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Abstract
During the last decade, parallel processor architectures have be-
come a powerful tool to deal with massively-parallel problems that
require High Performance Computing (HPC). The last trend of
HPC is the use of heterogeneous environments, that combine dif-
ferent computational power units, such as CPU-cores and GPUs.
Performance maximization of any GPU parallel implementation
of an algorithm requires an in-depth knowledge about its under-
lying architecture, becoming a tedious task only suited for ex-
perienced programmers. In this paper we present TuCCompi, a
multi-layer framework that not only transparently exploits hetero-
geneous systems, but automatically tunes the GPU capabilities by
choosing the optimal values for their configuration parameters, us-
ing the kernel characterization provided by the programmer. This
model is very useful to tackle problems characterized by indepen-
dent, high computational-load tasks with none or few communi-
cations, such as embarrassingly-parallel problems. We have eval-
uated TuCCompi in different, real-world heterogeneous environ-
ments using the APSP problem as a case study.

Categories and Subject Descriptors D. Software [Programming
techniques]: Concurrent Programming

Keywords APSP, Auto-Tunig, CUDA, GPU, Heterogeneous sys-
tem, HPC framework, MPI, OpenMP, Parallel model

1. Introduction
During the last decade, parallel processor architectures have be-
come a powerful tool to handle massively-parallel problems. These
computing-intensive problems are divided into many independent
tasks that can be executed in parallel, and that do not require
any communication among them. They are called embarrassingly-
parallel problems [7]. Many real problems are included in this cat-
egory, such as index processing in web search [8], bag-of-tasks ap-
plications [3], traffic simulations [20] or some molecular physics
computations [2].

Although the parallelization of embarrassingly-parallel prob-
lems does not require a very complex algorithm to take profit of par-
allel computing environments, their high amount of computational
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work requires High Performance Computing (HPC). In order to
give support to the massive demand of HPC, the last trends focus on
the use of heterogeneous environments that include computational
units of different nature. These computational units include com-
mon CPU-cores, graphic processor units (GPUs) and other hard-
ware accelerators. The exploitation of these environments offers a
higher peak performance and a better efficiency compared to the
traditional homogeneous cluster systems [1]. Due to these advan-
tages and to the low cost of building heterogeneous systems, they
are being incorporated into many different computational environ-
ments, from small academic research clusters, to supercomputing
centers.

Despite of the wide use of heterogeneous environments to exe-
cute massively-parallel algorithms, there are two issues that limit
the usability of these environments. The first one is the lack of
global computing frameworks that easily schedules the workload
in such complex environments. Some works have tried to ease
the jointly use of parallel programing languages, such as MPI
or OpenMP, by the creation of different tools. For example, a
source-to-source compiler that translates C annotated code to MPI
+ OpenMP or CUDA code is presented in [18]. However, in this
work CUDA can not be jointly used with the other parallel mod-
els. Another example is OMPICUDA [12], a framework to develop
parallel applications on heterogeneous clusters by mixing OpenMP
and MPI. In this work OpenMP code is translated to CUDA, how-
ever, this code has serious programming limitations. Moreover,
these works do not exploit all computational capabilities of the
GPUs. There is not a known parallel model that automatically se-
lects the optimal values for CUDA configuration parameters, such
as the threadBlock size-shape or the state of L1 cache memory, of
each kernel. These optimization techniques significantly enhance
the GPU powerful performance.

The second limitation is the lack of a tuning methodology that
efficiently unleashes the power of GPU devices. Although lan-
guages such as CUDA aim to reduce the programmer’s burden
in writing parallel applications, it is a difficult task to correctly
tune the code in order to efficiently exploit all underlying GPU re-
sources. Some configuration parameters, such as the thread-block
size and shape, and cache L1 size, have a significant impact on the
GPU performance. Several studies have shown that in some cases
the values recommended by CUDA do not lead to the optimum per-
formance, leaving to programmers the task of searching for the best
values through time-consuming, trial-and-error tests.

In this paper we present TuCCompi (Tuned, Concurrent CUDA,
OpenMP and MPI), a multi-layer computing framework that trans-
parently exploits heterogeneous systems and squeezes the GPU ca-
pabilities by automatically choosing the optimal values for the con-
figuration parameters. Each layer represents a level of parallelism.
The first layer handles the distributed-memory environment coordi-
nating the nodes (so-called shared-memory systems) that compose
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Figure 1. Layer deployment of TuCCompi model in a heteroge-
neous cluster.

it. The second layer manages the computational units inside these
shared-memory systems. The third layer automatically deploys the
execution in hardware accelerators such as GPUs. The fourth layer
automatically handles concurrent works inside these GPUs. Finally,
a Tuning layer automatically selects the optimal values for GPU
configuration parameters for each kernel and each GPU architec-
ture. We have developed a prototype framework to test this model,
allowing any user to transparently take advantage of all computa-
tional capabilities of both, CPU-cores and GPU devices, distributed
in different shared-memory systems, without having a deep knowl-
edge of parallel programming methods. The case study used to
evaluate the model is the All-Pair Shortest-Path (APSP) problem.
Experiments have been run in an academic heterogeneous environ-
ment.

The contributions of this work are: (a) Mechanisms to auto-
matically choose the optimal values for the CUDA configuration
parameters, using a given kernel characterization, for any current
kind of GPU architecture; (b) The use of a modern GPU feature as
the concurrent-kernel execution as a new dimension of parallelism;
(c) The creation of a specific prototype framework that combines
the use of these two novel layers to the traditional ones, whose use
leads to performance improvements in our test case up to 12%.

