TPCC-UVa: An Open-Source TPC-C Implementation for
Global Performance Measurement of Computer Systems

Diego R. Llanos
Departamento de Informatica
Universidad de Valladolid, Spain.
diego@infor.uva.es.

Abstract

This paper presents TPCC-UVa, an open-source imple-
mentation of the TPC-C benchmark version 5 intended
to be used to measure performance of computer systems.
TPCC-UVa is written entirely in C language and it uses
the PostgreSQL database engine. This implementation in-
cludes all the functionalities described by the TPC-C stan-
dard specification for the measurement of both uni- and
multiprocessor systems performance. The major charac-
teristics of the TPC-C specification are discussed, together
with a description of the TPCC-UVa implementation, ar-
chitecture, and performance metrics obtained. As work-
ing examples, TPCC-UVa is used in this paper to measure
performance of different file systems under Linux, and to
compare the relative performance of multi-core CPU tech-
nologies and their single-core counterparts.

Keywords: On-line transaction processing, TPC, per-
formance measurement.

1 Introduction

Workload characterization in order to measure system
performance is a major topic in the field of Computer
Architecture. Many different benchmarks have been pro-
posed to simulate real working conditions of both existing
and proposed systems. Those benchmarks can be classi-
fied in terms of their corresponding application domains
and their execution characteristics.

The most popular benchmarks are related with nu-
merical processing, such as the SPEC CPU2000 bench-
mark suite [4], the NAS Parallel Benchmark [7] and the
OLDEN benchmarks [10], among others. These bench-
marks include many common characteristics of real sci-
entific workloads, and some of them can be executed
in both sequential and parallel computing environments.
These benchmarks are designed to challenge the CPU and
memory subsystem capabilities of the systems under test.
However, they do not take into account other aspects of
the system architecture, such as process management or

I/O subsystem.

Database benchmarks, on the other hand, allow to study
not only CPU and memory hierarchy performance, but the
global performance of a system. These benchmarks use a
synthetic workload against a database engine, measuring
the performance of the system in terms of the number of
transactions completed in a given period of time. One of
the main advantages of this class of benchmarks is that re-
sults are very relevant to financial, commercial and corpo-
rative fields, where this type of applications is dominant.

The TPC-C benchmark, designed by the Transaction
Processing Performance Council [1], simulates the exe-
cution of a set of both interactive and deferred transac-
tions. This workload is representative of an OLTP (On-
line Transaction Processing) environment, with features
such as transaction queries and rollback. These capabili-
ties makes the TPC-C benchmark specification a de-facto
standard for measuring server performance. Most vendors
publish performance values for their systems, allowing the
consumer to accurately compare different architectures.

The Transaction Processing Performance Council only
distributes a requirements specification for the TPC-C
benchmark. Following this specification, vendors may
implement and run a TPC-C benchmark, needing the ap-
proval of the TPC consortium to publish its performance
results [3]. Unfortunately, there is not an official TPC-
C benchmark implementation available for research pur-
poses.

In this paper we describe TPCC-UVa [5], an unoffi-
cial, open-source implementation of the TPC-C bench-
mark version 5. The purpose of TPCC-UVa is to be used
as aresearch benchmark for the scientific community. The
TPCC-UVa benchmark is written entirely in C language,
and it uses the PostgreSQL database engine. This imple-
mentation has been extensively tested on Linux systems,
and it is easily portable to other platforms. TPCC-UVa
source code is freely distributed from the project web-
site'. This makes easy to use it for the performance mea-
surement and behavior of real systems or in the context

"http://www.infor.uva.es/ diego/tpcc-uva.html.

SIGMOD Record, Vol. 35, No. 4, December 2006

of a simulation environment such as Simics [6]. As an
example, TPCC-UVa has been recently used in the per-
formance measurement of both existent and experimental
file systems [8].

The TPCC-UVa implementation includes all the char-
acteristics described in the TPC-C standard specification,
except support for price/performance comparison. The
reason is that TPCC-UVa is only intended to be used for
measuring performance in research environments. It is
important to highlight the fact that TPCC-UVa is not an
implementation approved by TPC, and the results of the
execution of TPCC-UVa, in particular its performance pa-
rameter (tpmC-uva), should not be compared with the per-
formance values obtained by official implementations of
TPC-C.

