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Introduction

Speculative parallelization aims to extract loop and task-level paralelism when a compile-time dependence
analysis can not guarantee that a given sequential code is safely parallelizable. Speculative parallelization
optimistically assumes that the code can be executed in parallel, and relies on a runtime monitor to ensure
that no dependence violation is produced.
If the runtime monitor detects a dependence violation, the runtime monitor should decide what to do with
the parallel execution:

• Restart serially. Discarding the parallel work done so far and restarting the loop serially [1]

• Inclusive Squashing IS. Restarting the offending thread and all its successors [2, 3]

• Exclusive Squashing ES (our proposal). Only offending threads, and recursively, successors that
have consumed any value generated by them are restarted.

• Perfect Squashing. Only offending threads, and recursively, successors that have consumed wrong
values generated by them are restarted.

Inclusive squash [3]
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Execution example

A Thread 2 speculatively loads
element D3 from the speculative
structure.
B Thread 1 speculatively writes
element D3.
C Since a dependence violation ap-
pears, Thread 2 and all successors
are squashed.
D Most-speculative pointer is mod-
ified.

Our proposal: Exclusive squash
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Execution example

A Thread W speculatively loads element D3 from the speculative structure.
B Thread 2 loads the same element D3, forwarding it from the reference value.
C Thread 2 speculatively writes element D1 to the speculative structure; dependence
violations are not found.
D Thread 3 speculatively loads element D1. Since thread 2 has the value, thread 3 writes
in consumer list[3][2] to mark that it will consume a value from thread 2.
E Thread 3 forwards datum D1 from thread 2.
F Thread 1 speculatively writes element D3.
G A squash operation takes place. Threads that have incorrectly consumed the value
D3 are squashed.
H Consumer list is checked in search for threads that have consumed any datum from
squashed threads. In our example, thread 3 is also squashed, and its consumer list
column is also checked.
Note that most speculative pointer is not modified and bubbles are generated.

Results

Applications without dependences
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2D Convex Hull
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2D Delaunay Triangulation (2DT)
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2DT with overloaded computation
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Conclusions
• Exclusive squashing reduces number of squashes from 10% for 4 threads, to 85% for 16 threads.

• Usefulness in terms of speedup heavily depends on the cost associated to discard potentially valid work
for each application.

• Computational load is not high enough for the two applications with dependences considered: Adding
an artificial load to 2DT improves the speedup in comparison to inclusive squashing policy.

This research is partly supported by the Ministerio de Educación y Ciencia, Spain (TIN2007-62302) and Junta de
Castilla y León, Spain (VA094A08).
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