
Parallel Approaches to
Shortest-Path Problems for

Multilevel Heterogeneous Computing

Héctor Ortega Arranz
PhD Thesis

Universidad de Valladolid
Departamento de Informática

October 2015

Escuela Técnica Superior de Ingeniería Informática

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

DEPARTAMENTO DE INFORMÁTICA

TESIS DOCTORAL:

Parallel Approaches to Shortest-Path Problems
for Multilevel Heterogeneous Computing

Presentada por

D. Héctor Ortega Arranz
para optar al grado de doctor por la Universidad de Valladolid

Dirigida por:

Dr. Diego R. Llanos Ferraris
Dr. Arturo González Escribano

Valladolid,
2015

ii

iii

Resumen
Desde hace mucho tiempo, diferentes algoritmos de grafos han solucionado problemas

relacionados con la computación del camino más corto. Este tipo de problemas se consi-
dera como uno de los problemas más importantes dentro de la categoría de optimización
combinatoria, debido a sus múltiples aplicaciones a problemas prácticos relacionados con
la vida real. Entre algunos de estos ejemplos se encuentra la navegación de coches y/o
robots en carreteras u otras superficies, las simulaciones de tráfico, optimización de recur-
sos para compañías de envío de paquetes, rutado de paquetes en Internet, búsquedas en la
web, o la explotación de beneficios con cambios de monedas. Sin embargo, durante las úl-
timas décadas, el interés de la comunidad científica por este tipo de problemas ha crecido
significativamente, no sólo por la amplia aplicabilidad de sus soluciones, sino también
por el actual popular uso eficiente de la computación paralela. Además, la aparición de
nuevos modelos de programación junto con los modernos aceleradores hardware, como
los procesadores de gráficos (GPUs) y las tarjetas XeonPhi, ha enriquecido el rendimiento
de los algoritmos paralelos anteriores, y ha propiciado la creación de nuevos algoritmos
más eficientes. Por otra parte, el uso conjunto de estos aceleradores hardware junto con
las clásicas CPUs conforman la herramienta perfecta para enfrentarse, dentro de un con-
texto de cómputo de altas prestaciones, a los problemas más costosos relacionados con el
cálculo de caminos más cortos.

Sin embargo, la programación de estos aceleradores hardware, su optimización, y su
coordinación con otros elementos de computación de diferente naturaleza, son tareas aún
muy complicadas para los programadores no expertos. Una de las razones por las que
estas tareas son demasiado complejas es la falta de estudios que puedan guiar al pro-
gramador a utilizar valores apropiados para los parámetros de ejecución de las GPUs.
Respecto a la coordinación de diferentes unidades computacionales, tampoco existen mu-
chos modelos o herramientas que simplifiquen la programación de diferentes capas de
cómputo paralelo. Por ejemplo, el uso conjunto de los diferentes cores de una CPU den-
tro de un sistema de memoria compartida, o incluso de otros sistemas externos.

Este trabajo de Tesis Doctoral aborda ambos contextos mencionados anteriormente
mediante: el desarrollo de nuevos planteamientos orientados a plataformas GPU para la
resolución de problemas de caminos cortos, junto con el estudio del ajuste óptimo de
los parámetros de ejecución; y el diseño de soluciones donde algoritmos secuenciales y
paralelos son desplegados, de manera concurrente, en entornos heterogéneos.

Palabras clave
Modelo paralelo abstracto, APSP, tuning automático de kernels, Boost Graph Li-

brary, configuración de la Cache L1, ejecución concurrente de kernels, CUDA, Dijkstra,
GPGPU, sistemas heterogéneos, framework HPC, modelo de caracterización de kernels,
proceso de caracterización de kernels, balanceo de carga, MPI, comparativa de platafor-
mas de NVIDIA, OpenMP, técnicas de optimización, algoritmos paralelos, SSSP, ge-
ometría del bloque de hilos.

iv

Abstract
Many graph algorithms have given solution to the problem of finding shortest paths

between nodes in a graph. These problems are considered among the fundamental com-
binatorial optimization problems. They have many applications, such as car/robot naviga-
tion systems, traffic simulations, tramp steamer problem, courier-scheduling optimization,
Internet route planners, web searching, or exploiting arbitrage opportunities in currency
exchange, among others. During the last decades, the interest of the scientific commu-
nity in these problems has significantly increased not only due to this wide-applicability,
but also thanks to the currently popular and efficient parallel computing. Additionally,
the advent of new parallel programming models together with modern powerful hardware
accelerators, such as the Graphics Processing Units or the many-core XeonPhis boards,
may highly improve the performance of previous parallel algorithms, and also has open
the possibility to study new and more efficient parallel approaches to exploit these specific
architectures. Furthermore, the emerging of heterogeneous parallel computing combining
these powerful hardware accelerators with the classical and increasingly powerful CPUs,
provides a perfect environment to face the most costly shortest-path problems in the con-
text of High Performance Computing (HPC).

However, the programming of hardware accelerators, the optimization of their run-
ning times, and also, the coordination of these devices with other computational units of
different nature, are still very complex tasks for non-expert programmers. One important
indicator of the added complexity found in these environments is the lack of studies to
guide the programmer into the correct use of proper values for GPU runtime configura-
tion parameters. Regarding the coordination of different computational devices, there are
also few models or frameworks that simplifies the programming when different parallel
computing layers are used, to combine the use of many-cores and classical CPU cores
present in a shared-memory system, or even from different systems.

This Ph.D. thesis addresses both mentioned problems, the algorithmic GPU program-
ming and the heterogeneous parallel coordination in the context of: Developing new GPU-
based approaches to the shortest path problem; the study of the tuning of the GPU con-
figuration parameters; and also, designing solutions where both sequential and parallel
algorithms are deployed concurrently in heterogeneous environments.

Keywords
Abstract parallel model, APSP, automatic kernel tuning, Boost Graph Library, cache

L1 configuration, concurrent kernel execution, CUDA, Dijkstra, GPGPU, heterogeneous
systems, HPC framework, kernel characterization model, kernel characterization process,
load-Balancing, MPI, NVIDIA platform comparison, OpenMP, optimization techniques,
parallel algorithms, SSSP, threadblock size.

v

“Donde no falta voluntad siempre hay un camino”

“If there is a will, there is a way”

J.R.R. Tolkien (1892 - 1973)

vi

Acknowledgments

Aún recuerdo cuando de pequeño, y no tan pequeño, hablaba de recor-
rer esta ruta, que aún era desconocida para mí. Recuerdo cuando empecé a
andarla, y en particular, el momento cuando descubrí, qué misterios se dis-
cernían tras estos caminos. Recuerdo sentir cómo ese crucero se transformaba
en odisea, y el desafío se tornaba más difícil de lo que a veces uno desea.
Muchas otras cosas seguro habré dejado en el pasado, pero de lo que no me
he olvidado, es que no estaba yo sólo en esa senda. Gracias a los que me han
acompañado, puedo recordar que he sido capaz de enfrentarme a todo por
perseguir esa meta. Es a ellos a quienes van dedicados estos párrafos.

En primer lugar quiero agradecer a Diego y Arturo por aceptarme y darme
la oportunidad de empezar este viaje, por su ayuda y apoyo durante el largo
y duro recorrido, y su trabajo para que todo esto llegara a buen puerto. Quiero
agradecer también, y resaltar la importancia de haber tenido unos inmejorables
compañeros de travesía, y amigos, Yuri, Sergio, Javier, Álvaro y Ana. Sin su
compañía, comprensión, empatía y ayuda, esta andadura habría sido siempre
muy oscura.

Igualmente quiero agradecer el insuperable trato que recibí durante mi
pequeña y entrañable aventura en St. Andrews. No sólo de la gente de la
universidad que me acogió, apoyó y confió en mí como si siempre hubiera
trabajado con ellos, sino también a todas las personas que allí conocí, y con
las que mucho más que anécdotas inolvidables compartí.

Por último, agradecer a mis amigos, a mis padres, y a mi hermano Alex,
que tantas veces me han visto partir, siempre me han ayudado y siempre han
confiado en mí, y nunca me han faltado cuando regresaba y les necesitaba. Y
a quien siempre ha estado ahí, también, ¡GRACIAS!.

Héctor Ortega-Arranz
Valladolid, 2015

This research has been partially supported by the FPI-UVa 2011 and HiPEAC 2014
scholarships, the Ministerio de Economía y Competitividad (Spain) and ERDF program
of the European Union: CAPAP-H5 network (TIN2014-53522-REDT), MOGECOPP
project (TIN2011-25639); Junta de Castilla y León (Spain): ATLAS project (VA172A12-
2); HomProg-HetSys project TIN2014-58876-P; and the COST Program Action IC1305:
NESUS.

vii

viii

Contents

R Resumen de la tesis 1
R.1 Pregunta de Investigación . 3

R.1.1 Metodología de Investigación 3
R.2 Objetivos . 4
R.3 Estructura de la Tesis . 7

R.3.1 Síntesis de Capítulos y Contribuciones 8
R.4 Conclusiones . 12

1 Introduction 13
1.1 Motivation . 13

1.1.1 Parallel Computing . 14
1.1.2 GPUs for Parallel Computing 16
1.1.3 Heterogeneous Computing . 18

1.2 Objectives of the dissertation . 18
1.2.1 Research Methodology . 18
1.2.2 Milestones . 19

1.3 Document Structure . 21

2 State of the Art of the Shortest-Path Problem 23
2.1 Brief Introduction to Graph Theory . 23
2.2 The Single-Source Shortest-Path (SSSP) Problem 27

2.2.1 Taxonomy of SSSP Algorithms 27
2.2.2 Dijkstra’s Algorithm . 29

2.3 Parallel Solutions for the SSSP (Π-SSSP) 31
2.3.1 Parallelizing the Internal Operations of the SSSP Algorithm . . . 31
2.3.2 Deploying Sequential SSSPs in Disjoint Subgraphs Concurrently 33
2.3.3 Deploying Parallel SSSPs in Disjoint Subgraphs Concurrently . . 34

2.4 The All-Pair Shortest-Path (APSP) Problem 34
2.4.1 Taxonomy of APSP Algorithms 34

2.5 Parallel Solutions for the APSP (Π-APSP) 38
2.5.1 Strategy A: Parallel Dynamic-programming Solutions 39
2.5.2 Strategy B: Parallel Productivity-based Solutions 41

2.6 Application Example: Shortest-Path Algorithms applied to roadmaps . . . 44

ix

x CONTENTS

2.6.1 One-Pair Shortest-Path Problem 45
2.6.2 The Importance of Preprocessing: Routing Algorithms as Example 47

2.7 Summary . 51

3 Using GPUs to solve the Single-Source Shortest-Path Problem 53
3.1 Defining the Frontier Set and the ∆ Threshold 53

3.1.1 Martín’s GPU Algorithm . 54
3.2 Applying Crauser’s Ideas to Increase the ∆ Threshold 57

3.2.1 Crauser’s Algorithm . 57
3.2.2 Porting Crauser’s Ideas to a GPU Implementation 60

3.3 Experimental Evaluation of the GPU-SSSP Algorithm 60
3.3.1 Methodology . 60
3.3.2 Input set characteristics . 63
3.3.3 Experimental Results I - State of the Art Comparison 65
3.3.4 Experimental Results II - Boost Graph Library Comparison . . . 73
3.3.5 Experimental Results III - Architectural Comparison 73