The rest of the article is organized as follows. Section 2
describes the main characteristics of the TPC-C bench-
mark specification. Section 3 presents the TPCC-UVa im-
plementation, describing its architecture in detail. Sec-
tion 4 shows the performance reports generated by TPCC-
UVa in order to meet TPC-C standard requirements. Sec-
tion 5 shows the use of TPCC-UVa for measuring differ-
ent aspects of system performance on real machines. Fi-
nally, Section 6 concludes the paper.

2 Overview of the TPC-C standard
specification

The TPC-C benchmark specification simulates the exe-
cution of a mixture of read-only and update intensive
transactions that simulate the activities found in complex
OLTP application environments [1]. The TPC-C work-
load is determined by the activity of a set of terminals that
request the execution of different database transactions,
simulating the business activity of a wholesale supplier.

Five different transaction types are defined by the stan-
dard. The New Order transaction consists of entering a
complete order through a single database transaction; the
Payment transaction enters a customer’s payment; the Or-
der Status transaction queries the status of a customer’s
last order; the Delivery transaction processes a batch of
ten new, not-yet-delivered orders; finally, the Stock Level
transactions determines the number of recently sold items
that have a stock level below a specified threshold.

When a terminal send the transaction request it waits
to receive the results in all cases, except for the De-
livery transaction, that simulates a transaction executed
in deferred mode. The structure of the corresponding
database is composed by several tables, with different
characteristics with respect to their scheme and cardinal-
ity. This benchmark includes a scalability criteria that al-
lows to simulate a realistic workload, allowing to change
the database size and the number of transaction terminals

SIGMOD Record, Vol. 35, No. 4, December 2006

for a more accurate simulation of the machine capabili-
ties.

After the execution of the benchmark during a given
period of time, the number of New Order transac-
tions executed per minute gives the performance met-
ric, called transactions-per-minute-C (tpmC). The TPC-
C benchmark also includes a performance value that
takes into account the cost of the system under test,
the price-per-tpmC, to allow a comparison in terms of
price/performance. Additional details can be found in the
TPC-C standard specification [1].

3 TPCC-UVa architecture and im-
plementation

The TPCC-UVa implementation is composed by five dif-
ferent modules that collaborate to perform all the neces-
sary activities to measure the performance of the system
under test. Figure 1 shows the TPCC-UVa architecture.
The modules are the following.

Benchmark controller This module interacts with the
user, populating the database and allowing the launch
of different experiments.

Remote Terminal Emulator (RTE) There is one RTE
process per active terminal in the benchmark execu-
tion. It simulates the activity of a remote terminal,
according with TPC-C specifications.

Transaction Monitor This module receives all the re-
quests from the RTEs, executing queries to the un-
derlying database system.

Checkpoints controller This module performs check-
points periodically in the database system, register-
ing timestamps at the beginning and the end of each
checkpoint.

Vacuum Controller This module avoids the degradation
produced by the continuous flow of operations to the
database.

Interprocess communication is carried out using both
shared-memory structures and system signals, allowing
to run the benchmark in any Unix-like, shared-memory
multiprocessor environment. The following subsections
describe each module in more detail.

3.1 Benchmark Controller

The Benchmark Controller (BC) allows the user to access
the benchmark functionality. It performs the following
functions.

@ Database
Checkpoints
______ * | Controller \ I Signals ~-----%
PostgreSQL Disk access
______ > \C/act:urlr;s - database Inter-process
5 ontrofler engine communications
s
IS
o
O
X
IS4
E Transaction T™ logs
--------------------- > B -
e Monitor 9
[
M
To each RTE Remote Remote Remote Remote
_____ » | Terminal Terminal Terminal L] Terminal
Emulator Emulator Emulator Emulator

| | |

@ Performance logs

Figure 1: TPCC-UVa architecture.