The rest of this paper is organized as follows. Section 2 in-
troduces our conceptual approach. Section 3 describes the use of
the model through some code snippets. Section 4 discusses TuC-
Compi internals. Section 5 explains the used case study. In Sect. 6
we present the experimental environment and the results obtained.
Section 7 describes some related work. Finally, Sect. 8 summarizes
our conclusions.

2. TuCCompi Architecture
This section gives a description of the different layers defined in
our model. The use of a multi-language framework provides us
with more mechanisms to obtain a better performance tuning the
devices in an optimal way. A graphical representation is depicted
in Fig. 1.

The 1st layer (distributed environment) Nowadays, one
of the most economic ways to assemble a heterogeneous sys-
tem is to interconnect a set of individual machines, also called
nodes, such as personal computer, laptops, complex virtual host
machines or even other supercomputing systems composed in turn
by other machines. The nodes found in these heterogeneous en-
vironments usually consist in shared-memory systems, with very
different computational-power capabilities. It is necessary to apply
communication and synchronization mechanisms in order to coor-

dinate these machines for the parallel resolution of the problem.
The first layer of TuCCompi (see Fig. 1) is responsible of manag-
ing the coordination of these nodes without taking into account the
specific hardware details and features of each machine. In order to
communicate and synchronize these nodes, we use MPI (Message
Passing Interface) as message passing tool.

The 2nd layer (shared-memory systems) Most computers
nowadays are composed by several processing units (we will name
them CPU-cores) that share a global address space. Additionally,
there are other devices, such as GPUs, FPGAs and Xeon Phi among
others, that are also able to perform computational actions at the
same time but usually they have to be governed by a CPU-core. Al-
though the use of these devices implies the computational sacrifice
of a CPU-core, their performance is higher than the one obtained
by this CPU-core. In this layer of TuCCompi we use the concept
of “computational unit” for any CPU-core or device that shares the
global memory hosted in a node. This second layer is responsible of
the coordination of all computational units inside the node. If there
were devices in the machine, like the GPUs present in Fig. 1, this
layer would automatically deploy the parallel version of the algo-
rithm to the CPU-cores responsible of the device management, and
the sequential version to the rest of CPU-cores. In order to manage
these resources we use OpenMP as thread-management environ-
ment.

The 3rd layer (GPU devices) An emerging way of paral-
lel computing includes the use of hardware accelerators, such as
GPUs. Their powerful capability have triggered their massive use
to speed up high-level parallel computations. For certain problems,
the use of a parallel implementation of an algorithm in these hard-
ware accelerators can offer huge speedups against the sequential al-
gorithms deployed in the CPU-cores. However, their management
is much more complicated than any multi-core system. If these kind
of devices are found in a shared-memory system, the third layer au-
tomatically deploys the parallel-algorithm execution into them ad-
ditionally to the sequential execution of the remaining node CPU-
cores. In order to manage these devices, we use CUDA as program-
ming environment.

The 4th layer (concurrent GPU kernel execution) The
most recently NVDIA GPUs support concurrent-kernel execution
[14, 15], where different kernels of the same application context
can be executed on the GPU at the same time (See Fig. 2). If the
number of resources needed to execute a kernel does not reach the
total available resources, the remaining ones can be used to con-
currently execute another kernel. Thus, the number of kernels that
can be executed at the same time, depends on the total hardware re-
sources required by each kernel and the corresponding GPU hard-
ware characteristics. This feature is very helpful when small ker-
nels are launched, allowing a concurrent execution that exploits
all device resources. Although at first sight this feature seems to
be profitable only when small kernels are launched, the concur-
rent execution for bigger kernels also gives performance improve-
ments. This occurs because the launch of several kernels of the
same application context takes advantages of the L1 data-cache,
originating less number of cache-misses and therefore alleviat-
ing the global memory bottlenecks. Additionally, the threadBlock-
warp dispatcher works faster scheduling kernels if they have been
previously launched [16].

The fourth layer of TuCCompi (see Fig. 1) is responsible of
the automatic launching of many concurrent kernels in modern
GPUs, squeezing their computational resources. The different tasks
that are scheduled to these kind of accelerators can be executed in
parallel in the same device, adding a new level of parallelism.

The Tuning layer While correctness of an NVIDIA CUDA pro-
gram is easy to achieve, the optimal exploitation of the GPU com-
putational capabilities is much more complicated than traditional
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are provided by the programmer. Note that the user can develop
different versions of each plug-in (Code A, Code B, . . . ) but only
one will be deployed into TuCCompi framework.

CPUs cores. Usually, it requires an extensive CUDA programming
experience. Some examples of code tuning strategies are the choice
of an appropriate threadBlocks size and shape, the coalescing max-
imization of the memory accesses, or the occupancy maximiza-
tion of the Streaming Multiprocessor, among others. However, the
resource differences between each GPU architecture and release,
such as the number of computational units, cache-sizes, and other
features, make even more difficult to find the optimal configuration
for each GPU. Besides this, the optimal values also depend of the
access-memory pattern and the characteristics of the code of each
executed kernel. The Tuning layer automatically selects the param-
eter values for an optimal configuration for each kernel and GPU,
using the kernel characterization provided by the user.

3. TuCCompi Model Usage
TuCCompi users should provide to the model some elements for its
use (see Fig. 3): (a) the sequential-CPU and the parallel-GPU code
application, that we define as CPU PLUG-IN and GPU PLUG-IN
respectively, (b) the kernel characterizations used in the GPU code,
and (c) the main program with TuCCompi macros.

