passes.

• The new pass works with the GIMPLE representation.
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Code Example

#pragma omp parallel for \
  private(a), shared (b) \
  speculative(v)

for (i=0; i < N; i++) {
  a = v[i];
  v[i] = b;
}

Original annotated

specinit();
omp_set_num_threads(T);
specstart(N);
#pragma omp parallel for \
 private(a), shared (b) \ 
 private(engine_vars), shared(engine_vars) \
 shared(v)
{
  initSpecLoop(v, 1);
  specload(a, v, i);  
  specstore(v, i, b);
  endSpecLoop(v, N);
}

Code generated 

• This transformations are done by the new pass automatically.

• It detects each reading from and writing into the speculative variable and replaces
them for specstore() and specload() functions.

• It also add all the structures and functions needed to speculatively parallelize the code.
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Conclusions

• Adding speculative support to OpenMP would
greatly increase the number of loops that
could be parallelized with this programming
model.

• The programmer may label some of the vari-
ables involved as private or shared, using spec-

ulative for the rest.

• The parser detects the new speculative

clause, and the new compiler pass performs
automatically all the transformations
needed to speculatively parallelize the loop.

• This process is transparent to program-
mers. They do not need to know anything
about the speculative parallelizing model.

• Our proposal would let to transform any loop
into a parallel loop.
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