Database initial population: It creates a new database
to run a test. The database is composed by the nine tables
defined in the TPC-C specifications, together with their
required population and scalability characteristics. Dif-
ferent mechanisms to ensure the reference integrity of the
data, such as primary and foreign keys, are also included.

Database consistency check: This option allows the
user to check the consistency of the active database, to see
if it meets the conditions described by the TPC-C standard
to run a test on it.

Restoring an existent database: This option elimi-
nates the modifications performed in the database tables
by a previous test run. The purpose of this option is to
rebuild a database to run a new test according with the
TPC-C requirements without the need of creating a new
one from scratch, a time-consuming operation.

Deleting a database: This option allows the user to
delete the current database.

Executing a test: This option launches the TPCC-UVa
modules that allow to run a measurement test. Such a
test is composed by three intervals: the ramp-up period, a
time when the performance of the system is not stable yet
and therefore will not be considered for the performance
measurement; the measurement interval, where the per-
formance measurement is done; and the end-of-test pe-
riod, when the Benchmark Controller stops all the related
processes.

To execute a test, the user should define different execu-
tion parameters, such as the number of warehouses to be
considered, the ramp-up period, the measurement interval
and the configuration of the Vacuum Controller (described
in Section 3.5). To run a test, the Benchmark Controller
starts the Transaction Monitor, up to ten Remote Termi-
nal Emulators for each one of the selected warehouses,
and the Checkpoint and Vacuum Controllers (see Fig. 1).
The Benchmark Controller also defines the experiment
timings, informing each module about the current inter-
val while executing a test.

Summary results of last test: This option reads and
processes the benchmark logs produced by the set of Re-
mote Terminal Emulators and the Transaction Monitor
during the execution of the test. The information pro-
vided by the logs can be divided in two parts. The first
one is the number of New Order transactions executed
per minute, together with the response time of the exe-
cuted transactions. This information will determine the
performance of the system under test. The second part is
the data needed to ensure that the test has been performed
following the TPC-C specifications, such as the terminal
response times and the relative percentage of each trans-
action in the executed transaction set. Both data types
should be processed by the Benchmark Controller to en-
sure that the test is valid and to return the TPCC-UVa
Transactions-Per-Minute (tpmC-uva) metric.

The Transactions-Per-Minute metric returned by
TPCC-UVa is called tpmC-uva instead of tpmC. The rea-
son is that, as we said in Section 1, the metric obtained

SIGMOD Record, Vol. 35, No. 4, December 2006

with TPCC-UVa should not be compared with tpmC val-
ues obtained by approved implementations of the bench-
mark.

3.2 Remote Terminal Emulators

The Remote Terminal Emulators (RTE from here on) gen-
erate the transaction requests for the system. Each RTE
runs as an individual process, generating new transactions
according with the requirements of the TPC-C benchmark
specification. Once the measurement time is expired, the
Benchmark Controller stops each one of the RTE using
system signals. The RTE capabilities are the following.

User simulation: Each RTE simulates the behavior of a
user connected to it, performing transaction type selection
and transaction input data generation. It also simulates
two related wait times: “keying time” and “think time”.

Terminal simulation: Each RTE generates the output
required by each terminal, showing the information intro-
duced by the simulated user and the results obtained once
the transaction is executed. Although each RTE can show
this information in the standard output, the generated out-
put is usually redirected to /dev/null to avoid collapsing
the system console.

Transactions management: Each RTE generates a
transaction type according with the TPC-C specifications,
sending it to the Transactions Monitor. If the transaction
is interactive, the results are sent back to the correspond-
ing RTE once the transaction is completed.

Transaction response time measurement: Each RTE
measures the response time for each one of the transac-
tions requested. This data is stored locally in a log file, to-
gether with additional information that will be needed for
the performance measurement of the system under test.

3.3 Transactions Monitor

The Transactions Monitor (TM from here on) receives the
transaction requests from all the RTEs, passing them to
the database engine and returning the generated results
back to the RTEs. The transactions are executed accord-
ing with their arrival order. The TM also registers the re-
sults of the delayed execution of the Delivery transaction
and, when needed, data related to errors in the execution
of transactions. The TM is activated and deactivated by
the Benchmark Controller.