Table 1. TuCCompi kernel-characterization classification. The
def choice can be used when the user does not know the kernel
characterization.

Parameter Description Choice
A Global memory-access pattern scatter/

medium-coalesced/
coalesced/ def

B Ratio of arithmetic instructions high/ low/ none/
per thread compared to the def
global-memory accesses

C Ratio of L1 cache memory lines high/ medium/ low/
evictions compared to the size def
of this memory

D Ratio of global memory data high/ medium/ low/
reutilization compared to the def
number of arithmetic instruction
per thread

K00: TuCCompi KERNELCHAR(k1, 2, scatter, none, high, low);

K01: global void k1 (...){
K02: (kernel implementation)
K03: }
K04: TuCCompi KERNELCHAR(k2, 1, coalesced, low, low, high);

K05: global void k2 (...){
K06: (kernel implementation)
K07: }

Figure 4. Kernel characterizations and implementations. The pro-
gramer adds the boxed primitive before the kernel implementation
to characterize it.

C00: plugin Cpu(user vars ...) {
C01: (Cpu user code)
C02: }//pluginCPU

Figure 5. Plugin Cpu interface. The programer adds to his code
the boxed arguments to deploy the Cpu plugin in TuCCompi.

3.1 Kernel characterization
The user has to provide a general characterization of his ker-
nels in its definition. This information is easily expressed in our
prototype implementation through the TuCCompi KERNELCHAR(
kernel name, num dims, A, B, C, D ) primitive. The values
for parameters A, B, C and D have to be chosen from the kernel-
characterization classification shown in Table 1. TuCCompi model
automatically optimizes the use of all underlying hardware re-
sources of GPU devices, following the guidelines and optimiza-
tions proposed in [21] for each of the possible combination of
these parameters.

Figure 4 shows some examples of the code used to charac-
terize the kernels. Lines K00 and K04 describes the character-
ization of kernels k1 and k2 respectively, indicating the kernel
name, the number of dimensions of the threadBlock, and the pre-
viously described classification criteria. In case that the user does
not know how to classify his kernels, he can use the default (def)
values provided by the model. The macro used for this default
case is TuCCompi KERNELCHAR(kernel name, num dim, def,
def, def, def).

3.2 User-code Plug-ins
Figure 5 shows the interface of the sequential code that will be
executed in a CPU computational unit. The user is responsible of



G00: plugin Gpu(user vars ...) {
G01: (Gpu user code)

G02: TuCCompi GPULAUNCH(k1, input size,

G03: TuCCompi PARLLMK(vector1, type, lng), ...);

G04: TuCCompi GPUSYN( );

G05: TuCCompi GPULAUNCH(k2, input size2,

G06: TuCCompi PARLLMK(vector2, type, lng), ...);

G07: TuCCompi GPUSYN( );

G08: }//pluginGPU

Figure 6. Plugin Gpu interface and internal structure. The pro-
gramer has to change the typical CUDA kernel launch primitives
for the boxed TuCCompi macros.

M00: main( ){
M01: TuCCompi COMM( );

M02: (main user code)

M03: TuCCompi SETMK( number );

M04: TuCCompi PARALLEL(MS, plugin Cpu(..), plugin Gpu(..));

M05: TuCCompi SYN( );

M06: (main user code)

M07: TuCCompi ENDCOMM( );

M08: }//main

Figure 7. User implementation of the TuCCompi main-program.
The programer has to add to his code the boxed primitives.

the algorithm implementation that solves a single task (line C01,
Cpu user code).

Figure 6 shows the code that will be executed in a CPU to man-
age the associated GPU. The user should define the code that han-
dles the logic control of the algorithm that comprises the use of
one or several GPU kernels. This code it will be the responsible
of launching the corresponding kernels into the GPU. Line G02
shows the TuCCompi macro that carries out a kernel launch, with
the name of the kernel as first parameter, and followed by other user
variables that have been previously allocated in the GPU. Transpar-
ently for the user, the model executes as many kernel instances as
the MK value defined in the fourth layer by the user (see line M03
of Fig. 7). Every concurrent kernel launched will need the use of its
own workspace to compute its results. The macro of line G03 gives
to the kernel one memory pointer for each data structure needed.
The needed parameters are: The variable name; the type of ele-
ments that contains; and the number of elements that compounds
it. As we said before, the algorithm implementation can require the
execution of different kernels that should be sequentially launched
for a single task computation (line G05). The TuCCompi macro
of Line G04 forces the CPU to wait for the finalization of an ex-
ecuting kernel, or the termination of all kernels that many have
been launched, in order to provide a synchronization mechanism
if needed.

3.3 TuCCompi main program implementation
Figure 7 shows an example of the code that the user has to im-
plement in order to start the execution of our model. The macro
TuCCompi COMM in Line M01 initializes the system. Afterwards,
the user can introduce his code, including variable declarations,
initializations and the sequential code needed for application. Line
M03 shows the macro that the user should use to set the number of

tasks that the GPU devices have to concurrently execute. Line M04
shows the macro used to initialize and execute the work-task exe-
cution of the functions described in the corresponding plug-ins, for
CPUs and GPUs, using all existing computational units in parallel.
The first parameter of this macro represents the kind of scheduling
policy desired by the user (see Sect. 3.4). In line M05 the program-
mer specifies that the process has to wait until all computational
units of the cluster node have finished. The user is free to insert
more code with the aim to execute other parallelization instance,
if needed, before the finalization of the heterogeneous environment
communication shown in Line M07.