3.4 Summary . 76

4 Exhaustive Search for GPU Optimal Parameter Values 81
4.1 Problem Description: The Importance of Using

Proper Values for Tuning Parameters . 81
4.2 State of the Art: Scarce Models for GPU Configuration Parameter Tuning 82
4.3 Kernel Characterization Model: Code-Dependent Parameters 84
4.4 Kernel Characterization Model: Graph-Dependent Parameters 85
4.5 Characterizing the Kernels of the SSSP Algorithm 86

4.5.1 Predictions for the Threadblock-size Values 87
4.5.2 Predictions for L1-cache Management 89

4.6 Experimental Evaluation . 89
4.6.1 Methodology . 90
4.6.2 Input set characteristics . 92
4.6.3 Experimental Results: Exhaustive Evaluation of CUDA Runtime

Configuration Parameters . 92
4.6.4 Study I - CK Compatibility with Model Predictions 95
4.6.5 Study II - Validation of Model Predictions 95
4.6.6 Study III - Usefulness of Model Predictions 96

4.7 Summary . 99

5 Using Heterogeneous Computing to Solve the All-Pair Shortest-Path 101
5.1 Problem Description: Π-APSP Approach 101
5.2 State of the Art: Towards Heterogeneous Computing 102
5.3 Load-balancing Techniques . 103

5.3.1 Equitable Scheduling . 104
5.3.2 Work-queue retrieving Scheduling 104

5.4 Experimental Evaluation on a Heterogeneous Shared-Memory System . . 105
5.4.1 Methodology . 105
5.4.2 Input Set Characteristics . 107

CONTENTS xi

5.4.3 Experimental Results I - Complete APSP Evaluation 108
5.4.4 Experimental Results II - Random Scalability Evaluation 110

5.5 Summary . 111

6 TuCCompi Programming Model 113
6.1 Problem Description: The Need for Speed and the Lack of an Unified

Solution . 113
6.2 State of the Art: Looking for One Tool to Rule All Parallel Levels 114
6.3 TuCCompi: The Distributed Heterogeneous Computing Model 115

6.3.1 The Multi-Layer Architecture 116
6.3.2 TuCCompi Model Usage . 118
6.3.3 The External-Work Attachable to TuCCompi 121

6.4 The Prototype Internals . 123
6.5 Porting the SSSP Implementation to TuCCompi 128
6.6 Experimental Evaluation of TuCCompi Prototype 131

6.6.1 Methodology . 131
6.6.2 Input Set Characteristics . 133
6.6.3 Experimental Results I - Checking TuCCompi’s Layers 133
6.6.4 Experimental Results II - The Innovative 4th and Tuning Layers . 135

6.7 Summary . 135

7 Conclusions 137
7.1 Answer to the Research Question . 137
7.2 Summary of Contributions . 138

7.2.1 Surveys and classification studies for the algorithms involved in
Shortest Path problems . 138

7.2.2 Development of a new GPU-based algorithm outperforming a pre-
vious state-of-the-art GPU SSSP solution 139

7.2.3 Extension of the kernel characterization model 140
7.2.4 Studies of novel heterogeneous approaches for the APSP problem 141
7.2.5 Development of a multilayer programming model: TuCCompi . . 142

7.3 Future Directions . 142

A Graphical Results from the Exhaustive Search 145

xii CONTENTS

List of Figures

R.1 Diferentes objetivos propuestos para el desarrollo de esta tesis doctoral. . 5
R.2 Estructura del documento. 7

1.1 Evolution of parallel computing. 15
1.2 Number of articles related with different parallel computing technologies. 16
1.3 Bandwidth estimated for future architectures of NVIDIA GPU devices. . 17
1.4 Goals and subgoals to be accomplished in this Ph.D. thesis. 19
1.5 Document structure. 22

2.1 Examples of paths in an undirected graph and a directed graph. 25
2.2 Examples of a shortest path and a shortest path tree. 26
2.3 Dijkstra’s algorithm steps. 29
2.4 Phases of the FW algorithm proposed by Venkataraman, that lately was

used by Katz and Kider for GPUs. 38
2.5 Taxonomy of parallel solutions for the APSP. 42
2.6 Settled nodes reordering from Dijkstra’s to A*. 46

3.1 Examples of a graph with Crauser’s out values highlighted. 58
3.2 Crauser’s algorithm steps. 58
3.3 Graphical description of the relax kernel and the minimum kernel. 58
3.4 Temporal cost of the different source nodes in the graph for the Kepler GPU. 64
3.5 Graph represented through an adjacency matrix and the CSR storage format. 65
3.6 GPU Martín vs GPU Crauser using Martín graphs. 65
3.7 GPU Martín vs GPU Crauser using Random graphs. 67
3.8 GPU Martín vs GPU Crauser using Real-world graphs. 69
3.9 GPU Crauser vs its optimized version using Martín graphs. 70
3.10 GPU Crauser vs its optimized version using Random graphs. 71
3.11 GPU Crauser vs its optimized version for social networks and kronecker

graphs. 72
3.12 Optimized GPU Crauser vs Dijkstra’s Boost Library in Random graphs. . 74
3.13 Optimized GPU Crauser vs Dijkstra’s Boost Library in Real-world graphs. 75
3.14 Memory usage of the Boost Library and the GPU Crauser version. 76
3.15 CUDA architectural comparison for the random and real-world graphs. . . 77

xiii

xiv LIST OF FIGURES

3.16 CUDA architectural comparison for the random and real-world graphs. . . 78

4.1 Exhaustive search for optimal values in the graph 24k-d2 scenario. 93
4.2 Exhaustive search for optimal values in the graph 98k-d200 scenario. . . . 94
4.3 Execution time breakdown of the GPU kernels. 98

5.1 Work-queue retrieving technique implementation. 104
5.2 SSSP Execution time for different source nodes of the Martín graphs. . . 107
5.3 Execution times using the Equitable Scheduling policy. 108
5.4 Execution times using the Work-queue retrieving Scheduling policy. . . . 108
5.5 512 nodes execution times using the Equitable Scheduling policy. 110
5.6 512 nodes execution times using the Work-queue retrieving Scheduling

policy. 110

6.1 Layer deployment of TuCCompi model in a heterogeneous cluster. 116
6.2 TuCCompi model usage elements. 119
6.3 User implementation of the TuCCompi main-program. 119
6.4 Plugin_Cpu (top) and Plugin_Gpu (down) interfaces. 120
6.5 Example of kernel characterizations and implementations. 122
6.6 Usage of TuCCompi with attachable code-transformation modules. 122
6.7 Implementation of the recognition function called from TuCCompi_COMM().124
6.8 TuCCompi_PARALLEL() and other macro-definition codes. 125
6.9 Declarations for the automatic kernel launch and multikernel support. . . 126
6.10 Some declaration examples for the automatic GPU kernel optimizations. . 127
6.11 Master/Slave function implementations. 128
6.12 Inserting kernel characterizations for TuCCompi prototype. 129
6.13 TuCCompi pseudo-code for the pluginGPU. 129
6.14 Execution times of the tested scenarios for different graph-sizes. The de-

scription of the tested scenarios can be found in the definition of the Ex-
periment I in Sect. 6.6.1. 134

6.15 Number of executed tasks per node of the Big HC. 134
6.16 Performance improvements of the 4th and Tuning layers. 135

7.1 Subgoals accomplished in this Ph.D. thesis. 139

A.1 Exhaustive search for optimal values in the graph 24k-d2 scenario for the
Fermi GF100 architecture. 147

A.2 Exhaustive search for optimal values in the graph 24k-d20 scenario for
the Fermi GF100 architecture. 148

A.3 Exhaustive search for optimal values in the graph 24k-d200 scenario for
the Fermi GF100 architecture. 149

A.4 Exhaustive search for optimal values in the graph 49k-d2 scenario for the
Fermi GF100 architecture. 150

A.5 Exhaustive search for optimal values in the graph 49k-d20 scenario for
the Fermi GF100 architecture. 151

A.6 Exhaustive search for optimal values in the graph 49k-d200 scenario for
the Fermi GF100 architecture. 152

LIST OF FIGURES xv

A.7 Exhaustive search for optimal values in the graph 98k-d2 scenario for the
Fermi GF100 architecture. 153

A.8 Exhaustive search for optimal values in the graph 98k-d20 scenario for
the Fermi GF100 architecture. 154

A.9 Exhaustive search for optimal values in the graph 98k-d200 scenario for
the Fermi GF100 architecture. 155

A.10 Exhaustive search for optimal values in the graph 24k-d2 scenario for the
Kepler GK104 architecture. 156

A.11 Exhaustive search for optimal values in the graph 24k-d20 scenario for
the Kepler GK104 architecture. 157

A.12 Exhaustive search for optimal values in the graph 24k-d200 scenario for
the Kepler GK104 architecture. 158

A.13 Exhaustive search for optimal values in the graph 49k-d2 scenario for the
Kepler GK104 architecture. 159

A.14 Exhaustive search for optimal values in the graph 49k-d20 scenario for
the Kepler GK104 architecture. 160

A.15 Exhaustive search for optimal values in the graph 49k-d200 scenario for
the Kepler GK104 architecture. 161

A.16 Exhaustive search for optimal values in the graph 98k-d2 scenario for the
Kepler GK104 architecture. 162

A.17 Exhaustive search for optimal values in the graph 98k-d20 scenario for
the Kepler GK104 architecture. 163

A.18 Exhaustive search for optimal values in the graph 98k-d200 scenario for
the Kepler GK104 architecture. 164

xvi LIST OF FIGURES

List of Tables

2.1 Best-bounds SSSP algorithms for different input graphs. 27
2.2 Parallel SSSP algorithm classification. 31
2.3 Best time-complexity bounds of APSP algorithms for different graphs. . . 36
2.4 Time-bound evolution for FW-based algorithms. 37
2.5 Different existent implementations that parallelize the APSP problem. . . 39
2.6 Different parallel opportunities to parallelize the preprocessing phase. . . 50

3.1 Proper values selected for the threadblock-size and the L1 cache manage-
ment for the optimized version. 62

3.2 Speedups of GPU Crauser vs. GPU Martín using synthetic random graphs. 68
3.3 Best speedups of GPU Crauser vs. GPU Martín for each real-world family. 68
3.4 Percentages of performance gain between GPU Crauser and its optimized

version using synthetic random graphs. 72

4.1 Characterization of the relax, minimum and update kernels. 88
4.2 Prediction values resulting from the kernel characterization process. . . . 88
4.3 Tested values in our experimental scenario for the different configuration

parameters. 91
4.4 Best configuration parameter values and performance gain obtained com-

pared with the baseline. 97

5.1 Experimental instances used on the shared-memory system. 106

6.1 TuCCompi kernel-characterization classification. 122
6.2 Description of the nodes that compound the Heterogeneous Clusters. . . . 131