Clause 2.3.5 of the TPC-C standard specification [1] in-
dicates that “if transactions are routed or organized within
the SUT [System Under Test], a commercially available

SIGMOD Record, Vol. 35, No. 4, December 2006

transaction processing monitor” is required, with a given
set of functionalities. To avoid the use of commercially-
available software, our TM does not route or organize
transactions, but only queues them for execution in arrival
order.

3.4 Checkpoints Controller

The Checkpoints Controller is responsible for ordering
checkpoints periodically, registering the timestamps at the
beginning and end of each checkpoint, according with
Clause 5.5.2.2 of the TPC-C standard specification [1].
The first checkpoint is performed when the Checkpoints
Controller is activated, at the beginning of the measure-
ment interval.

3.5 Vacuum Controller

The Vacuum Controller mitigates the negative effects of a
continuous flow of transaction executions in the database
system. This controller is needed because the chosen
database engine (PostgreSQL) keeps residual information
that may slow down the database operation. To avoid a
performance loss in the execution of long tests (i.e. more
than two hours), the Vacuum Controller executes periodi-
cally the PostgreSQL vacuum command [9]. The user can
configure the interval between vacuums and their maxi-
mum number.

3.6 TPCC-UVa communication procedures

Communication between the Transaction Monitor and
each Remote Terminal Emulator is implemented using the
communication procedures provided by Unix System V
IPC interface, such as semaphores, shared memory and
message queues [11]. The communication between the
TM and the RTEs is based on the use of a single queue of
pending transaction requests. This queue is used by the
RTEs to submit transaction requests to the TM. The in-
coming order of the requests into the TM determine their
execution order. A synchronization semaphore is used to
manage reads and writes to this queue. Once a transaction
is completed, the results are transmitted from the MT to
the RTE that issued the request through a shared-memory
data structure. Again, a semaphore is used to manage each
data structure.

4 TPCC-UVa reports

The execution of TPCC-UVa on a System-Under-Test
(SUT from here on) returns different performance metrics
and plots. As an example, in this section we will describe
in detail the results and plots obtained by TPCC-UVa ver-
sion 1.2.3 on a dual core multiprocessor system. The SUT

Test results accounting performed on 2006-11-30 at 00:00:59 using 30 warehouses.

Start of measurement interval: 20.004883 m

End of measurement interval: 140.004983 m

COMPUTED THROUGHPUT: 367.791 tpmC-uva using 30 warehouses.
101424 Transactions committed.

NEW-ORDER TRANSACTIONS:

44135 Transactions within measurement time (50583 Total).
Percentage: 43.515)

Percentage of "well done" transactions: 97.100%

Response time (min/med/max/90th): 0.006 / 0.813 / 84.781 / 1.240
Percentage of rolled-back transactions: 0.986%

Average number of items per order: 9.400

Percentage of remote items: 1.036%

Think time (min/avg/max): 0.000 / 12.029 / 120.000

PAYMENT TRANSACTIONS:

44099 Transactions within measurement time (50712 Total).
Percentage: 43.4807

Percentage of "well done" transactions: 97.7467

Response time (min/med/max/90th): 0.002 / 0.596 / 89.864 / 0.960
Percentage of remote transactions: 14.148}

Percentage of customers selected by C_ID: 39.087

Think time (min/avg/max): 0.000 / 11.971 / 120.000

ORDER-STATUS TRANSACTIONS:

4417 Transactions within measurement time (5081 Total).
Percentage: 4.355%

Percentage of "well done" transactions: 97.804J

Response time (min/med/max/90th): 0.001 / 0.703 / 84.308 / 1.080
Percentage of clients chosen by C_ID: 39.280%

Think time (min/avg/max): 0.000 / 10.028 / 93.000

DELIVERY TRANSACTIONS:

4387 Transactions within measurement time (5057 Total).
Percentage: 4.325%

Percentage of "well done" transactions: 99.544j

Response time (min/med/max/90th): 0.000 / 0.122 / 72.625 / 0.010
Percentage of execution time < 80s : 100.000%

Execution time min/avg/max: 0.019/0.631/75.965

No. of skipped districts: 0 .