3.4 Workload scheduling
TuCCompi model includes three different policies to distribute the
computational load between all available cluster resources through
the M04 primitive. The first parameter allows to choose between
the following three different policies.

The first one, EQ1, is an equitable policy that schedules the same
number of tasks to each node, of the 1st layer, of the heterogeneous
environment. Later, each process equally divides its assigned work-
load between all its own computational units also in a balanced
way.

The second one, EQ2, is also an equitable policy but in this case
it schedules the same number of task to each computational unit of
the 2nd layer. The workspace division does not take into account
the hardware nature of the computational unit.

The third one, MS, follows a master-slave model. One com-
putational unit is sacrificed to act as the master, and the rest of
the computational units work as slaves. The slaves enter into a
working loop, requesting tasks to the master until it sends a ter-
mination signal to them. As the master can be located in any
cluster node, these asking-for-tasks requests are issued through
distributed-environment communications.

4. TuCCompi internals
In this section we will discuss the internals of the TuCCompi
framework.

4.1 Cluster Node Communication: TuCCompi COMM

Once a heterogeneous cluster is defined and the TuCCompi pro-
gram is in execution, each process initializes its MPI-identification
variables, and enters in a global communication step carried out
by exchanging a few MPI messages. The parent process adopts a
listening posture, receiving from the remaining processes the num-
ber of the computational resources they are able to manage. After-
wards, in order to have a global identifier for each computational
unit, the parent process send each process an identification num-
ber for each resource, avoiding conflicts with other computational
units. Additionally, the parent process send more information about
the whole heterogeneous environment, such as the number of re-
sources of each node and the particular numeration of each compu-
tational unit, among others.

Fig. 8 shows the implementation of this first phase. We will
now review the data structures involved. The v cu vector stores
the number of computational units from each process. The v id
vector stores the number from which the numeration of computa-
tional units should start for the process i. The total cu variable
stores the total number of computational units. The id mpi variable
stores the identifier of the MPI process. The n proc variable stores
the total number of MPI processes. Finally, the PARENT constant is
the identifier the MPI process that coordinates the communication,
whose value is zero. In this first phase, lines 02-04 initialize some
values and ask to the second layer how many computational units
has the machine. Lines 05-09 receive information from the rest of



00: comm(v cu, v id, total cu, id mpi, n proc){
01: if ( id mpi == PARENT){
02: v id [PARENT] = 0;
03: v cu [PARENT] = second layer resources()
04: total cu = v cu[PARENT];
05: for (int i=1; i<np; i++){
06: v id [i] = total cu;
07: RECV( v cu [i], i);
08: total cu += v cu [i];
09: }
10: for(int i=1; i<np; i++){
11: SEND(v id, i);
12: SEND(v hilos, i);
13: SEND(total cu, i);
14: }
15: }else{
16: cu local = second layer resources()
17: SEND(cu local, PARENT process);
18: RECV(v id, PARENT process);
19: RECV(v cu, PARENT process);
20: RECV(total cu, PARENT process);
21: }
22: }

Figure 8. Implementation of the comm() recognition function,
called from TuCCompi COMM().

00: #define TuCCompi PARALLEL(MS, pluginCPU, pluginGPU)\
01: cudaGetDeviceCount(&TuCCompi gpuCount);\
02: omp set num threads(omp get num threads());\
03: #pragma omp parallel\
04: {\
05: int task;\
06: int TuCCompi local id = omp get thread num();\
07: int TuCCompi global id = local id + idomp start;\
08: if( TuCCompi global id == TuCCompi master) {\
09: pluginMASTER;\
10: } else if( TuCCompi local id < TuCCompi gpuCount ){\
11: cudaDeviceProp props;\
12: cudaGetDeviceProperties(&prop,TuCCompi local id);\
13: int gpu arch = props.major;\
14: while( (task = pluginSLAVE) < total tasks)\
15: pluginGPU;\
16: } else\
17: while( (task = pluginSLAVE) < total tasks)\
18: pluginCPU;\
19: }#pragma

20: #define TuCCompi SYN( )\
21: #pragma omp barrier\
22: MPI Barrier(MPI COMM WORLD)

23: #define TuCCompi END( )\
24: MPI Finalize();

Figure 9. TuCCompi PARALLEL() and other macro-definition
codes.

processes. Lines 10-14 perform the heterogeneous-environment in-
formation shipping. Lines 15-21 correspond to the behavior of the
rest of process, that looks up for the available resources, sends this
value to parent process and receives the cluster information.

4.2 Parallel Computation: TuCCompi PARALLEL

Once the TuCCompi model has been initialized and the user vari-
ables have been defined, this primitive automatically creates as
many OpenMP threads as the number of CPU-cores that will per-
form the parallel execution. Figure 9 shows the code that is exe-
cuted when the programmer uses the TuCCompi PARALLEL primi-
tive for the master-slave scheduling policy. (EQ1 and EQ2 policies
are shown due to space restrictions.) The master-slave implemen-
tation just divides the workload between the cluster nodes and the
computational units, and execute the task without any model com-

00: #define TuCCompi GPULAUNCH(k name,input size,uservars)\
01: for( int parll = 0; parll < MK; parll++)\
02: k name<<<t grid(k name, arch, input size),\
03: t threads(k name, arch)>>>(uservars)\

04: #define TuCCompi PARLLMK(var name,var type,var length)\
05: var name + parll * sizeof(var type) * var length

06: #define TuCCompi GPUSYN( )\
07: cudaThreadSynchronize()

Figure 10. Declarations for the automatic kernel launch and mul-
tikernel support.

munication interruption through a for loop. Lines 05-07 initialize
the computational units identifiers. Lines 08-09 check whether any
of the current OpenMP thread should act as the master, executing
the default master function. If there are GPUs, each one will be gov-
erned by its corresponding CPU-core. Therefore, lines 10-15 first
obtain the device properties, entering into the ask-for-tasks working
loop, executing the parallel GPU code provided in the pluginGPU.
The normal CPU-cores also enter into the ask-for-tasks working
loop but executing the code of pluginCPU (lines 16-18). Finally,
line 19 indicates the end of the parallel OpenMP region.