A.1 Figure links for all graph scenarios considered. 145

xvii

xviii LIST OF TABLES

List of Algorithms

1 The generic label-correcting algorithm 28
2 The dynamic programming Floyd-Warshall algorithm. 37
3 Pseudo-code for the naïve parallel Floyd-Warshall algorithm 39
4 Pseudo-code for recursive parallel APSP algorithm of Buluç 41
5 Pseudo-code of Martín’s GPU implementation for Dijkstra’s algorithm. . 54
6 Pseudo-code of the relax kernel. 55
7 Pseudo-code of the update kernel. 55
8 Pseudo-code of the relax kernel in Predecessors variant. 56
9 Pseudo-code of our Crauser minimum kernel. 59
10 Pseudo-code of our Crauser update kernel. 59

xix

xx LIST OF ALGORITHMS

Chapter R
Resumen de la tesis

Muchos problemas que surgen en las redes del mundo real requieren calcular los caminos
más cortos, y sus distancias, entre uno o varios puntos de origen a uno o varios puntos
de destino. Existen diferentes variantes del problema. El problema del SSSP, o Single-
Source Shortest-Path, tiene como objetivo calcular los caminos más cortos y sus distan-
cias entre un punto origen y el resto. Por otro lado, el problema del APSP, o All-Pair
Shortest-Path, tiene como objetivo calcular los caminos más cortos y sus distancias entre
cualquier par de puntos de la red. Algunos ejemplos de contextos donde este tipo de cóm-
puto es necesario son los sistemas de navegación [1], simulaciones de tráfico [2], medios
de transporte con horario fijo [3], control logístico [4], bases de datos espaciales [5, 6],
planificación de rutas en Internet [7], o búsquedas en la web [8, 9]. A pesar de la impor-
tancia del problema de cálculo de caminos más cortos, los algoritmos actuales son aún
muy costosos en términos computacionales, y en muchos casos los productos comerciales
implementan abortamientos heurísticos para generar soluciones aproximadas en vez de
soluciones óptimas.

El objetivo de paralelizar estos algoritmos implica no sólo la inmediata reducción de
los tiempos de ejecución sino también su aplicación en otros planteamientos más com-
plejos donde estos algoritmos representan una fase dentro del método global. De esta
manera, estos métodos, que previamente eran sólo teóricos debido a prohibitivos tiempos
de ejecución, pueden ser ahora factibles y viables gracias a esta reducción. Un ejemplo
de este tipo de fases son los costosos preprocesos necesarios para ejecutar consultas en el
cálculo de rutas de un mapa de carreteras. En este preproceso se obtienen valores que son
almacenados para ser utilizados a posteriori en la consulta, donde se pide calcular la ruta
más corta entre dos puntos del mapa. Normalmente, este preproceso tiene un coste muy
alto en términos temporales, pero mientras sólo haya que ejecutarlo una vez cada mucho
tiempo, podría considerarse como una tarea de coste asequible. Gracias a estos valores
precomputados, que en ocasiones representan el cálculo de todas las distancias de todas
las parejas de puntos de la red, la fase de consulta puede ser computada en el orden de
nanosegundos [10, 11].

La configuración de los mapas de carreteras no cambia frecuentemente, por lo que
podría ser plausible pagar el alto coste de la fase de preproceso una vez. Sin embargo,
en otros contextos donde las redes tienden a cambiar con más frecuencia, o su topología
es desconocida en un momento determinado, la reducción de tiempos de esta fase de pre-

1

2 Chapter R. Resumen de la tesis

proceso se convierte en algo crucial. Además, en el contexto de los mapas de carreteras,
podemos encontrar también este comportamiento dinámico si queremos tener en cuenta
otros factores en tiempo real como pueden ser el estado de las carreteras o el tráfico.

La aparición de los dispositivos móviles presenta un tercer desafío debido a su poca
capacidad de almacenamiento que limita la cantidad de datos precomputados que po-
dríamos almacenar. La mayoría de los métodos actuales son más rápidos cuantos más
datos precomputados puedan almacenar. Sin embargo, los dispositivos móviles actuales
tienen una gran capacidad de cómputo incorporando varios procesadores cuya explotación
en paralelo podría aliviar la mencionada falta de almacenamiento.

La computación paralela consiste en utilizar a la vez dos o más dispositivos para
realizar cálculos, normalmente con el propósito de reducir los tiempos de ejecución.
Aunque la paralelización de un algoritmo no reduce su tiempo asintótico, a veces es la
única manera de conseguir tiempos de ejecución razonables y/o competitivos. La tenden-
cia de los ordenadores actuales es incorporan un mayor número de procesadores en vez
de un único procesador con mucha velocidad de cómputo. Esta evolución ha derivado
en la creación de tipos diferentes de dispositivos de cómputo: los sistemas multi-core y
los sistemas many-core. Los primeros incluyen dos o más núcleos de procesamiento, o
cores, que son de propósito general dentro de un mismo chip. Sin embargo, un sistema
es considerado many-core, cuando tiene más de una docena de estas unidades de proce-
samiento. En esta categoría podemos encontrar no sólo superordenadores con un gran
número de CPUs con muchos cores, sino también los aceleradores hardware como los
procesadores gráficos (GPUs) o los coprocesadores, como los dispositivos Xeon-Phi.

Actualmente, los dispositivos con arquitectura many-core más representativos son las
GPUs [12]. Éstos están diseñados para ayudar a la CPU en el procesamiento de gráficos.
Sin embargo, debido a sus altas capacidades computacionales han hecho que se utilicen
para otro tipo de propósitos de ámbito general. Con el fin de facilitar este tipo de pro-
gramación, NVIDIA desarrolló un nuevo modelo de programación, llamado CUDA [13],
en 2007. Desde entonces muchas soluciones sofisticadas y eficientes se han desarrollado
para diferentes aplicaciones y problemas [14].

Gracias a este modelo de programación es posible desarrollar fácilmente soluciones
básicas para GPUs que obtienen mejoras en el rendimiento. En contraposición, conseguir
optimizar la explotación de los recursos computacionales es una tarea difícil. Se necesita
conocer en profundidad muchos de los detalles relacionados con la arquitectura de es-
tos dispositivos, y de su correspondiente gestión, para poder predecir su comportamiento.
Esta responsabilidad recae de manera directa sobre los propios programadores, que han
de proveer varios valores para los parámetros de ejecución de las GPUs, como por ejem-
plo el tamaño y forma de los bloques de hilos, o el estado/tamaño de la memoria cache
de primer nivel, entre otros. Las guías de programación que ofrece CUDA sugieren el
uso de determinados valores para obtener buenos rendimientos. Sin embargo, algunos
estudios [15, 16] han demostrado que en algunos casos estas recomendaciones no siem-
pre devuelven rendimientos óptimos, obligando a los programadores a realizar tests de
prueba-y-error para encontrar los valores que se ajustan a los mejores rendimientos.

Dentro de la computación paralela se encuentra la computación heterogénea [17, 18],
que se refiere al uso de sistemas o entornos de computación que están compuestos por
unidades de procesamiento de diferente naturaleza. Algunos ejemplos típicos son los

R.1. Pregunta de Investigación 3

convencionales sistemas de memoria compartida o distribuida que contienen multi-core
CPUs junto con dispositivos many-core como las GPUs. Una de las principales venta-
jas de usar este paradigma de computación, a diferencia del modelo homogéneo, es la
posibilidad de asignar un tipo particular de tareas/funciones a aquellos dispositivos com-
putacionales que mejor se ajusten a los requisitos de procesamientos de esas tareas. Otra
ventaja, es la posibilidad de aprovechar cualquier unidad computacional presente dentro
del sistema heterogéneo, aunque sus características no se ajusten perfectamente para la
realización óptima de un trabajo específico, siempre y cuando podamos ahorrar tiempo de
la ejecución global de tareas.

Sin embargo, la programación de este tipo de entornos heterogéneos resulta bastante
difícil comparada con la programación de entornos homogéneos. El programador debe
conocer los diferentes modelos y lenguajes de programación necesarios para aprovechar
los diferentes recursos computacionales, sus limitaciones y particularidades, para proveer
diferentes implementaciones dependiendo de la plataforma donde se vaya a ejecutar.
Además el programador ha de conocer qué tipo de tareas se ajusta mejor a qué dispositivo
para obtener un mejor rendimiento y cuánto trabajo ha de asignar a cada uno. Todos estos
problemas hacen que la programación sobre sistemas heterogéneos sea casi el resultado
de un trabajo artesanal en el que hay que invertir mucho tiempo y esfuerzo debido a la
falta de modelos de programación de propósito general que puedan lidiar con este tipo de
complejidad de una manera transparente.

R.1 Pregunta de Investigación
La identificación de los problemas expuestos en la anterior sección, nos conduce a la
siguiente pregunta de investigación, que se resuelve en esta Tesis Doctoral:

¿Es posible desarrollar técnicas y herramientas para conseguir implementa-
ciones más eficientes que resuelvan problemas relacionados con el cálculo
de caminos más cortos utilizando: (1) los modernos dispositivos de proce-
samiento de gráficos (GPUs), y su optimización mediante técnicas de ajuste
de los parámetros correspondientes, (2) entornos heterogéneos compuestos
por este tipo de aceleradores hardware en conjunto con el uso de las tradi-
cionales CPUs?

R.1.1 Metodología de Investigación
La metodología de investigación llevada a cabo en esta tesis doctoral está basada en el
método de la ingeniería de software que se compone de las cuatro siguientes fases: ob-
servar las soluciones existentes; proponer mejores soluciones; desarrollar las soluciones
propuestas; y medir y analizar los resultados [19]. Se trata de una metodología iterativa
que puede ser repetida para refinar las soluciones propuestas. Esta metodología se parece
al clásico método científico: proponer una pregunta; formular una hipótesis; realizar una
predicción; y validar la hipótesis.

1. Observar las soluciones existentes. Esta etapa de exploración tiene el propósito de
encontrar problemas/limitaciones que serán abordados durante el proceso de inves-

4 Chapter R. Resumen de la tesis

tigación, y de detectar posibles mejoras y/o nuevas soluciones aún no contempladas.
Esto conlleva un completo estudio del estado del arte con el objetivo de encontrar
trabajos relacionados con nuestra investigación.

2. Proponer mejores soluciones. En esta etapa se realiza el análisis y diseño necesarios
para abordar los límites o aprovechar las posibles mejoras encontradas en el paso
anterior.

3. Desarrollar las soluciones propuestas. La metodología de esta fase consiste en
el desarrollo o construcción de un prototipo de la solución que demuestre que el
planteamiento propuesto es factible.

4. Medir y analizar la nueva solución. En esta última fase de la metodología, las imple-
mentaciones de los prototipos de las soluciones son evaluados a través de un estudio
experimental. El objetivo de este estudio es corroborar si estas soluciones realmente
resuelven los problemas descubiertos en la primera etapa.