Percentage of skipped districts: 0.000%.

Think time (min/avg/max): 0.000 / 5.013 / 47.000

STOCK-LEVEL TRANSACTIONS:

4386 Transactions within measurement time (5061 Total).
Percentage: 4.324%

Percentage of "well done" transactions: 99.772j

Response time (min/med/max/90th): 0.007 / 0.714 / 76.328 / 1.120
Think time (min/avg/max): 0.000 / 4.999 / 47.000

Longest checkpoints:

Start time Elapsed time since test start (s) Execution time (s)
Thu Nov 30 01:51:30 2006 6630.787000 11.000000

Thu Nov 30 01:21:20 2006 4820.357000 10.400000

Thu Nov 30 02:21:41 2006 8441.789000 10.200000

Thu Nov 30 00:51:10 2006 3010.331000 10.009000

No vacuums executed.

>> TEST PASSED

Figure 2: Results summary of a TPCC-UVa benchmark execution on a Dual Core Opteron multiprocessor system.

10 SIGMOD Record, Vol. 35, No. 4, December 2006

is a server equipped with two Dual Core AMD Opteron
Processor 265 at 1 800 MHz (seen by Linux as four differ-
ent processors), 2 GBytes of RAM and a RAID-5 storage
system, using a LSI Logic MegaRAID Serial ATA 300-
8X disk controller. The system runs Gentoo Linux with
a2.6.17 kernel, and we used PostgreSQL 8.1.4 as the un-
derlying database system.

Figure 2 shows the results given by TPCC-UVa for a
2-hours test, using 30 warehouses, a ramp-up period of 20
minutes and no vacuum operation. The most important
result is the computed throughput, in this case 367.791
tpmC-uva. To be valid, the test should meet some re-
sponse time requirements, stated in Clause 5.5.1.5 of the
TPC-C benchmark. The last line of the results file shown
in Fig. 2 indicates whether these requirements have been
met in this particular experiment.

In addition with the result summary given in Fig. 2,
the TPCC-UVa implementation returns the data needed to
draw the plots defined by the TPC-C standard specifica-
tion. According to the standard, four different plot fami-
lies should be generated. The plot families are described
below.

Frequency distribution of Response Times Clause
5.6.1 of the TPC-C standard specification requires to build
a graph called Response Time Distribution, that shows the
number of transactions of each different transaction type
that were completed in a given response time. Figure 3
shows both the plot as described by the TPC-C standard
specification, and the response time distributions of the
five transaction types given by TPCC-UVa.

Response Times vs. Throughput for the New Order
transaction Clause 5.6.2 of the TPC-C standard spec-
ification requires to build a graph of response times ver-
sus throughput for the New Order transaction. The graph
must be plotted at approximately 50%, 80% and 100%
of the reported throughput rate (additional data points are
optional). Figure 4 shows both the plot as described by
the TPC-C standard specification, and the corresponding
plot obtained with TPCC-U Va.

Frequency distribution of Think Times Clause 5.6.3
of the TPC-C standard specification requires to build a
graph with the frequency distribution of Think Times for
the New Order transaction. At least 20 different intervals
of equal length must be reported. Figure 5 shows both
the plot as described by the TPC-C standard specification,
and the corresponding plot obtained with TPCC-UVa.

Throughput of the New Order Transaction Clause
5.6.4 of the TPC-C standard specification requires to build
a graph with the throughput of the New Order transaction

SIGMOD Record, Vol. 35, No. 4, December 2006

versus elapsed time, for both the ramp-up period and mea-
surement interval. At least 240 different intervals should
be used, with a maximum interval size of 30 seconds. The
opening and the closing of the measurement interval must
also be reported and shown on the graph. Figure 6 shows
both the plot as described by the TPC-C standard specifi-
cation, and the corresponding plot obtained with TPCC-
UVa.