4.3 Kernel Launch and MultiKernel: TuCCompi GPULAUNCH

Before the parallel divergence, the layer-1, distributed-memory
process consults how many GPUs are available in the shared-
memory node (Line 01 of Fig. 9). Once in the parallel region, a
OpenMP thread is assigned to each CPU-core in order to govern
the hardware accelerator, also storing some relevant properties of
the GPU, such as its architecture. (Lines 11-13 of Fig. 9). After-
wards, this thread is the responsible of handling the logic control of
the algorithm implemented in pluginGPU, launching different ker-
nels through the primitive TuCCompi GPULAUNCH(kernel name,
input size, kernel vars )whose definition is shown in Fig. 10.

The model automatically detects if the concurrently execu-
tion of several kernels (the multikernel feature) is supported by
the GPUs using the properties previously retrieved. Otherwise,
the model always launches only one kernel at the same time.
The multikernel feature is also embedded in the GPU launch-
ing primitive (Line 01 of Fig. 10). Additionally, in order to
make possible that each kernels computes in its corresponding
workspace, the PARLLMK(variable name, variable type,
variable length ) macro automatically makes the memory
offset allocation of the corresponding variables that are task-
dependent (Lines 04-05 of Fig. 10).

4.4 Automatic Kernel Tuning: TuCCompi KERNELCHAR

The optimization layer automatically configures the kernel param-
eters depending on: (1) the GPU architecture where is going to be
launched, and (2) the kernel characteristics provided by the user.

In order to obtain the optimal values in terms of kernel fea-
tures, we have followed the guidelines proposed in [21]. These au-
thors have designed and implemented a suite of micro-benchmarks,
called uBench, in order to evaluate how different threadBlock
sizes and shapes affect the performance for each GPU architecture
(Fermi and Kepler). They have characterized and classified a wide
range of kernel types, also presenting the optimal configurations
for them.

The kernel classification that we have implemented was pre-
viously described in Sect. 3.1. As long as the model recognizes
the architecture of the GPUs that are present in each cluster node,
it only needs to know the characterization of each user-defined
kernel. This characterization is indicated by the programmer be-
fore the kernel definition (See Fig. 4), and automatically mapped



00: #define TuCCompi KERNELCHAR(name, numDim, A, B, C, D)\
01: int k ##name[4] = k ##A##B##C##D

02: #define t threads(name,arch) k ##name[arch]
03: #define t grid(name,arch,size) size/k ##name[arch]

04: #define k defdefdefdef {256, 256, 256, 256}
05: #define k scatterlowhighlow {256, 256, 96, 64}
06: #define k coalescedlowlowmedium {256, 128, 192, 128}
07: #define ...

Figure 11. Some declaration examples for the automatic GPU
kernel optimizations.

to an structure that contains the optimal values for all architec-
tures (See Fig. 11). As can be seen in lines 02-03 of Fig. 10, these
values are already embedded in the primitive of kernel launch-
ing as t grid(), that returns the optimal number of blocks, and
t threads(), that returns the optimal number of threads per
block. Then, our model automatically selects the optimal configu-
ration of the threadBlock size-shape.

If the user does not know how to characterize his/her kernel, the
default values can be used. These values are those recommended
by CUDA [11], maximizing the SM Occupancy. Although These
recommended values sometimes work well, we will see that there
could be performance differences of more than ten percent depend-
ing on the use of different, recommended CUDA configurations for
a particular kernel.

4.5 Advanced TuCCompi Model Features
TuCCompi model has additional functionalities and features, such
as the possibility of executing a complex workload scheduling
created by the user, or the possibility of changing the optimal values
for each kernel and GPU. We will now describe two plugins that
help with these tasks.

4.5.1 Scheduling plug-in
The master and the slaves execute, respectively, the master-function
and slave-function code provided in the distribution plug-in. The
model gives a simple implementation for both, where only one
task is scheduled to each slave independently of its computational
power. Additionally, if the problem or the user needs a particu-
lar load distribution that follows a special pattern or policy, the
model allows to the programmer to use his/her own master-slave
implementation injecting it through the scheduling plug-in, using
an extended primitive TuCCompi PARALLEL(MS, pluginCPU,
pluginGPU, pluginMASTER, pluginSLAVE).

That is very useful if the user has in the heterogeneous environ-
ment some devices that works very fast compared with the rest. In
this case, it may be a good choice that the master gives them a pack
of tasks instead a single one. When a OpenMP thread responsible of
a GPU device asks for tasks, it is able to retrieve the corresponding
device information that could be send to the master in the request-
ing message. With this information, the master can produce a more
complex distribution depending on the capabilities of the computa-
tional units that are asking for work. In this way, the master could
give a pack of tasks to the most powerful devices and a single one
to the less powerful computational units. Figure 12 shows a cus-
tomized implementation of the scheduling plug-in created for the
case study.