R.2 Objetivos
Para poder responder a la pregunta de investigación propuesta, hemos realizado las tareas
que se describen a continuación (ver Fig. R.1). Se han aplicado las diferentes etapas de la
metodología descrita anteriormente para cada una de ellas.

Objetivo 1: Desarrollar un planteamiento nuevo para el problema del SSSP.

(Observación) Se ha realizado un completo estudio del trabajo previo, visitando tanto
las soluciones secuenciales como sus variantes paralelas para el problema del SSSP.
Después de este análisis, el foco de la investigación se centrará sobre los algoritmos
para un tipo de grafo en particular, grafos no densos.(

Propuesta y
desarrollo

)
Combinando diferentes ideas de la literatura, un nuevo algoritmo para

GPUs será propuesto. Implementaremos este algoritmo utilizando CUDA para
poder optimizarlo y ejecutarlo sobre GPUs de NVIDIA.

(Medidas) La viabilidad de nuestra propuesta será evaluada comparándola con el último
algoritmo del estado-del-arte para GPUs, y también con una versión secuencial op-
timizada de referencia, usando un conjunto de grafos sintéticos y de redes reales
como benchmarks. Para ambos casos se espera que la nueva propuesta obtenga
mejores rendimientos.

Objetivo 2: Optimizar nuestra implementación con apropiado ajuste de los parámet-
ros de ejecución de las GPUs.

(Observación) El despliegue en las GPUs de las implementaciones desarrolladas re-
quiere la elección de muchos valores para ciertos parámetros de ejecución, como
son por ejemplo, el tamaño de los bloques de hilos, o la activación de la memoria

R.2. Objetivos 5

Single-Source Shortest-Path
 (SSSP)

All-Pair Shortest-Path
 (APSP)

Sequential ParallelSequential Parallel

Implementaciones de algoritmos
secuenciales para CPUs
y paralelos para GPUs

Optimizaciones para
GPUs usando el

modelo KC

Extensión del
modelo KC

añadiendo CK

APSP
Heterogéneo

 Modelo de
programación

TuCCompi

Objetivo 1

Objetivo 2

Objetivo 3 Objetivo 4

Figure R.1: Diferentes objetivos propuestos para el desarrollo de esta tesis doctoral.

caché de primer nivel, entre otros. Su adecuado ajuste, o tuneado, puede conllevar
a importantes mejoras de rendimiento. Se debe revisar el estado-del-arte en busca
de algún tipo de estudios o guías de tuneado que ayuden al programador con estas
importantes decisiones que sirven para mejorar la solución propuesta.(

Propuesta y
desarrollo

)
Debemos encontrar un modelo que provea de guías o pasos a seguir para

poder ajustar de manera adecuada nuestra solución. Idealmente, ese modelo debería
basarse en las características de los códigos que se ejecutan en la GPU, lo que se
conoce como caracterización de los kernels (KC). Después de proveer al modelo
con esta caracterización, éste debería recomendarnos cuáles son los valores que nos
permitirán ejecutar nuestros kernels con un rendimiento óptimo o cerca del óptimo.

(Medidas) Llevaremos a cabo experimentos que usen ambas versiones, tuneado y sin
tunear, con el fin de comprobar si este proceso de predicción de valores es útil.

Objetivo 3: Resolver el problema del APSP usando funcionalidades nuevas de las
GPUs modernas, y extender el modelo de caracterización de kernels con ellas.

(Observación) Se ha realizado un completo estudio del trabajo previo, visitando tanto
las soluciones secuenciales como sus variantes paralelas para el problema del APSP.
Después de este análisis, el foco de la investigación se centrará sobre planteamien-
tos basados en paralelización por productividad. Una de las nuevas características

6 Chapter R. Resumen de la tesis

que poseen las GPUs modernas es la capacidad de ejecutar varios kernels indepen-
dientes a la vez, siempre y cuando haya recursos que no estén siendo utilizados
en ese momento. Realizar un estudio de esta funcionalidad y su comportamiento
nos permitirá entender mejor cómo funciona esta característica, aprovecharla para
mejorar nuestros planteamientos, y ver si afecta al resto de parámetros de ejecución
de las GPUs.(

Propuesta y
desarrollo

)
Modificaremos nuestra solución del SSSP para que incluya la ejecución

concurrente de kernels. Esta técnica nos permitirá resolver el problema del APSP a
través del método basado en productividad conocido como n×SSSP , donde se eje-
cuta cada SSSP con un nodo origen diferente de manera independientemente. Re-
finaremos un modelo de caracterización de kernels ya existente [16], considerando
no sólo la nueva funcionalidad de la ejecución concurrente de kernels, sino también
para que tenga en cuenta algunas de las características de los grafos de entrada.

(Medidas) Llevaremos a cabo un completo conjunto de estudios sobre diferentes arqui-
tecturas de las GPUs para verificar, no sólo la correctitud de la nueva solución que
resuelve el APSP, sino también la validez de los valores del nuevo modelo.

Objetivo 4: Explorar la explotación de entornos heterogéneos para resolver el prob-
lema del APSP.

(Observación) Dado que las GPUs normalmente se encuentran situadas dentro de un
sistemas con CPUs, conformando un sistema heterogéneo per se, queremos estudiar
la eficiencia de dichos sistemas cuando son explotados para resolver el problema del
APSP, combinando algoritmos paralelos con métodos de producción paralela.(

Propuesta y
desarrollo

)
Proponemos combinar ambas versiones de un algoritmo SSSP, secuencial

y paralela para GPUs, en la misma implementación para resolver el APSP. De esta
manera podemos aprovechar todo tipo de unidades computacionales de diferente
naturaleza presentes en un mismo sistema de computación, asignando la versión
secuencial a cada CPU core, y la versión paralela a cada GPU disponible. Además,
implementaremos diferentes políticas de distribución de carga.

Por último queremos crear un nuevo modelo de programación que incorpore este
novedoso planteamiento, y que además combine la obtención de valores adecuados
para los parámetros de ejecución a través de la caracterización de los kernels. Por
lo tanto, desarrollaremos un prototipo para este framework de programación que
integre todas estas contribuciones descritas anteriormente.

(Medidas) Llevaremos a cabo diferentes experimentos que usen grafos con diferentes
características, y diferentes técnicas de distribución de carga, con el objetivo de
evaluar la eficiencia del nuevo planteamiento en contraposición al tradicional uso de
un único dispositivo de cómputo. Por último, probaremos el prototipo resolviendo
el problema del APSP en diferentes clústers heterogéneos.

R.3. Estructura de la Tesis 7

Capítulo 2

Capítulo 3

Single-Source Shortest-Path
 (SSSP)

All-Pair Shortest-Path
 (APSP)

Secuencial ParaleloSecuencial Paralelo

Implementaciones de algoritmos
secuenciales para CPUs
y paralelos para GPUs

Optimizaciones para
GPUs usando el

modelo KC

Extensión del
modelo KC

añadiendo CK

APSP
Heterogéneo

Modelo de
programación

TuCCompi

Capítulo 4

Capítulo 5

Capítulo 6

Figure R.2: Estructura del documento.

R.3 Estructura de la Tesis

Este documento está organizado de la siguiente manera (ver Fig. R.2). El capítulo 2
presenta un estudio del estado del arte de los algoritmos secuenciales y paralelos que re-
suelven los problemas del SSSP y del APSP, y un ejemplo de aplicación al mundo real de
estos métodos. El capítulo 3 describe en profundidad el último algoritmo del estado del
arte para GPUs que resuelve el problema del SSSP, y nuestra nueva implementación junto
con una versión optimizada. El capítulo 4 introduce una extensión de un modelo que uti-
liza la caracterización de los kernels para predecir los valores óptimos de los parámetros
de ejecución de las GPUs. El capítulo 5 presenta una solución para el problema del APSP
que combina el uso de algoritmos paralelos diseñados para GPUs junto con algoritmos
secuenciales, a través de métodos de productividad paralelos diseñados para un sistema
heterogéneo. Además, presenta el uso de diferentes técnicas de balanceo de carga para
este problema. El capítulo 6 describe un modelo de programación que simplifica la pro-
gramación de sistemas heterogéneos que incluyen aceleradores hardware porque el mod-
elo se encarga automáticamente de esconder los detalles de sincronización, despliegue y
ajuste de estos dispositivos. Por último, el capítulo 7 contiene las conclusiones de esta
tesis doctoral, enumera las contribuciones que aporta y las publicaciones surgidas de este
trabajo.

8 Chapter R. Resumen de la tesis

R.3.1 Síntesis de Capítulos y Contribuciones
En esta sección se describe una síntesis de los contenidos que se muestran a lo largo de
esta tesis doctoral junto con los resultados y las contribuciones obtenidas. Además se
enumeran los artículos publicados que recogen el trabajo de cada uno de ellos.

Capítulo 2: Estado del arte de los problemas de caminos más cortos
El objetivo de este tipo de problemas está relacionado con el cálculo de los caminos más
cortos, y sus distancias, entre los diferentes nodos de un grafo. Dependiendo de qué
solución particular sea necesaria calcular, podemos identificar diferentes variantes de es-
tos problemas. El problema del SSSP (Single-Source Shortest-Path) tiene como objetivo
calcular todos los caminos más cortos entre un origen específico y el resto de nodos del
grafo. Una extensión de este problema, la variante APSP (All-Pair Shortest-Path), tiene
como objetivo calcular todos los caminos más cortos de todas las posibles parejas de no-
dos del grafo. Además, existen más derivaciones de este tipo de problemas, como por
ejemplo el cálculo de un caminos entre una única pareja de nodos, entre un subconjunto
de nodos a otro subconjunto, o incluso, de un subconjunto de nodos al resto del grafo. Las
mejoras hechas sobre las variantes más generales (SSSP y APSP) normalmente pueden
ser aplicadas sobre estos planteamientos derivados. Este capítulo de esta tesis se centra en
el estudio de los algoritmos, secuenciales y paralelos, de estas variantes más generales.

