
Trasgo 2.0: Code generation for parallel
distributed- and shared-memory hierarchical

systems

Ana Moreton-Fernandez, Arturo Gonzalez-Escribano, and Diego R. Llanos

Departamento de Informática, Universidad de Valladolid
ana.moreton@alumnos.uva.es,{arturo,diego}@infor.uva.es

1 Extended Abstract

Current multicomputers are typically built as interconnected clusters of shared-
memory multicore computers. A common programming approach for these clus-
ters is to simply use a message-passing paradigm, launching as many processes
as cores available. Nevertheless, to better exploit the scalability of these clus-
ters and highly-parallel multicore systems, it is needed to efficiently use their
distributed- and shared-memory hierarchies. This implies to combine different
programming paradigms and tools at different levels of the program design.

Programming in this kind of environment is challenging. Many successful
parallel programming models and tools have been proposed for specific environ-
ments. However, the application programmer still faces many important deci-
sions not related with the parallel algorithms, but with implementation issues
that are key for obtaining efficient programs. For example, decisions about par-
tition and locality vs. synchronization/communication costs; grain selection and
tiling; proper parallelization strategies for each grain level; or mapping, layout,
and scheduling details. Moreover, many of these decisions may change for differ-
ent machine details or structure, or even with data sizes.

This paper presents an automatic code generation system for mixed distri-
buted- and shared-memory parallel multicomputers. We present an extension of
the Trasgo programming model. This extended model supports a wider range
of parallel structures and applications where coordination is expressed at an
abstract level. Transparent modular objects are invoked to guide the partition
and mapping of both data and processes, across the whole system. We present
a technique that, for affine expressions, compute exact aggregated communica-
tions at the distributed level. It uses intersection of remote and local footprints
in terms of the mapping policies selected. Moreover, Trasgo 2.0 integrates poly-
hedral analysis tools to obtain optimizations inside each shared-memory parallel
node at the shared level. This approach allows to automatically generate mul-
tilevel parallel programs that adapt their communication and synchronization
structures to the target machine. Our experimental results for both, shared- and
distributed-memory environments, show how this approach can automatically
produce efficient codes when compared with manually-optimized codes using
MPI or OpenMP models.