4.5.2 Characterization plug-in
The optimal values for GPU configurations used by the Charac-
terization plug-in are stored in a file. These values can be easily
updated if new devices with different architectures or resources are
added to the heterogeneous environment. Moreover, it is also easy

Algorithm 1 GPU implementation of Crauser’s algorithm. Kernels are
delimited by <<< ... >>>.
1: <<<initialize>>> (U, F, δ); //Initialization
2: while (∆ 6=∞) do
3: <<<relax>>> (U, F, δ); //Edge relaxation
4: ∆ =<<<minimum>>> (U, δ); //Settlement step 1
5: <<<update>>> (U, F, δ,∆); //Settlement step 2
6: end while

Table 2. Summary of kernels characterization.
Kernel A B C D
Relax scatter low high low
Minimum coalesced low low medium
Update coalesced low low low

to modify these values if the user wants to experiment with new
combinations of parameters.

5. Case study
In order to check the developed TuCCompi framework, we have
chosen the APSP problem for sparse graphs as our case study be-
cause it gathers good characteristics to evaluate the model features.
Being an embarrassingly parallel problem, it suits perfectly with
TuCCompi philosophy for the first three layers. Additionally, the
GPU solution for this problems involves three kernels of very dif-
ferent nature, size and characterization. This variety allows us to
check the behaviour of the fourth layer and the tuning layer.

In this section we explain this problem more in detail and we
describe the corresponding plug-ins developed for the TuCCompi
model.

5.1 All-Pair Shortest-Path (APSP) problem
The APSP problem is a well-known problem in graph theory whose
objective is to find the shortest paths between any pair of nodes.
Given a graph G = (V,E) and a function w(e) : e ∈ E
that associates a weight to the edges of the graph, it consists in
computing the shortest paths for all pair of nodes (u, v) : u, v ∈ V .
The APSP problem is a generalization of the classical problem of
optimization, the Single-Source Shortest-Path (SSSP), that consists
in computing the shortest paths from just one source node s to every
node v ∈ V .

An efficient solution for the APSP problem in sparse graphs is
to execute a SSSP algorithm |V | times selecting a different node
as source in each iteration. The classical algorithm that solves
the SSSP problem is due to Dijkstra [5]. Crauser et al. in [4]
introduces an enhancement that tries in each iteration i to augment
the threshold ∆i as more as possible to process more nodes in the
next iteration.

5.2 Plug-ins
Both sequential and parallel GPU codes are implementations of the
Crauser algorithm. Their implementation for this problem has been
taken from [17]. Algorithm 1 shows the GPU parallel pseudo-code
of Crauser’s algorithm. Figure 13 shows the TuCCompi implemen-
tation for the pluginGPU. This implementation repeatedly launches
three kernels (relax, minimum and update) with different features.
Following the classification described in Sect. 3.1, the kernels are
characterized in Table 2.

Regarding to the scheduling issue, due to the parallel nature
of the problem we have define each SSSP computation as a sin-
gle independent task. We have implemented our own master-slave
scheduling plug-in (See Fig. 12). The master differentiates the na-
ture of the slave that is requesting a task. Depending on its compu-



00: void master scheduler(task ini,total tasks){
01: int next task = task ini;
02: while( next task < total tasks ){
03: RECV(id slave, any slave, slave info);
04: if( slave info == (FERMI or KEPLER) ){
05: if( (next task + MK) <= total tasks){
06: SEND(next task, id slave);
07: next task = next task + MK;
08: }else{
09: SEND(total tasks, id slave);
10: token++;
11: }
12: }else{
13: SEND(next task, id slave);
14: next task++;
15: }
16: }
17: while( token < total cu-1 ){
18: RECV(id slave, any slave);
19: SEND(total tasks, id slave);
20: token++;
21: }
22: }

00: int slave(id slave, mpi master, tag){
01: SEND(id slave, mpi master, tag);
02: RECV(task, mpi master, id slave);
03: return task;
04: }

Figure 12. Our case-study implementation for the functions, mas-
ter (top) and slave (bottom), of the distribution plug-in.

tational power, the master will send more or less tasks. The TuC-
Compi model is better exploited if the master gives more tasks to
the modern GPUs (Fermi, Kepler and so on) due to their multi-
kernel execution feature. For our particular master, we decided to
dispatch four tasks for each modern GPU, and only one for the Pre-
Fermi architectures and the CPU cores.

Figure 12 (top) shows the master implementation. The master
will manage the task distribution while there are task to be executed
(lines 01-16). To do so, the master waits for a task request from any
slave (line 3). if the slave is a modern GPU (Fermi or Kepler) (line
04), the master checks if there are MK available tasks to be send.
In this case, it sends the pack to the corresponding slave through
its identifier and updates the task counter (lines 05-07). However,
if there are no enough tasks for this type of slave the master sends
to it the termination signal and updates the counter of slaves that
have already finished (lines 08-11). If the requesting slave is an old
GPU (pre-fermi) or a CPU-core, the master only sends a single task
to the slave (lines 12-15). Afterwards, the task counter is updated.
When all tasks have been scheduled and carried out, the master
sends to the finishing slaves the termination signal and updates the
corresponding counter (lines 17-21).

Figure 9 (bottom) shows the slave implementation. First, the
slave notifies the master that it is idle (line 1). Then the slave
receives the task(s) to be executed (line 2). Finally, the slave returns
the task identification (line 3).

6. Experimental evaluation
This section describes the methodology used to test the TuCCompi
model, the platforms used, and the input set characteristics for the
case study (the APSP problem). Finally, the experimental results
and conclusions are shown.