5 System performance measure-
ment

In this section we use TPCC-UVa to measure different as-
pects of system performance. The following sections dis-
cuss some results obtained with TPCC-UVa to compare
two important aspects of system performance, such as file
system performance and multi-core capabilities. The pur-
pose of these experiments is to show how TPCC-UVa can
be used to obtain a reliable measure of different systems
under test.

5.1 File systems performance comparison

We have used TPCC-UVa to measure the performance of
different file system implementations under Linux. The
SUT for this experiment is a server equipped with two
Dual Core AMD Opteron Processor 265 at 1800 MHz
with 2 GBytes of RAM and running Gentoo Linux with a
2.6.17 kernel. We have used a Seagate Barracuda 7200.7
Serial ATA disk to store the database. This disk was di-
vided into four primary partitions, each one formatted us-
ing a different file system type.

The file system types considered in this experiment
were the following: ext2fs, the classical file system for
Linux [2]; ext3fs, a version of ext2fs with journaling;
ReiserFS version 3.6, a journaling file system for Linux
based on balance tree algorithms, developed by Namesys;
and JFS, based on IBM’s journaled file system technology
and now open-source.

We have run several experiments using each file sys-
tem to store the TPCC-UVa database maintained by Post-
greSQL. Each experiment ran for two hours, with ramp-
up periods of 20 minutes and no vacuum operations. Fig-
ure 7 shows the tpmC-uva obtained using different num-
ber of warehouses for each one of the four file systems
considered.

As can be seen in Fig. 7, ext2fs gives better results than
file systems with journaling, particularly ReiserFS (3.0
percent slower) and JES (8.9 percent slower). The maxi-
mum number of warehouses that the SUT was capable to
serve was 27 for ext2fs, ext3fs and ReiserFS, while JES al-
lowed to run the benchmark with at most 25 warehouses.

11

The response time requirements defined by TPC-C were
not met with more warehouses.

5.2 Dual- and
comparison

single-core performance

Finally, in this section we compare the performance of
a SUT with two dual-core processors with respect to an
identical system but with two single-core processors.

The dual-core SUT has two Dual Core Opteron 265
(seen by Linux as four processors), while the single-core
SUT has two Single Core Opteron 246 processors. Both
systems have 2 GBytes of RAM and a RAID-5 storage
system, using a LSI Logic MegaRAID Serial ATA 300-
8X disk controller and a ReiserFS file system. Both sys-
tems run Gentoo Linux with a 2.6.17 kernel. We have run
different 2-hours experiments, with ramp-up period of 20
minutes and with no vacuum operations.

Figure 8 shows the tpmC-uva obtained using differ-
ent number of warehouses for both SUTs, together with
the maximum throughput of the New Order transaction
in both cases. The results show that the dual-core archi-
tecture allowed a workload of up to 30 warehouses, with
a 28.1% performance gain over the single-core architec-
ture, that only dealt with up to 25 warehouses. These re-
sults show that, as expected, multi-core architectures are
a valid choice for running transaction-oriented database
workloads.

6 Conclusions

This paper describes TPCC-UVa, an open-source im-
plementation of the TPC-C benchmark intended for
measuring performance of parallel and distributed
systems. The implementation simulates the execution
of an OLTP environment according with the TPC-C
standard specification. = The major characteristics of
the TPC-C specification has been discussed, together
with a description of the TPCC-UVa architecture,
performance metrics and plots generated and real
examples of performance measurements for parallel
systems. TPCC-UVa can be freely downloaded from

http://www.infor.uva.es/ diego/tpcc-uva.html.

Acknowledgments

The author is partially supported by the European
Commission under grant RII3-CT-2003-506079, and
by Castilla-Leon Regional Government under grant
VAO031B06. The author would like to thank Julio A.
Hernandez and Eduardo Hernandez for implementing the
first version of TPCC-UVa as part of their BSc. thesis;
Belén Palop for her help during the development of the

12

benchmark; Javier Ramos for his expertise and support
in Linux environments; and Joaquin Adiego, Pablo de la
Fuente and the Grinbd Group for allowing the use of their
computing facilities to run some of the experiments.

References

[1] TPC benchmark C standard specification, revision
5. Transaction Processing Performance Council.
http://www.tpc.org. Access date: December
2006.