El trabajo presentado incluye nuevas clasificaciones para los planteamientos paralelos
en función de sus características, y hemos localizado algunas soluciones que no han sido
exploradas que han sido el objetivo de estudio de esta tesis. Estos estudios han sido
publicados en los siguientes artículos:

1. “Parallel Approaches to the Shortest Path Problem - A Survey,” H. Ortega-Arranz,
Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, To be submitted to ACM Com-
puting Surveys

2. “The Shortest Path Problem: Analysis and Comparison of Methods,” H. Ortega-
Arranz, D. R. Llanos, A. Gonzalez-Escribano, Book, 1st edition, ser.(Synthesis Lec-
tures on Theoretical Computer Science series), Morgan & Claypool.
Online, DOI: 0.2200/S00618ED1V01Y201412TCS001 [20]

Capítulo 3: Un nuevo planteamiento para resolver el problema del
SSSP usando GPUs
La alta capacidad de cómputo de los aceleradores hardware ha hecho que se dispare su
explotación para obtener programas más rápidos. La programación de estos dispositivos
se ha simplificado gracias a la aparición de lenguajes paralelos de alto nivel, como es el
ejemplo de CUDA [21]. La aplicación de estos dispositivos para obtener mejoras dentro
del contexto de los problemas de cálculo de caminos más cortos ha incrementado consid-
erablemente durante los últimos años. Algunos ejemplos de estas implementaciones para
las GPUs podemos encontrarlos en los trabajos de [22, 23], donde se utilizan modifica-
ciones del algoritmo de Dijkstra.

http://dx.doi.org/0.2200/S00618ED1V01Y201412TCS001

R.3. Estructura de la Tesis 9

Este capítulo presenta una nueva solución, basada en el algoritmo de Crauser [24],
para resolver el problema del SSSP utilizando las GPUs. Esta solución supera al anterior
planteamiento del estado del arte, propuesto por Martín et al. [23], en todas las familias
de grafos evaluadas. Estas familias incluyen no sólo los grafos utilizados en sus propias
experimentaciones, sino también casos de redes existentes en el mundo real. Utilizando
los mismos valores para los parámetros de ejecución de las GPUs para ambas propuestas,
nuestra solución funciona hasta 45 veces más rápido.

También hemos conseguido mejorar el tiempo de ejecución a través de un adecuado
ajuste/tuning de los parámetros de ejecución particulares de los dispositivos GPU de
NVIDIA, obteniendo hasta un 22.43% de mejora cuando se compara con la versión no
ajustada/tuneada. Esta versión no tuneada utiliza los valores originales seleccionados por
Martín et al. en su estudio. Además, hemos comparado nuestra versión mejorada con la
versión secuencial optimizada procedente de la librería especializada en grafos Boost [25].
Nuestra versión funciona hasta 19 veces más rápido para algunas de las familias de grafos
utilizadas consumiendo hasta 11.25 veces menos memoria.

Finalmente, también hemos realizado un estudio de las diferentes arquitecturas de los
dispositivos GPUs de NVIDIA en función de las características del grafo a computar, den-
tro del contexto del problema del SSSP. Los resultados muestran cómo unas arquitecturas
funcionan mejor en unos tipos de grafos, existiendo diferencias de hasta un 40.5% en los
tiempos de ejecución.

El trabajo descrito se ha publicado en los siguientes artículos:

3. “Comprehensive Evaluation of a New GPU-based Approach to the Shortest Path
Problem,” H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos,
International Journal of Parallel Programming, Springer, 43(5) pp. 918–938, 2015.
Online, DOI: 10.1007/s10766-015-0351-z [26]

4. “A New GPU-based Approach to the Shortest Path Problem,” H. Ortega-Arranz, Y.
Torres, D. R. Llanos, and A. Gonzalez-Escribano, in Proceedings of the 11th Inter-
national Conference on High Performance Computing and Simulation, ser.(HPCS’13),
Helsinky, Finland: IEEE, 2013, pp. 505–511.
Online, DOI: 10.1109/HPCSim.2013.6641461 [27].

Capítulo 4: Uso y extensión de un modelo para predecir configura-
ciones óptimas para la GPU aplicado al problema del APSP
Conseguir una implementación altamente paralela para GPUs es un trabajo asequible. Sin
embargo, la optimización de la ejecución en estos aceleradores hardware representa todo
un desafío. La razón principal de esta dificultad es el gran número de combinaciones con
las que se puede ejecutar un mismo programa: numerosos valores para los parámetros
de ejecución, decisiones de programación, técnicas de ajuste disponibles, etc. Existe una
estrategia para poder atacar estos problemas de optimización de un modo sistemático:
la caracterización de los kernels que se ejecutan en la GPU. Con esta caracterización es
posible obtener una apropiada configuración para obtener mejores tiempos de ejecución
sistemáticamente. Este capítulo utiliza estos criterios de caracterización para ajustar la
ejecución de nuestra implementación propuesta para resolver el problema del APSP. Esta

http://dx.doi.org/10.1007/s10766-015-0351-z
http://dx.doi.org/10.1109/HPCSim.2013.6641461

10 Chapter R. Resumen de la tesis

implementación es una adaptación de nuestra solución del SSSP, propuesta en capítulo
anterior, que resuelve el APSP a través del planteamiento por productividad n× SSSP .

Hemos comprobado la validez del modelo de caracterización de kernels mediante una
exhaustiva búsqueda en el espacio de soluciones, evaluando los valores más relevantes
para los parámetros de ejecución de las GPUs de NVIDIA, y de las características de los
grafos de entrada. También hemos evaluado su utilidad comparando los tiempos resul-
tantes de utilizar la configuración predicha el modelo, con una de las configuraciones que
sugiere la guía de programación de CUDA [21], obteniendo la primera una mejora de
hasta un 58% (2.4× más rápido) con respecto a la segunda.

El trabajo descrito ha sido publicado en los siguientes artículos:

5. “Optimizing an APSP Implementation for NVIDIA GPUs Using Kernel Character-
ization Criteria”, H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R.
Llanos, The Journal of Supercomputing, Springer, vol. 70, no. 2, pp. 786-798,
2014.
Online, DOI: 10.1007/s11227-014-1212-z [28]

6. “A Tuned, Concurrent-Kernel Approach to Speed Up the APSP Problem,” H. Ortega-
Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, in Proceedings of
the 13th International Conference on Computational and Mathematical Methods
in Science and Engineering, ser.(CMMSE’13), Almería, Spain: eds. I.P. Hamilton
and J. Vigo-Aguilar, 2013, vol. 4, pp. 1114-1125.
Online: CMMSE Proceedings [29]

Capítulo 5: Uso de sistemas heterogéneos y diferentes políticas de ba-
lanceo de carga para resolver el problema del APSP
Este capítulo estudia soluciones para el problema del APSP en grafos dispersos que com-
bina el uso de algoritmos paralelos diseñados para GPUs junto con algoritmos secuen-
ciales, a través de métodos de productividad paralelos diseñados para un sistema heterogé-
neo. Además, se han aplicado dos diferentes políticas de balanceo de carga para distribuir
las tareas entre las diferentes unidades computacionales (CPUs y GPUs). La primera
política divide equitativamente el espacio de trabajo entre todas las unidades computa-
cionales independientemente de su naturaleza o capacidad de procesamiento. La segunda
política mantiene una cola de trabajo de donde cada unidad computacional adquiere una
nueva tarea cada vez que termina la anterior.

Hemos estudiado la importancia de este tipo de soluciones heterogéneas para grafos
irregulares que dan lugar a dos tipos de tareas, pesadas y ligeras. Las tareas pesadas son
procesadas más rápidamente por las GPUs que por las CPUs, mientras que con las tareas
ligeras ocurre al revés. El primer estudio compara la resolución del APSP conociendo la
distribución de la naturaleza de las tareas de los grafos para diferentes instancias de los
dos tipos de políticas de distribución implementadas. El segundo estudio realiza la misma
comparativa pero escogiendo tareas aleatorias para que la distribución sea desconocida.
Se obtienen mejoras de hasta un 65% y un 47% (speedup de 2.85× y 1.88×) con algu-
nas de las instancias heterogéneas, para el primer y segundo estudio, respectivamente,
comparado contra el uso de una única GPU

http://dx.doi.org/10.1007/s11227-014-1212-z
http://cmmse.usal.es/cmmse2015/images/stories/congreso/volume4-cmmse-20013.pdf

R.3. Estructura de la Tesis 11

Los resultados también nos permiten concluir que el conocimiento de la naturaleza de
los datos de entrada es muy importante porque permite al programador asignar las tareas
más costosas a los dispositivos con mayor capacidad de cómputo. Esta información puede
ser utilizada por las políticas equitativas para obtener los mejores tiempos de ejecución
aunque su rendimiento se vería muy afectado por los cambios de la entrada. Por otro lado,
las implementaciones que utilizan la cola de recuperación de trabajo tienen un rendimiento
más estable porque son independientes de la naturaleza de los grafos de entrada.

El trabajo descrito ha sido publicado en los siguientes artículos:

7. “The All-Pair Shortest-Path Problem in Shared-Memory Heterogeneous Systems,”
H. Ortega-Arranz, Y. Torres, D. R. Llanos and A. Gonzalez-Escribano, in book
High-Performance Computing on Complex Environments, ser. Series on Parallel
and Distributed Computing. John Wiley & Sons, Inc., 2014, ch. 15, pp. 283-299.
Online, DOI: 10.1002/9781118711897.ch15 [30]

Capítulo 6: Desarrollo de un modelo de programación multi-capa
Durante la última década las arquitecturas de procesamiento paralelo se han convertido en
una poderosa herramienta para enfrentarse a problemas masivamente paralelos, como el
APSP. Como muestra el capítulo anterior, la combinación de unidades computacionales
de diferente naturaleza es la solución más prometedora para este tipo de problemas que
requieren soluciones de cómputo de altas prestaciones (HPC). Pero también se ha visto
que maximizar el rendimiento de los dispositivos como las GPUs requiere un extenso
conocimiento en detalle de la arquitectura subyacente de estos aceleradores, convirtién-
dose en una tediosa tarea manual asequible sólo para programadores experimentados.

Este capítulo presenta a TuCCompi, un modelo abstracto multi-capa que simplifica
la programación de entornos heterogéneos que incluyen GPUs. Este modelo detecta au-
tomáticamente los diferentes recursos presentes en el clúster híbrido y trata de maximizar
su explotación seleccionado la configuración más adecuada para el caso de los disposi-
tivos GPUs gracias a la caracterización de los kernels que provee el programador. Tam-
bién se presenta la descripción de un prototipo de este modelo, junto con su evaluación en
diferentes entornos heterogéneos, usando el problema del APSP como caso de estudio.

El trabajo descrito ha sido publicado en los siguientes artículos:

8. “TuCCompi: A Multi-Layer Model for Distributed Heterogeneous Computing with
Tuning Capabilities,” H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and
D. R. Llanos, International Journal of Parallel Programming, Springer, 43(5) pp.
939–960, 2015.
Online, DOI: 10.1007/s10766-015-0349-6 [31]

9. “TuCCompi: A Multi-Layer Programing Model for Heterogeneous Systems with
Auto-Tuning Capabilities,” H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-
Escribano, in Proceedings of Workshop on High-level Programming for Hetero-
geneous and Hierarchical Parallel Systems, ser.(HLPGPU’14), Vienna, Austria:
HiPEAC 2014, pp. 18-25.
Online: HLPGPU Proceedings [32]

http://dx.doi.org/10.1002/9781118711897.ch15
http://dx.doi.org/10.1007/s10766-015-0349-6
http://chrisb.host.cs.st-andrews.ac.uk/hlpgpu.pdf#page=18

12 Chapter R. Resumen de la tesis

R.4 Conclusiones
El trabajo presentado en esta tesis doctoral nos permite responder a las preguntas de in-
vestigación propuestas con una respuesta afirmativa

(1) Gracias al estudio de la literatura sobre problemas de cálculo de caminos más cor-
tos, hemos sido capaces de desarrollar una nueva solución paralela para el problema
del SSSP, siguiendo las ideas propuestas por Crauser et al. [24]. Estas ideas per-
miten a nuestra solución ser capaz de aprovechar la potente capacidad de cómputo
de los dispositivos GPU. Esta implementación mejora el rendimiento de la ante-
rior solución del estado-del-arte propuesta por Martín et al. [23]. Siguiendo las
pautas propuestas en [28], hemos refinado el método de caracterización de kernels
para obtener valores más adecuados para los parámetros de ejecución de las GPUs
que conlleven a ejecuciones óptimas o cercanas al óptimo. La aplicación de esta
metodología a nuestra implementación ha hecho que pudiéramos obtener valores
más apropiados, que implicaron mejoras muy significativas en comparación con los
valores recomendados por las guías de programación de CUDA [21].