6.1 Methodology
In order to evaluate TuCCompi for heterogeneous environments,
we have tested the APSP problem as a case study (see Sect. 5)
in different scenarios. Each scenario was designed with the aim

00: SSSP pluginGPU(...){
01: user code

02: while( ){
03: TuCCompi GPULAUNCH(relax,num v,v d,a d,w d,
07: PARLLMK(p d, bool, num v),
08: PARLLMK(f d, bool, num v),
09: PARLLMK(c d, int, num v) )
11: TuCCompi GPUSYN( )
12: TuCCompi GPULAUNCH(min,num v,v d,a d,w d,
16: PARLLMK(p d, bool, num v),
17: PARLLMK(f d, bool, num v),
18: PARLLMK(c d, int, num v) )
20: TuCCompi GPUSYN( )
21: TuCCompi GPULAUNCH(update,num v,v d,a d,w d,
25: PARLLMK(p d, bool, num v),
26: PARLLMK(f d, bool, num v),
27: PARLLMK(c d, int, num v) )
29: TuCCompi GPUSYN( )
30: }
31: user code

32: }//SSSP pluginGPU

Figure 13. Case-study user implementation for pluginGPU.

to check the use of the layers involved in each scenario in an
incremental fashion.

• A single GPU, that uses the 3rd, 4th and the tuning layer.
• Two GPUs, that involves the 2nd layer in addition to the previ-

ous ones.
• Pegaso: A shared-memory system with two GPUs and eight

CPU-cores (two for handling the GPUs and six for computing),
in order to test the 2nd layer mixing two different kind of
computational units.

• Small HC: Small heterogeneous cluster, that uses all layers of
TuCCompi.

• Big HC: Big heterogeneous cluster, with the aim to evaluate the
scalability of the model.

The workload scheduling used for these environments was the
master-slave policy.

Finally, with the aim of testing the performance gain offered
by the innovative 4th and Tuning layers, we have compared the
execution of a single GPU without these layers with respect to the
use of them. For the former execution, we have chosen some of the
optimal values recommended by CUDA that maximizes the GPU
occupancy and only one kernel at a time. These experiments have
been carried out just computing a small quantity of tasks (1 024,
2 048, 4 096, 8 102, 16 204, and 32 408).

6.2 Target Architectures
Table 3 describes the heterogeneous platforms used for our exper-
iments. For each node we indicate the number of CPUcores and
the GPUs used. This heterogeneous cluster contains a total of 180
CPU-cores and 3 GPUs. However, each GPU device is governed
by a single CPU core, thus, the total number of real computational
units is 180. Some cluster nodes are virtual machines (VM), that
have been running on processors that had additional, low work-
loads of other desktop virtual machines. The multi-GPU systems
includes the two devices present in the pegaso machine, and the
single GPU scenario uses the most powerful of them, the GeForce
GTX 480.

The first heterogeneous cluster evaluated, named Small HC, is
composed by the non-virtual machines. The second heterogeneous
cluster, named Big HC, contains all machines described in Table 3.
The VM nodes run Ubuntu Server 12.04 and Debian desktop (64



Table 3. Summary of heterogeneous clusters.
Small HC
Node CPUInfo #CPUcores GPU details
Pegaso IC2 i7 960 3.20GHz 8 GeF GTX 480

GeF GTX 680
Nodoyuna IC2 Q8200 2.33GHz 4 -
Trasgo IC2 Q6600 2.40GHz 4 -
Apolo IC2 Q6600 2.40GHz 4 -
Geopar IX E7310 1.6GHz 16 -
Patan IC2 E6550 2.33GHz 2 -
Atc01 IC2 6300 1.86GHz 2 GeF 9600GT
Atc02 IC2 6300 1.86GHz 2 -
Atc03 AMD AtX2 3600+ 2 GeF 8500GT
Atc09 IC Q8299 2.33GHz 4 -

Big HC: Small HC plus the following machines
Node CPUInfo #CPUcores GPU details
Titan01 (VM) IX E5-2620 2.00GHz 4 -
Titan02 (VM) IX E5-2620 2.00GHz 4 -
Titan03 (VM) IX E5645 2.40GHz 8+8 -
Titan04 (VM) IX E5645 2.40GHz 8+8 -
Titan05 (VM) IX E5-2620 2.00GHz 12+12 -
Atc05 (VM) IX E5630 2.53GHz 8+8 -
Atc06 (VM) IX E5630 2.53GHz 4 -
Atc07 (VM) IX X-5675 3.07GHz 12+12 -
Atc08 (VM) IX E5-2620 2.00GHz 12+12 -

bits) operating systems, and the remaining ones run the Ubuntu
Desktop 10.04 (64 bits) operating system. The CUDA toolkit re-
lease used is 4.2 with the 295.41 64-bit driver.

6.3 Input Set Characteristics
The input set is composed by a collection of graphs randomly gen-
erated by a graph-creation tool used by [13] in their experiments.
The graphs have been created adding seven adjacent predecessors
to each node of the graph. Afterwards, they have inverted the graphs
in order to store the node successors sequentially. These graphs are
represented through adjacency lists, with the nodes numbered from
0 . . . |V | − 1, and integers that randomly range from 1 . . . 10 for
edge weights.

We have used four different graph-size in order whose num-
ber of vertices are 1 049 088, 1 509 888, 2 001 408 and 2 539 008.
These sizes have chosen because they are multiple of the thread-
Block sizes considered. In this way the GPU algorithm is easier to
implement because we do not have to add padding techniques that
avoids out-of-memory errors.