[2] CARD, R., Ts’0, T., AND TWEEDIE, S. Design
and implementation of the second extended filesys-
tem. In Proc. of the First Dutch International Sym-
posium on Linux (December 1994). ISBN 90-367-

0385-9.

[3] EISENBERG, A., AND MELTON, J. Standards in

practice. SIGMOD Rec. 27,3 (1998), 53-58.

[4] HENNING, J. L. SPEC CPU2000: Measuring CPU
performance in the new millennium. Computer 33,

7 (2000), 28-35.

[5] LLANOS, D. R., AND PALOP, B. TPCC-UVa: An
Open-Source Implementation of the TPC-C Bench-
mark. In PMEO-PDS 06, Proc. of IPDPS 2006
Workshops (April 2006), IEEE Press. ISBN 1-4244-

0054-6.

[6] MAGNUSSON, P. S., CHRISTENSSON, M., ESKIL-
SON, J., FORSGREN, D., HALLBERG, G., HG-
BERG, J., LARSON, F., MOESTEDT, A., AND
WERNER, B. Simics: A Full System Simulation

Platform. IEEE Computer (February 2002), 50-58.

[7] NAS parallel benchmark. Access date: Dec. 2006.

http://science.nas.nasa.gov/Software/NPB.

PIERNAS, J., CORTES, T., AND GARCIA, J. M.
Traditional file systems versus DualFS: a perfor-
mance comparison approach. IEICE Trans. Inf. and
Syst. E§7-D, T (July 2004).

(8]

(91

PostgreSQL 8.1.4 reference manual.
Global Development Group, 2005.

PostgreSQL

[10] ROGERS, A., CARLISLE, M. C., REPPY, J. H,,
AND HENDREN, L. J. Supporting dynamic data
structures on distributed-memory machines. ACM

Trans. Program. Lang. Syst. 17,2 (1995), 233-263.

STEVENS, W. R. Advanced programming in the
Unix environment. Addison-Wesley, 1993. ISBN
0-201-56317-7.

SIGMOD Record, Vol. 35, No. 4, December 2006

Number of
Transactions

Average Response Time

90th Percentile Response Time
e

<

0 4N
Response Time (sec.)
Response Time Distribution, Order Status transactions
250 T T T T T T T T
"glOrderStatus.dat® ——
Avg. Response Time
2 200 90th Percentile Response Time |
8
k3]
3
2 150 i
[
=
2 100 l
(%)
Qo
€
p=}
z 50]
0 A0 N 4 . . " n
0 0.5 1 1.5 2 25 3 3.5 4
Response Time (s)
Response Time Distribution, Payment transactions
6000 T T T T T T
“glPayment.dat"
Avg. Response Time
" 5000 90th Percentile Response Time B
S
S 4000 E
1%}
=4
[
~ 3000 4
ks
& 2000 E
£
=3
=z
1000 4
0
0 0.5 1 15 2 25 3 35

Response Time (s)

Number of Transactions Number of Transactions

Number of Transactions

Response Time Distribution, New Order transactions

3500 T T T T T T T T
"glNewOrder.dat® ——
Avg. Response Time - -
3000 90th Percentile Response Time - 1
2500 b
2000 N
1500 1
1000 b
500 b
0 L
0 0.5 1 15 2 25 3 3.5 4 4.5
Response Time (s)
Response Time Distribution, Delivery transactions
4500 . . . — .
"glDelivery.dat’ ——
4000 Avg. Response Time - -
90th Percentile Response Time -
3500 1
3000 b
2500 b
2000 b
1500 N
1000 1
500 b
0
0 0.05 0.1 0.15 0.2 0.25
Response Time (s)
Response Time Distribution, Stock Level transactions
250 T T T T T T T T
"glStockLevel.dat"
Avg. Response Time -
90th Percentile Response Time -
200 b
150 N
100 b
50 b
0 WL " T . "

15

2 25 3 35 4

Response Time (s)

0.3

Figure 3: Response time distribution as required by clause 5.6.1 of the TPC-C standard specification (upper left corner)
and response time distribution of the five transaction types given by TPCC-UVa for the System Under Test described

in Section 4.