(2) La combinación de diferentes modelos y lenguajes de programación nos ha per-
mitido realizar implementaciones y novedosos estudios de soluciones, que estaban
sin explorar, dentro del contexto de planteamientos basados en productividad par-
alela para el problema del APSP. Estas implementaciones abordan el uso de nuevas
características de las GPUs para ejecutar de manera concurrente flujos de kernels
diferentes, resolviendo cada uno de estos flujos distintos subproblemas SSSP en
paralelo. Por otro lado, el uso combinado de CUDA y OpenMP permitió a otras
implementaciones explotar al mismo tiempo ambas unidades computacionales pre-
sentes en el mismo sistema de memoria compartida, las GPUs y los núcleos de
las CPUs. Por último, hemos propuesto un modelo de programación multicapa, y
hemos desarrollado su prototipo con el que es posible coordinar de manera trans-
parente todo un clúster heterogéneo de unidades computacionales de diferente nat-
uraleza, utilizando internamente diferentes tecnologías como CUDA, OpenMP y
MPI. Todos los experimentos llevados a cabo para esta novedosa formulación het-
erogénea demostraron que su uso conlleva mejoras en los rendimientos muy signi-
ficativas comparadas contra las versiones homogéneas.

Chapter 1
Introduction

1.1 Motivation

Many problems that arise in real-world networks imply the computation of the shortest
paths, and their distances, from a source to any destination point. Some examples include
car navigation systems [1], traffic simulations [2], scheduled means of transport [3], logis-
tic control [4], spatial databases [5, 6], Internet route planners [7], or web searching [8, 9].
Despite the importance of the shortest-path problem, algorithms to solve it are computa-
tionally costly, and in many cases commercial products implement heuristic approaches to
generate approximate solutions instead. Although heuristics are usually faster and do not
need much amount of data storage or precomputation, they do not guarantee the optimal
route.

The aim of parallelizing these algorithms is, not only the immediate reduction of their
execution time, but also their application in complex approaches, that use them as a step
in their algorithms. In this way, this reduction makes their computation feasible where
they were previously impracticable due to prohibitive temporal costs. An example related
with the shortest-path context is the costly preprocessing phase of the modern methods and
techniques used for routing in roadmaps. The preprocessing phase obtains values that will
be stored and constantly used in later queries, where it is requested to calculate shortest
paths, and their distances, between two vertices of the graphs. The preprocessing phase
usually has costly execution times, but as long as it is going to be performed only once
for long periods of time, it is an affordable cost. Thanks to these previous precomputed
values, that in some cases, represent the calculation of shortest path distances between all
vertices of the network, the query phase can be computed in the order of nanoseconds [10,
11].

The configuration of the roads of a map does not frequently change, so it could be
plausible to pay the high temporal and spatial costs of computing these values once and
store them. However, in other contexts, where this kind of static nature is not present in the
network, or it is unknown, the reduction of these costs is highly significant. Additionally,
in the previously mentioned context of route planning, the application of efficient parallel
methods is compulsory if it is desired to take into account the current state of the roads in
real-time, such as the information of the traffic, the road cuts due to maintenance or natural

13

14 Chapter 1. Introduction

events, or even the avoidance of low-speed/bad-quality roads for a particular driver.
The advent of mobile devices presents a third challenge because of their small memory

size, that limits the amount of precomputed data that can be stored. Most of the current
approaches present a trade-off between the amount of memory used and the query time
needed: The more memory used, the better the query time. However, the new devices
nowadays have bigger computational capabilities, incorporating several processors that
could alleviate this mentioned lack of memory, and therefore, giving a chance to faster
parallel approaches instead of storing the data obtained through costly preprocessing.

1.1.1 Parallel Computing

Parallel computing, or also parallel processing, consists in using two or more devices for
carrying out the computations at the same time, usually with the aim to reduce the high
temporal costs needed when using a single device. Although the application of paral-
lel computing to complex problems does not lead to asymptotic-order reductions of the
temporal costs of a problem, it frequently represents the only way to achieve solutions in
reasonable execution times, and its use has proven to be critical when researching high
performance solutions. Due to this fact, the evolution of computing has not only focused
on developing faster processors, where the upper threshold of clock speeds is stalled for
the moment, but also on the creation of new computer architectures involving more pro-
cessing units. This architectural evolution has lead to two non-exclusive different trends,
the multi-core and the many-core systems. Both have in common the huge increment of
computational capabilities by the integration of several processing units.

The multi-core architecture refers to CPUs that contain two or more processing cores.
These cores operate as separate all-purpose processors within a single chip. The use of
multiple cores usually leads to an increment of the total CPU performance without the
need of raising the processor clock speed. Note that the concept of multiple cores is
different than multiple CPUs. A multi-core computer can hold, for example, four cores
on a single chip, whereas a multi-processor system may have four CPUs, each with only
one core. Since the last trends favor energy savings, the high efficiency at low energy
costs of these multi-core systems is imposing this architecture over the multi-processor
architecture for domestic purposes. On the other hand, in academic or high performance
contexts, the current machines combine both technologies, including multiple CPUs with
multiple cores.

A system is considered as a many-core architecture when it has a number of pro-
cessing units over dozens. However, with the fast increase of processing units of the
computing systems, this value is always subject to raise. In this category are included
not only these supercomputers with a high number of CPUs with multiple cores, but also
hardware accelerators, such as Graphics Processing Units (GPUs), or co-processors, such
as the Xeon-Phi devices. Hardware accelerators are designed to integrate many special-
ized processing units. Their architecture and computational capabilities suit perfectly the
processing required for high parallel applications in a high performance computing con-
text.

Figure 1.1 shows a timeline evolution of the parallel computing from 1960, when
the first supercomputing supporting this kind of computing was introduced, until these

1.1. Motivation 15

19
60

's
19

70
's

19
80

's
19

90
's

20
00

's
20

10
's

20
07

Ap
pl

e
in

tr
od

uc
es

 th
e

iP
ho

ne
.

20
08

Fi
rs

t p
ho

ne
 to

 u
se

 A
nd

ro
id

.

20
14

H
TC

 fi
rs

t o
ct

a-
co

re
 sm

ar
tp

ho
ne

.
20

12
LG

 re
le

ad
es

 th
e

fir
st

qu

ad
-c

or
e

sm
ar

tp
ho

ne
.

20
10

LG
 a

nn
ou

nc
es

 th
e

fir
st

 sm
ar

tp
ho

ne

w
ith

 a
 d

ua
l-c

or
e

ch
ip

.

M
ob

ile
 co

m
pu

tin
g

20
06

In
te

l m
ai

ns
tr

ea
m

 d
ua

l
co

re
 m

ic
ro

pr
oc

es
so

rs
.

20
09

In
te

l i
5

w
ith

 4
 co

re
s.

20
10

In
te

l i
nt

ro
du

ce
s t

he
 H

D
Gr

ap
hi

cs
 se

rie
s. 20

14
In

te
l i

7
w

ith
 8

 co
re

s.

19
77

Co
m

m
od

or
e

PE
T

- F
irs

t s
uc

ce
ss

fu
lly

m

as
s m

ar
ke

te
d

pe
rs

on
al

 co
m

pu
te

r.

M
ai

ns
tr

ea
m

 co
m

pu
te

rs

70 50 30 10

Nu
m

be
r o

f
ac

ce
le

ra
te

d
sy

st
em

s o
n

To
p5

00

20
07

N
vi

di
a

Te
sl

a
la

un
ch

ed
.

GP
U

 w
ith

 1
28

 co
re

s.

20
10

N
vi

di
a

Fe
rm

i l
au

nc
he

d.
GP

U
 w

ith
 4

48
 co

re
s.

20
12

In
te

l r
el

ea
se

d
Xe

on
 P

hi
.

N
vi

di
a

Ke
pl

er
 la

un
ch

ed
.

GP
U

 w
ith

 1
53

6
co

re
s.

20
14

N
vi

di
a

M
ax

w
el

l l
au

nc
he

d
GP

U
 w

ith
 2

68
8

co
re

s.

Ac
ce

le
ra

to
rs

1
te

ra
flo

ps

10
 te

ra
flo

ps

10
0

te
ra

flo
ps

1
pe

ta
flo

ps

10
 p

et
af

lo
ps

10
0

gi
ga

flo
psEx

as
ca

le To
p5

00

pe
rf

om
an

ce

de
ve

lo
pm

en
t

19
63

CD
C

66
00

 -
th

e
w

or
ld

’s
fir

st
 su

pe
rc

om
pu

te
r,

ca
pa

bl
e

of
 9

 m
eg

af
lo

ps
.

19
76

Cr
ay

-1
 -

w
ith

 a
 sp

ee
d

of
 1

70
 m

eg
af

lo
ps

.

19
85

Cr
ay

-2
 -

w
ith

 4
 p

ro
ce

ss
or

s,

br
ok

es
 th

e
gi

ga
flo

p
ba

rr
ie

r.

19
97

AS
CI

 R
ed

 -
Fi

rs
t s

up
er

co
m

pu
te

r
to

 b
re

ak
 th

e
te

ra
flo

b
ba

rr
ie

r.
It

ha
d

92
98

 p
ro

ce
ss

or
s.

20
08

IB
M

's
 R

oa
dr

un
ne

r -
 It

 re
ac

he
s t

he

pe
ta

flo
ps

 m
ar

k
w

ith
 it

s 1
16

,6
40

 co
re

s.

20
13

Ti
an

he
-2

 -
W

ith
 3

,1
20

,0
00

 co
re

s
an

d
a

sp
ee

d
of

 3
3.

86
 p

et
af

lo
ps

.

Su
pe

rc
om

pu
te

rs

19
93

To
p5

00
 p

ro
je

ct
 c

re
at

io
n

w
ith

 th
e

fir
st

 L
in

pa
ck

pe

rfo
rm

an
ce

 li
st

.

Pa
ra

lle
l C

om
pu

tin
g

Ti
m

el
in

e
ab

ou
t t

he
 d

ev
el

op
m

en
t o

f

Figure 1.1: Evolution of parallel computing.