6.4 Experimental results
GPUs vs the heterogeneous environments Figure 14 shows the
execution times for the single GPU, the multi-GPU system and
the two heterogeneous cluster scenarios. Although the GPUs are
the most powerful devices, and their combined use significantly
decreases the execution times, the addition of many less-powerful
computational units enhances even more the total performance
gain. We can observe that the execution times have been reduced
as more computational resources are used. Moreover, the use of
this model has a communication overhead lower than 1 percent.
The overhead of the Small-HC have never surpassed 0.589% of
the total execution time. Figure 15 represents the task distribution
between the Big-HC nodes for the executed master-slave policy.
Furthermore, the figure shows the theoretical distribution for each
cluster node if the equitable policies, EQ1 and EQ2, were used.
The 4th and Tuning layers performance gain The comparison
between the worst execution on the GPU GeForce GTX 480, with
only one kernel per time, together with the threadBlock values rec-
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ommended by CUDA, with respect the concurrent kernel execution
combined with the values proposed in [21] is shown in Fig. 16. The
use of these layers reduces for our test case up to 12% the execution
time.

7. Related work
llCoMP [18] is a source-to-source compiler that translates C an-
notated code to MPI + OpenMP or CUDA code. The user needs
to specify the sequential code that he/she wants to parallelize. The
authors are only focused in parallel-loop problems. This compiler
does not support the jointly use of CUDA with any other paral-
lel model, therefore, it is not appropriate to be used in heteroge-
neous environments. Besides this, the llCoMP compiler does not
easily support a new GPU architecture or other kind of hardware
accelerators. The authors in [12] propose a framework called OM-
PICUDA to develop parallel applications on the hybrid CPU/GPU
clusters by mixing OpenMP, MPI and CUDA models. Besides this,
they include compiler that translates automatically OpenMP source
code to CUDA. This framework presents serious programming lim-
itations. First, it does not support any recursive function. Second,
the 1.X CUDA architectures can not be used because of the way
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pointers are used. Third, the critical OpenMP sections are not fully
translated to CUDA. Fourth, this framework can not be easily mod-
ified to support a new parallel model. Finally, they do not develop
any policy to select the proper values of CUDA configuration pa-
rameters. A parallel programming approach using hybrid CUDA,
MPI and OpenMP programming is presented in [22]. The authors
only focus the model to solve iterative problems and they do not
take into account any CUDA optimization technique. The proposed
model does not support any mechanism to include new work distri-
bution policies. The authors in [9] have created an hybrid tool that
includes the same parallel models used by the previous mentioned
works to solve raycasting volume rendering algorithm. They test
the system scalability when the input data size is increased. This
tool is only focused in a single parallel application and does not
include any CUDA optimization technique. Moreover, this work
do not include any automatic mechanism to efficiently exploit all
available hardware devices in heterogeneous environments. Addi-
tionally, the proposed models can not be used for other kinds of
parallel problems. Another work in this field is StarPU [10], that
is a task programming library for hybrid architectures supporting
GPUs. However, to the best of our knowledge StarPU does not in-
clude the concurrent-kernel feature of modern GPUs, nor our tun-
ing layer for better exploiting GPU computational capabilities.

With respect to sequential-to-parallel code transformation, pro-
posals in this field include accULL [19], that receives a sequen-
tial code of an algorithm and automatically transforms it to parallel
code that can be deployed into GPU devices. Another example of
code transformation is Ocelot [6], that works in the opposite way.

Given a GPU implementation, Ocelot transforms it to sequential
code. TuCCompi model does not aim to deal with sequential-to-
parallel code transformation. However, both proposals described
above and many others can be easily attached to our multilayer
model (see Fig. 17). Additionally, in order to solve the automatic
GPU kernel characterization is also easy to attach a module that
analyzes the GPU implementation and connects its output to the
Tuning layer.

8. Conclusions and future work
We propose TuCCompi, a multilayer deployment model that helps
the programmer to easily obtain flexible and portable programs
that automatically detect at run-time the available computational
resources and exploits hybrid clusters with heterogeneous devices.
This model offers to the programmer a transparent and easy mech-
anism to select the optimal values of GPU configuration parame-
ters just characterizing the nature of his kernels. Any parallel ap-
plication that can be devised as a collection of non-dependent tasks
working on shared data-structures can be exploited with the current
model of TuCCompi.

The use of the 4th and Tuning layers adds a novel parallel di-
mension and a new automatic optimization compared with previ-
ous works, representing in our test case a performance gain up to
the 12% for the GPUs usage. Therefore, these new layers turns out
to be very important for heterogeneous environments with a high
presence of these GPU devices.

The model is designed to provide a mechanism of plug-ins, in
order to easily change: (1) The corresponding algorithms that are
wanted to be deployed; (2) The scheduling policies of the task di-
vision; and (3) The parameter values for GPUs optimal configu-
rations; without making any change in the model. Furthermore, it
is easily to attach some research works related with parallel code
transformation in order to give a complete tool to the user. The use
of this model exploits even the less powerful devices of a hetero-
geneous cluster and correctly scales if more computational units
are added to the environment, with a communication overhead less
than the one percent of the total execution time.

As future work, we plan to include support for TBBs and
OpenCL languages into the framework, in order to have a suite
of parallel models for each layer. In this way, the user will be able
to choose the model that better fits the specific problem and hetero-
geneous environment. Other uses for TuCCompi include massively
parallel problems such as Bitcoins currency mining, or molecular
computations, as well as other kind of parallelizable problems.



Acknowledgments
The authors would like to thank Javier Ramos López for the
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