
Thread-level Speculative Parallelization

Diego R. Llanos∗

Computer Science Department, University of Valladolid, Spain.
E-mail: diego@infor.uva.es.

The basic idea under speculative parallelization (also called thread-level speculation) [2, 6, 7] is to assign
the execution of different blocks of consecutive iterations to different threads, running each one on its own
processor. While execution proceeds, a software monitor ensures that no thread consumes an incorrect ver-
sion of a value that should be calculated by a predecessor, therefore violating sequential semantics. If such a
dependence violation occur, the monitor stops the parallel execution of the offending threads, discards itera-
tions incorrectly calculated, and restart their execution using the correct values. Figure 1 shows an example of
speculative parallel execution of a loop with dependences.

The detection of dependence violations can be done either by hardware or software. Hardware solutions
[4, 5] rely on additional hardware modules to detect dependences, while software methods [2, 6, 7] augment
the original loop with new instructions that check for violations during the parallel execution.

The author’s visits to EPCC thanks to the TRACS and HPC-Europa programmes led to a successful collab-
oration with Dr. Marcelo Cintra, of the Division of Informatics, in the field of speculative parallelization. We
have developed a new software-only speculative parallelization engine to automatically execute in parallel se-
quential loops with few or no dependences among iterations [1, 2, 3]. The main advantage of this solution is that
it makes possible to parallelize an iterative application automatically by a compiler, thus obtaining speedups in
a parallel machine without the cost of a manual parallelization. To do so, the compiler augments the original
code with function calls to perform accesses to the structure shared among threads, and to monitor the parallel
execution of the loop. The next section discusses the mechanism in more detail.

Handling data dependences

From the parallel execution point of view, in each iteration two different classes of variables can appear. Infor-
mally speaking, private variables will be those that are always written in each iteration before being used. On
the other hand, values stored in shared variables are used among different iterations. It is easy to see that if all
variables are private, then no dependences can arise and the loop can be executed in parallel. Shared variables
may lead to dependence violations only if a value is written in a given iteration and a successor has consumed
an outdated value. This is known as the Read-after-Write (RAW) dependence. In this case, the latter iteration
and all its successors should be re-executed using the correct values. This is known as a squash operation.

To simplify squashes, threads that execute each iteration do not change directly the shared structure: instead,
each thread maintains a version of the structure. Only if the execution of the iteration succeeds, changes are
reflected to the original shared structure, through a commit operation. This operation should be done in order
for each block of iterations, from the non-speculative thread (that is, the one executing the earliest block) to the
most-speculative one. If the execution of the iteration fails, version data is discarded.

∗Appeared in Alberigo, Erbacci and Garofalo (eds.) Science and Supercomputing in Europe, pp. 211–213, CINECA, Italy, 2005,
ISBN 88-86037-15-5.

1



1st:
shared value from reference

x=1; Thread 1 gets 

3rd:
shared value from reference

x=4; Thread 2 gets 

5th:
value from thread 1

x=1; Thread 3 forwards
4th:
value from thread 1

x=1; Thread 4 forwardst0

Time

2nd:
shared variable

Thread 1 writes

LocalVar1 = SV[x]

Thread 1

Thread 2

6th: Thread 3 detects violation
and squashes thread 4 and its
sucessors

Thread 3
Thread 4

t1

t3

t2

t4

t6
t5

t8

t10

t6
t7

t9

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

LocalVar1 = SV[x]

SV[x] = LocalVar2

SV[x] = LocalVar2

Figure 1: Speculative parallelization.

Results and future work

The experiments performed to measure the execution time of both sequential and parallel versions of the ap-
plications considered were done on the EPCC’s Sun Fire 15K symmetric multiprocessor (SMP). Our results so
far [1, 2, 3] show noticeable speedups in all the applications considered. This work can be downloaded from
the author’s website (see the Biography section). Our future work include the development of new scheduling
alternatives to handle hot spots in the distribution of dependences inside the loop.

Conclusions

Parallel implementations of incremental algorithms are hard to develop and require an in-depth understanding
of the problem, the language, the compiler and the underlying computer architecture. In our work we have
shown how we can use speculative parallelization techniques to execute automatically in parallel sequential
applications with a negligible implementation cost.

Acknowledgments

The author would like to thank the Edinburgh Parallel Computing Center (EPCC) for the main computing
resources used in this work and its support staff, in particular Mark Bull and Catherine Inglis.

Biography

Diego R. Llanos received his MS and PhD degrees in computer science from the University of Valladolid, Spain,
in 1996 and 2000, respectively. He is a recipient of the Spanish government’s national award for academic
excellence. Dr. Llanos is an associate professor of computer architecture at the University of Valladolid, and

2



his research interests include parallel and distributed computation, computer system performance evaluation and
automatic parallelization of sequential code. He is a member of the IEEE Computer Society. More information
about his current research activities can be found at http://www.infor.uva.es/˜diego.

References

[1] Marcelo Cintra and Diego R. Llanos. Design space exploration of a software speculative parallelization
scheme. To appear in IEEE Trans. on Paral. and Distr. Systems.

[2] Marcelo Cintra and Diego R. Llanos. Toward efficient and robust software speculative parallelization
on multiprocessors. In Proceedings of the SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), June 2003.

[3] Marcelo Cintra, Diego R. Llanos, and Belén Palop. Speculative parallelization of a randomized incremental
convex hull algorithm. In Proceedings of the Computational Geometry and Applications (CGA), May 2004.

[4] Marcelo Cintra, Jos F. Martnez, and Josep Torrellas. Architectural support for scalable speculative par-
allelization in shared-memory multiprocessors. In Proc. of the 27th intl. symp. on Computer architecture
(ISCA), pages 256–264, June 2000.

[5] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a chip multiprocessor.
In Proc. of the 8th Intl. Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 58–69, 1998.

[6] M. Gupta and R. Nim. Techniques for run-time parallelization of loops. Supercomputing, November 1998.

[7] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time parallelization of loops with priva-
tization and reduction parallelization. IEEE Transactions on Parallel and Distributed Systems, 10(2):160–
180, 1999.

3


