
ExclusiveSquashingforThread-LevelSpeculation
Alvaro Garćıa-Yágüez, Diego R.Llanos, and Arturo González-Escribano

Universidad de Valladolid, Spain
alvarga87@gmail.com, diego@infor.uva.es, arturo@infor.uva.es

Introduction

Speculative parallelization aims to extract loop and task-level paralelism when a compile-time dependence
analysis can not guarantee that a given sequential code is safely parallelizable. Speculative parallelization
optimistically assumes that the code can be executed in parallel, and relies on a runtime monitor to ensure
that no dependence violation is produced.
If the runtime monitor detects a dependence violation, the runtime monitor should decide what to do with
the parallel execution:

• Restart serially. Discarding the parallel work done so far and restarting the loop serially [1]

• Inclusive Squashing IS. Restarting the offending thread and all its successors [2, 3]

• Exclusive Squashing ES (our proposal). Only offending threads, and recursively, successors that
have consumed any value generated by them are restarted.

• Perfect Squashing. Only offending threads, and recursively, successors that have consumed wrong
values generated by them are restarted.

Inclusive squash [3]

......

M

1

3

2

D1

D2

D3

DM

ref

RUN RUN

...

...

Thread 1 Thread 2 Thread 3 Thread 4

...321 4 W

1 RUN RUN

Thread W

RUNRUN

SQUASH SQUASH

...

non_spec most_spec

window

local versionsglobal

Dx

Dx Dx has been speculatively written (Update state)

Dx has been speculatively loaded (ExpLd state)

SQUASH

D3 D3
A

SQUASH

B

C

W 1 D

Ref. Original user data structure
Window. Holds the state of W
slots where block of iterations are
executed (FREE, DONE, RUNNING,
SQUASHED)
Version. Stores W copies of Ref data

Execution example

A Thread 2 speculatively loads
element D3 from the speculative
structure.
B Thread 1 speculatively writes
element D3.
C Since a dependence violation ap-
pears, Thread 2 and all successors
are squashed.
D Most-speculative pointer is mod-
ified.

Our proposal: Exclusive squash

......

M

1

3

2

D1

D2

D3

DM

ref

...

...

Thread 1 Thread 2 Thread 3 Thread 4

...321 4 W

1 RUN RUN RUN

Thread W

RUNW RUN

SQUASH SQUASH

...

D3 D3

D1 D1

D3

non_spec most_spec

window

...

...2

1

3

W

1 2 3 4 W

consumer list

global

X

Dx

Dx Dx has been speculatively written (Update state)

Dx has been speculatively loaded (ExpLd state)

SQUASH

local versions

B

A

C

D

E

F

G

G
H

Execution example

A Thread W speculatively loads element D3 from the speculative structure.
B Thread 2 loads the same element D3, forwarding it from the reference value.
C Thread 2 speculatively writes element D1 to the speculative structure; dependence
violations are not found.
D Thread 3 speculatively loads element D1. Since thread 2 has the value, thread 3 writes
in consumer list[3][2] to mark that it will consume a value from thread 2.
E Thread 3 forwards datum D1 from thread 2.
F Thread 1 speculatively writes element D3.
G A squash operation takes place. Threads that have incorrectly consumed the value
D3 are squashed.
H Consumer list is checked in search for threads that have consumed any datum from
squashed threads. In our example, thread 3 is also squashed, and its consumer list
column is also checked.
Note that most speculative pointer is not modified and bubbles are generated.

Results

Applications without dependences

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: TREE-WINDOW02-BLOCK02

IS
ES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: MDG-WINDOW02-BLOCK02

IS
ES

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: TREE-WINDOW02-BLOCK02

IS
ES

2D Convex Hull

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 0 2 4 6 8 10 12 14 16

S
qu

as
he

s

Squashes

Squashes, 2D-Hull, Disc, block=2500

IS
ES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2 4 6 8 10 12 14 16

V
io

la
tio

ns

Processors

Violations, 2D-Hull, Disc, block=2500

IS
ES

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup, 2D-Hull, Disc, block=2500

IS
ES

2D Delaunay Triangulation (2DT)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2 4 6 8 10 12 14 16

S
qu

ah
es

Processors

Squashes: Delaunay-BLOCK20-WINDOW02

IS
ES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12 14 16

V
io

la
tio

ns

Processors

Violations: Delaunay-BLOCK20-WINDOW02

IS
ES

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: Delaunay-BLOCK20-WINDOW02

IS
ES

2DT with overloaded computation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: DelaunayOverload1-BLOCK20-WINDOW02

IS
ES

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: DelaunayOverload2-BLOCK20-WINDOW02

IS
ES

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup: DelaunayOverload3-BLOCK20-WINDOW02

IS
ES

Conclusions
• Exclusive squashing reduces number of squashes from 10% for 4 threads, to 85% for 16 threads.

• Usefulness in terms of speedup heavily depends on the cost associated to discard potentially valid work
for each application.

• Computational load is not high enough for the two applications with dependences considered: Adding
an artificial load to 2DT improves the speedup in comparison to inclusive squashing policy.

This research is partly supported by the Ministerio de Educación y Ciencia, Spain (TIN2007-62302) and Junta de
Castilla y León, Spain (VA094A08).

References

[1] Rauchwerger, L., and Padua, D. The LRPD test: speculative run-time parallelization of loops with privatization and
reduction parallelization. In Proceedings of the ACM SIGPLAN 1995 conference on Programming Language Design and
Implementation (La Jolla, California, United States, 1995), ACM, pp. 218–232.

[2] Dang, F., Yu, H., and Rauchwerger, L. The R-LRPD test: Speculative parallelization of partially parallel loops. In
Parallel and Distributed Processing Symposium., Proc. Intl. Par. and Distr. Processing Symposium (2002), IEEE, pp. 20–
29.

[3] Cintra, M., and Llanos, D. R. Toward efficient and robust software speculative parallelization on multiprocessors. In
Proceedings of the ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Diego,
California, USA, 2003), ACM, pp. 13–24.

1

