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The basic idea under speculative parallelization (also called thread-level speculation) [2, 6, 7] is to assign
the execution of different blocks of consecutive iterations to different threads, running each one on its own
processor. While execution proceeds, a software monitor ensures that no thread consumes an incorrect ver-
sion of a value that should be calculated by a predecessor, therefore violating sequential semantics. If such a
dependence violation occur, the monitor stops the parallel execution of the offending threads, discards itera-
tions incorrectly calculated, and restart their execution using the correct values. Figure 1 shows an example of
speculative parallel execution of a loop with dependences.

The detection of dependence violations can be done either by hardware or software. Hardware solutions
[4, 5] rely on additional hardware modules to detect dependences, while software methods [2, 6, 7] augment
the original loop with new instructions that check for violations during the parallel execution.

The author’s visits to EPCC thanks to the TRACS and HPC-Europa programmes led to a successful collab-
oration with Dr. Marcelo Cintra, of the Division of Informatics, in the field of speculative parallelization. We
have developed a new software-only speculative parallelization engine to automatically execute in parallel se-
quential loops with few or no dependences among iterations [1, 2, 3]. The main advantage of this solution is that
it makes possible to parallelize an iterative application automatically by a compiler, thus obtaining speedups in
a parallel machine without the cost of a manual parallelization. To do so, the compiler augments the original
code with function calls to perform accesses to the structure shared among threads, and to monitor the parallel
execution of the loop. The next section discusses the mechanism in more detail.

Handling data dependences

From the parallel execution point of view, in each iteration two different classes of variables can appear. Infor-
mally speaking, private variables will be those that are always written in each iteration before being used. On
the other hand, values stored in shared variables are used among different iterations. It is easy to see that if all
variables are private, then no dependences can arise and the loop can be executed in parallel. Shared variables
may lead to dependence violations only if a value is written in a given iteration and a successor has consumed
an outdated value. This is known as the Read-after-Write (RAW) dependence. In this case, the latter iteration
and all its successors should be re-executed using the correct values. This is known as a squash operation.

To simplify squashes, threads that execute each iteration do not change directly the shared structure: instead,
each thread maintains a version of the structure. Only if the execution of the iteration succeeds, changes are
reflected to the original shared structure, through a commit operation. This operation should be done in order
for each block of iterations, from the non-speculative thread (that is, the one executing the earliest block) to the
most-speculative one. If the execution of the iteration fails, version data is discarded.
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Figure 1: Speculative parallelization.

Results and future work

The experiments performed to measure the execution time of both sequential and parallel versions of the ap-
plications considered were done on the EPCC’s Sun Fire 15K symmetric multiprocessor (SMP). Our results so
far [1, 2, 3] show noticeable speedups in all the applications considered. This work can be downloaded from
the author’s website (see the Biography section). Our future work include the development of new scheduling
alternatives to handle hot spots in the distribution of dependences inside the loop.

Conclusions

Parallel implementations of incremental algorithms are hard to develop and require an in-depth understanding
of the problem, the language, the compiler and the underlying computer architecture. In our work we have
shown how we can use speculative parallelization techniques to execute automatically in parallel sequential
applications with a negligible implementation cost.
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