SIGMOD Record, Vol. 35, No. 4, December 2006

13

Response Time vs. Throughput, New-Order Transaction

90th Percentile =)

X @ 12
Response Time K2
[}

£ 1t
=
?

c 0.8
o
@

Reported MQTh & 06 -
2

S 04f
o
[

o 02t
<
53

L H H H ° 0 . . i .
0 50% 80% 100% MOTh 40 50 60 70 80 90 100 110

MQTh

Figure 4: Response times vs. throughput for the New Order transaction as required by clause 5.6.2 of the TPC-C
standard specification (left) and the corresponding plot returned by TPCC-UVa for the System Under Test described
in Section 4, with configurations of 15, 20, 25, 28 and 30 warchouses (right).

i i Frequency Distribution of Think Times for the New Order Transaction
Think Time Mean Think Time quency
Frequency / 9000
. 8000
! % 7000 -
=4
S 6000 -
g
£ 5000
[}
£ 4000 [
E
é 3000
=
= 2000
1000 +
H 0) n T
0 0 5 10 15 20 25 30 35 40 45
Think Time (sec.) Think Time (seg)

Figure 5: Frequency distribution of Think Times for the New Order transaction as required by clause 5.6.3 of the TPC-
C standard specification (left) and the corresponding plot returned by TPCC-UVa for the System Under Test described
in Section 4 (right).

! ! Throughput of the New Order transaction versus Elapsed Time
| —~<—— Measurement Interval ———> |

‘ 400
1 L
MQTh ! i T
i T L
| >
3
i (8}
£
=
5
o
=
[=2]
=3
)
=
=
0 O‘ CI‘ Lt 0 L L L L L
pen ose 0 1200 2400 3600 4800 6000 7200 8400

Elapsed Time (sec.) - - Time (s20)
apsed Time (seg

Figure 6: Throughput of the New Order transaction as required by clause 5.6.4 of the TPC-C standard specification
(left) and the corresponding plot returned by TPCC-UVa for the System Under Test described in Section 4 (right).

14 SIGMOD Record, Vol. 35, No. 4, December 2006

Filesystems Comparison (tpmC-UVA), SATA Disk, 2-hours test Throughput of the New Order transaction versus Elapsed Time

T T T . 350 T T . . .
320 ext2fs —— 1
ext3fs - . 300 r 1
ReiserFS = g
300 r JES -8 1 S 250 1
‘g g ! ext2fs, 27w ——
5 280 1 g 20 Jio extafs, 27 w 1
2 = f ReiserFS, 27 w -~
5 2 FS, 25w i
£ 260 1 E)
[<] 4
=
240 4 =
50 § 1
220 : : : ; 0 ‘ ‘ ‘ ‘ ‘
20 22 24 26 28 0 1200 2400 3600 4800 6000 7200 8400
Warehouses Elapsed Time (seg)

Figure 7: Number of tpmC-uva using different number of warehouses for each file system considered (left) and
maximum throughput of the New Order transaction in each case (right).

Processor comparison (tpmC-UVA), RAID Disk, 2-hours test Throughput of the New Order transaction versus Elapsed Time
450 : 400 T T T T T
2 dual-core CPUs ——
400 2 single-core CPUs - J 350 - /ff’_“’—”——"_“ j
350 | i g s0r 1
- o e T
2 300 1 E 250 [i]
= £ 2 dual-core CPUs, 30w ———
3 250] 5 200F// 2 single-core CPUs, 25 w - 1
= =%
£ 200 - 1 5 150) 1
3] H
150 P J £ 100 i
100 -] 50 1
L L L L L O L L L L L
10 15 20 25 30 0 1200 2400 3600 4800 6000 7200 8400
Warehouses Elapsed Time (seg)

Figure 8: Number of tpmC-uva using different number of warehouses for each SUT considered (left) and maximum
throughput of the New Order transaction in each case (right).

SIGMOD Record, Vol. 35, No. 4, December 2006 15