16 Chapter 1. Introduction

0

50

100

150

200

250

300

1990 1995 2000 2005 2010 2015

N
um

be
r

of
 p

ap
er

s
(n

or
m

al
iz

ed
 2

01
3)

Year

Parallel computing papers

PVM
MPI

OpenMP
Pthreads

CUDA
OpenCL

PGAS
Skeletons

Figure 1.2: Number of articles related with different parallel computing technologies.

days, according to four different categories: Supercomputers, accelerators, mainstream
computers, and mobile computing, according to [33]. In spite of this impressive raise of
computational capabilities, it is still a difficult task for the programmers to create parallel
solutions. These modern systems require one to correctly manage some new practical
issues, such as the data partitioning, data sharing, data transfers, the coordination and
synchronization, or the migration to new computing paradigms as the SIMD model for
some many-core systems. However, although programming these devices is not trivial,
their use in the research activities is significantly growing, with the GPUs as the device
for parallel computing that generates the most scientific interest nowadays. Figure 1.2
depicts the trends of the scientific interest measured as the number of articles published in
the most recent parallel computing literature. These values have been obtained using the
IEEE Xplore XML Gateway API [34].

1.1.2 GPUs for Parallel Computing

The most representative many-core architectures are the GPUs [12]. They were originally
designed to help the CPU in processing the graphic data that will be displayed on the
user’s screen. However, due to their powerful computational capabilities, their use for
different purposes became more popular, creating the trend of GPGPU (General-Purpose
GPU) computing. In order to facilitate the programming on these devices, NVIDIA re-
leased in 2007 CUDA [13], a new programming model for GPGPU computing. Since
then, the CUDA programming interface allowed to implement many sophisticated and

1.1. Motivation 17

Figure 1.3: Bandwidth estimated for future architectures of NVIDIA GPU devices.

efficient solutions for massively-parallel problems [14]. During these years, the computa-
tional capabilities and resources available for GPU computing have been increased in an
exponential fashion, and NVIDIA plans to make these enhancements even more bigger
for the future GPU architectures (see Fig. 1.3).

The implementations developed using the CUDA programming model are only de-
ployable on NVIDIA GPU devices. On the other hand, there are other programming
languages that create an unified interface for all kinds of GPUs that support GPGPU
computing. This is the case of BrookGPU [35], developed at Stanford’s University, and
OpenCL [36], that constitutes a standard API for programming, not only GPUs but also
multi-core CPUs. Although the portability offered by these general approaches is key
to exploit both GPUs and CPUs with less effort, NVIDIA continues to release new and
more competitive versions of its CUDA compiler and toolkits. There are many advanced
features and configurations on the NVIDIA boards that can only be manipulated by using
this programming model, and a correct handling of these parameters leads to optimized
implementations that offer a significant performance gain.

Depending on the particular application, it may be relatively easy to develop a naïve
GPU solution that delivers good performance, thanks to the high-level abstraction offered
by the programming model described before. Nevertheless, to correctly tune the code in
order to efficiently exploit all underlying GPU resources is a difficult task. It is necessary
to have an in-depth knowledge of the device architecture and its resource management in
order to predict its behavior, and tune up the configurations for an optimal performance.
This responsibility lies directly on the programmers, who need to provide several values
for the GPU running parameters.

The CUDA programming guidelines suggest the use of certain values for the GPU
running parameters in order to obtain a good performance. However, some studies [15, 16]
have shown that, in some cases, these values recommended by CUDA do not always lead
to the optimum performance, leaving to the programmers the task of searching for the best
values through time-consuming, trial-and-error tests.

18 Chapter 1. Introduction

1.1.3 Heterogeneous Computing
Heterogeneous computing [17, 18] refers to computing environments or systems that are
built with computational devices of different nature. Some typical examples are con-
ventional shared- or distributed-memory multi-processors containing multi-core CPUs,
together with GPU devices. In contrast, in the traditional “homogeneous computing” all
computational devices have the same nature and similar processing features.

One of the main advantages of using the heterogeneous computing paradigm, against
the homogeneous model, is to allow the assignment of a particular kind of functions/tasks
to the computational devices that better fit their processing requirements. Another impor-
tant advantage is the possibility of increasing the processing capabilities of the system by
taking advantage of every computational device present in the system, even if the features
of the computation do not fulfill the optimal conditions for the best performance on some
of these devices.

However, programming heterogeneous systems results in a considerable bigger effort
compared with the programming of traditional homogeneous systems. The programmer
should know the programming models and languages needed to take advantage of each
different computational device, their limitations and particularities, in order to provide a
different implementation of the part of the computation to be executed on each one. More
difficulties appear when trying to achieve a proper management of the computational en-
vironment in order to obtain an optimum performance for a particular problem. This
implies that the programmer knows which functions run better on which kind of compu-
tational device, and also, how much workload should be distributed between the different
devices. All these problems make the programming for heterogeneous systems a piece
of craftsmanship, since there is a lack of general-purpose programming frameworks that
handle this complexity in a transparent way.

1.2 Objectives of the dissertation
According to the identified problems described in the previous section, the research ques-
tion to be solved in this Ph.D. thesis is the following:

Is it possible to develop techniques and tools to derive efficient parallel im-
plementations to solve Shortest Path problems using: (1) The new modern
Graphics Processor Units (GPUs) and their corresponding tuning techniques,
(2) heterogeneous environments composed by such hardware accelerators to-
gether with traditional CPUs?

1.2.1 Research Methodology
The research methodology used in this Ph.D. thesis is based on a software engineering
method that has four different phases: observe existing solutions; propose better solu-
tions; build or develop these new solution; and measure and analyze its results [19]. This
iterative methodology resembles the stages of the classical scientific method: propose a
question; formulate hypothesis; make predictions; and validate hypothesis.

1.2. Objectives of the dissertation 19

Single-Source Shortest-Path
 (SSSP)

All-Pair Shortest-Path
 (APSP)

Sequential ParallelSequential Parallel

Implementations of sequential
and GPU parallel algorithms

GPU optimizations
 using KC model

KC model
extension
adding CK

Heterogeneous
 APSP

 TuCCompi
Programming
 framework

Goal 1

Goal 2

Goal 3 Goal 4

Figure 1.4: Goals and subgoals to be accomplished in this Ph.D. thesis.

1. Observe existing solutions. This is an exploratory phase where the related literature
will be thoroughly analyzed in order to detect not only the limitations that will be
addressed during the research process, but also possible improvements and/or new
solutions not contemplated yet.

2. Propose better solutions. This phase is dedicated to the analysis and design to find bet-
ter solutions trying to overcome the limits or taking advantage of the improvement
chances previously detected.

3. Build or develop the solution. In this phase, we focus on building a prototype in order
to demonstrate that the proposed solutions are feasible.

4. Measure and analyze the new solution. The implemented prototypes of the solutions
are empirically evaluated, with the aim of corroborating whether they solve the
problems discovered in the first phase.

1.2.2 Milestones

In order to be able to answer these research questions, we have accomplished the follow-
ing goals (see Fig. 1.4). For each one of them, the phases of the research methodology
previously described have been carried out.

20 Chapter 1. Introduction

Goal 1: Develop a new approach for the Single-Source Shortest-Path problem.

(Observation) A complete study of the previous work is done, revisiting first the se-
quential solutions, and proceeding to their corresponding parallel variants, for the
Single-Source Shortest-Path (SSSP) problem. After this analysis, the scope of the
research is narrowed on algorithms for non-dense graphs.(

Proposal and
developing

)
Combining different ideas from the literature, a new algorithm for GPUs

will be proposed. We will implement the proposed algorithm using CUDA to be
optimized and executed for the NVIDIA GPUs.

(Measures) The feasibility of our proposal will be evaluated by comparison with a state-
of-the-art approach for GPUs, and also with a reference sequential version, using
a suite of synthetic and real-world datasets. In both cases, significant speedups are
expected to validate the proposal.

Goal 2: Optimize our implementation with a proper tuning of the GPU execution
parameters.

(Observation) The deployment of implementations on GPUs implies the choice of many
parameters, such as the threadblock sizes, or the activation state and size of the L1
cache memory, whose proper tuning may lead to important performance improve-
ments. A revision of the literature will be done in order to find some guidelines that
can help the programmer with these important decisions, in order to enhance our
solution.(

Proposal and
developing

)
We should find a model that provides some guidelines for properly tuning

these GPU parameters. Ideally, the model should be based on some features of the
kernels implemented in our algorithm, known as kernel characterization (KC). After
using these criteria to analyze our code, the model should return some proper values
for the target GPU.

(Measures) We will carry out experiments using both tuned and non-tuned versions, in
order to check the usefulness of the values predicted by the model.

Goal 3: Solve the All-Pair Shortest-Path problem incorporating modern features of
the new GPUs, and extend the kernel characterization model with them.

(Observation) A complete study of the previous work will be done, revisiting first the
sequential solutions, and proceeding to their corresponding parallel variants, for
the All-Pair Shortest-Path (APSP) problems. After this analysis, the scope of the
research is focused on productivity-based parallelization approaches.

Modern GPUs have a new feature, the Concurrent-Kernel execution (CK), that al-
lows to these devices to execute more than one kernel concurrently if they have
enough free resources to compute them. A study of the functionality and behavior
of this feature leads to a better understanding the computational capabilities of these
devices, and thus, to a new approach that takes advantage of it.

1.3. Document Structure 21(
Proposal and
developing

)
We will modify our SSSP solution in order to support the concurrent

kernel execution. This technique will allow to use a different stream of kernels for
a SSSP with a different source node, using the parallel APSP strategy known as the
n× SSSP approach.

We will refine the existing GPU parameter tuning model [16], and extend it for the
shortest path context, considering both the graph properties of the input sets, and
the concurrent-kernel execution of the modern GPUs.

(Measures) We will carry out a complete set of experiments with different GPU archi-
tectures in order to verify the correctness of both the shortest path distances returned
by the new APSP approach, and the predicted values returned by the new extended
GPU parameter tuning model.

Goal 4: Explore the exploitation of heterogeneous environments for the All-Pair
Shortest Path problem.

(Observation) Given that the GPUs are usually placed together with a CPU system,
thus conforming a heterogeneous system, we want to explore the efficiency of such
systems when employed for the APSP problem, combining parallel algorithms with
parallel productivity-based methods.(

Proposal and
developing

)
We propose the combination of both sequential and GPU parallel ver-

sions into the same implementation in order to solve the APSP problem using com-
putational devices of different nature concurrently. This implementation will use
the computational devices of a shared-memory system, assigning to each one its
corresponding version: The sequential one for the CPU cores, and the GPU parallel
version for those CPU cores responsible of handling a GPU. Additionally, we will
enrich the solution with different load-balancing techniques.

Finally, we will create a new programming model incorporating this novel ap-
proach, also embedding the knowledge obtained from empirical study regarding
the predictions for tuning the GPU parameters and the concurrent kernel execution.
Therefore, we will develop a prototype for this proposed programming model that
integrates all these contributions together.

(Measures) We will carry out several experiments using graphs with different proper-
ties, and different load-balancing techniques, in order to evaluate the efficiency of
the new approach against the traditional use of only one computational device at a
time. Finally, we will test the prototype of the programming framework by solving
the APSP problem in different heterogeneous clusters.

1.3 Document Structure
This document is organized as follows (see Fig. 1.5). Chapter 2 presents a survey of the
state of the art of the sequential and parallel algorithms that solve the SSSP and the APSP
problems, and a real-world application example of these methods. Chapter 3 describes

22 Chapter 1. Introduction

Chapter 2

Chapter 3

Single-Source Shortest-Path
 (SSSP)

All-Pair Shortest-Path
 (APSP)

Sequential ParallelSequential Parallel

Implementations of sequential
and GPU parallel algorithms

GPU optimizations
 using KC model

KC model
extension
adding CK

Heterogeneous
 APSP

 TuCCompi
Programming
 framework

Chapter 4

Chapter 5

Chapter 6

Figure 1.5: Document structure.

in depth a previous state-of-the-art algorithm for the SSSP problem on GPUs, and our
new implementation, together with an optimized variant. Chapter 4 introduces a extended
model that predicts optimized values for the execution configuration on the GPU using
the kernel characterization criteria. Chapter 5 presents a solution for the APSP problem,
combining parallel algorithms and parallel-productivity methods in a heterogeneous sys-
tem, together with different load-balancing techniques. Chapter 6 describes a program-
ming framework that simplifies the programming on heterogeneous systems including
hardware accelerators, by hiding the details of synchronization, deployment, and tuning.
Chapter 7 contains the conclusions of this Ph.D. thesis enumerating its contributions and
the corresponding publications.

Chapter 2
State of the Art of the Shortest-Path
Problem

The objective of this kind of problems is to find the shortest possible path that connects
one or more source nodes with one or more target vertices, and compute their distances.
Depending on the required solution, there are different algorithms for the different variants
of the Shortest-Path problem. The algorithms that solve the Single-Source Shortest-Path
(SSSP) problem compute the shortest paths between a specific source node and the re-
maining nodes of the graph. The solutions for the All-Pair Shortest-Path (APSP) problem
look for all shortest paths between all pair of nodes of the graphs. Furthermore, more
particular approach derivations of these two general variants can be found when comput-
ing shortest paths: just from a specific source node to a particular target node, One-Pair
Shortest-Path (OPSP), from many source nodes to the remaining graph vertices, Multi-
Source Shortest-Path (MSSP), or even, from many sources nodes to just a particular set
of target nodes, Many-to-Many Shortest-Path (MMSP). The improvements made in the
general solutions can be ported also to the derived approaches. Thus, the research of this
Ph.D. thesis is focused on the first two variants, the SSSP and the APSP problem.

This chapter studies the different algorithms and solutions for both problems, and also
their parallel approaches. Additionally, these algorithms are gathered following some pro-
posed criteria, describing new taxonomies or classical classifications. The review shown
in this chapter is made with best efforts; nevertheless, due to the huge workspace of ap-
proaches, few techniques and particular solutions could not be listed here.

2.1 Brief Introduction to Graph Theory
In this section we present a summary of graph theory concepts, focused on the ones related
to the shortest-path problem. More general introductions to this topic can be found in
classical books such as [37] or [38].

The easiest way to represent the information of a network is to represent it as a graph,
where every link will be an edge, and every possible joint to change to another link will
be a vertex. Some groups of vertices could represent cities, stations or only intersection
points, depending on the scenario to be considered.

23

24 Chapter 2. State of the Art of the Shortest-Path Problem

Definition 1. Let V be a set of elements called vertices. An edge is a tuple (u, v) that
represents a link between the vertices u, v ∈ V , The vertices that are connected through
an edge are called adjacent.

Every vertex v is usually depicted as a point in the graph, whereas every edge e is
usually depicted as a line that connects two and only two vertices. A collection of nodes
connected by edges, that represents some kind of entity or networks, such as roadmaps,
Internet, or social networks, among others, is called a graph.

Definition 2. A graph G is a pair G = (V,E) composed by a set of vertices V , also
called nodes, and a set of edges E, also called arcs. A graph G′ = (V ′, E ′) is a subgraph
of graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

Definition 3. Let n be the number of nodes of the graph, n = |V |, and m the number
of edges of the graph, m = |E|.

There are some graphs whose edges (u, v) have a restricted direction or connection,
allowing only the traversing from node u to node v and not vice versa. They are called
directed graphs, or simply digraphs. On the other hand, if all edges of the graph can be
traversed in both directions, they are called undirected graphs.

Definition 4. A directed graph, or digraph, is a graph G = {(V,E)/(u, v) 6= (v, u) :
(u, v), (v, u) ∈ E} where the edge (u, v), that connects node u with node v, only can be
traversed from u to v, and therefore is different from edge (v, u).

Definition 5. An undirected graph is a graph G = {(V,E)/(u, v) = (v, u) : (u, v),
(v, u) ∈ E} where all edges can be traversed in both directions.

This last discrimination is important because in a directed graph the link between node
u and node v can exists, but not its corresponding backward connection. Some current ex-
amples of these different behaviors can be found in social networks, such as Facebook and
Twitter. In the former one, the users are represented as nodes, and the friendship between
these users as links. Friendship in this context is a two-way relationship that involves a
two-way connection, whereas in the latter one, the users, represented also as nodes, can
follow other users without compulsory being followed by them, a one-way connection.
Additionally, the cost of traversing an edge from one node to its corresponding adjacent
node can be different from its backwards traversing. Some examples can be found in road
networks, when a particular one-way road may cross a mountain thanks to a tunnel, while
the opposite-way road goes up and down the mountain involving many curves, with a very
different cost.

Definition 6. An edge-weighted graph G = (V,E,w), or simply a weighted graph, is a
graphG = (V,E) which has a weight function associated to each edge, w : E → R. This
function represents the cost of traversing the edge. A graph that is not associated with a
weight function is known as an edge-unweighted graph, or simply an unweighted graph.

Each node of the graph can be connected to a different number of other nodes through
different edges. Actually, a node can be isolated from the network, being not connected to
any other node. The mean number of connections of a node represents a very important

2.1. Brief Introduction to Graph Theory 25

(u , v)
u

vs tPP

u v

s
t

(u , v)

PP

(a) (b)

Figure 2.1: Examples of paths in (a) an undirected graph and (b) a directed graph.

feature of the graph. Graphs can be classified as sparse and dense graphs, depending
on the proportion between the cardinalities of the two sets that compound the graph, the
vertex set V and the edge set E. Moreover, if the graph is directed, more properties can
be defined to distinguish between outgoing and incoming connections.

Definition 7. A graph is considered as a sparse graph if the number of edges is in the
order of the number of vertices, m ∈ O(n). On the other hand, a graph is considered as
a dense graph when m ∈ Θ(n2).

Definition 8. The degree of a node v is the number of edges connected to it. For digraphs,
the fan-out degree of a node u, d+(u), represents the number of edges leaving a vertex u,
whereas the fan-in degree of a node u, d−(u), is the number of incoming edges towards
a vertex u.

Definition 9. The successors of a vertex u, Succ(u), are the set of nodes that can be
reached from node u using one of its outgoing edges. The predecessors of a vertex v,
Pred(v), are the set of nodes that can reach the node v using one of its incoming edges.

Figure 2.1 shows two examples of graphs, one undirected and one directed. The node s
in the undirected graph (a), has degree three because it is connected with other three
vertices. On the other graph (b), the node s has a fan-out degree of one, and a fan-in degree
of two, because it has only one outgoing edge and two incoming ones, respectively. One
of its incoming edges is from node v. This node v is a predecessor of node s. Respectively,
node v is a successor of node u.

Definition 10. A path P = 〈s, ..., u, ..., v, ..., t〉 is a sequence of vertices connected by
edges, from a source vertex s to a target one t. A path P ′ = 〈u, ..., v〉 is a subpath of P if
its sequence of vertices and edges are contained in P with the same ordering.

Definition 11. The weight of a path, w(P), is the sum of all the weights associated to the
edges involved in the path.

Definition 12. An undirected graph is considered as a connected graph if there exists at
least one path connecting for each pair of nodes (u, v) of the graph. A directed graph is

26 Chapter 2. State of the Art of the Shortest-Path Problem

1

1

2

5

4

3
2 2

4

2 t

1

3

4 3

3 3

33

2

1

2

2

2

2

2

2

2

2

1

1
1

1

1

2

3

33

1

44

4

3

3

5

1 1

1 1

1

7

10

20

7
8

7

6

4

s
1

1

5 3
2

4

2

1

3 3

3

2

1

2

2

2

2
1

1
1

1

1

1

4

4

3

5

7

10

7
8

6

4

s

20

1 1

1 1

1

(a) (b)

Figure 2.2: Examples of (a) the shortest path from node s to node t, highlighted in red, and (b) the
shortest path tree from node s.

considered as a connected digraph if there exists at least one path connecting each pair
of nodes (u, v) of the graph in any direction, either backwards or forwards. A digraph is
strongly connected if there exists paths connecting each pair of nodes (u, v) of the graph
in both directions, from u to v and also from v to u.

Any person, when leaves his/her home towards a destination, is describing a path in
his/her way traversing different streets. In a similar way, the data packages in Internet
depict paths by crossing different routers to reach their target computer. The carrier com-
panies, with delivery functions, also perform routes from a specific source to different
locations. However, in most cases, it is desired that this “package transportation” is car-
ried out without wasting more resources than necessary. Thus, the path to be traversed
should be the one with the lowest possible cost.

Definition 13. The shortest path between two vertices s and t is the path with the min-
imum weight among all possible paths between s and t. The minimum distance be-
tween s and t, d(s, t) or simply d(t) when talking about a source node s, is the weight of
the shortest path between them.

An example of a shortest path between two vertices is depicted in Fig. 2.2 (a), where
the shortest path from node s to node t is highlighted in gray. This path has a total weight
of w(P) = 32, that is the shortest path distance. There are many algorithms whose
objective is to compute the shortest path, and its cost. Most of them usually carry out
some computations that calculate tentative costs, that can be reduced if possible, until
they are “settled” as final shortest-path distances.

Definition 14. We denote by δ(s, t), or simply by δ(t), the temporal tentative distance
between s and t during the computation of d(t).

Nevertheless, there are many situations where it is desired to calculate, from one
source, the shortest paths not only to a single target but also to the whole network lo-
cations.

Definition 15. The shortest path tree of a graph from source node s is the composition of
every shortest path from s to the remaining nodes.

2.2. The Single-Source Shortest-Path (SSSP) Problem 27

Weight / type Algorithm Time complexity
Unweighted BFS [43] O(m+ n)
R≥0 Dijkstra [44] O(m+ n log n)
R{1..C} Goldberg [45] O(m+ n logC)
R / Und Pettie [46] O(m+ n log log n)
R Bellman-Ford [47, 48] O(mn)
Z≥0 / Und Thorup [40, 49] O(m+ n)
Z{0..C} / Dir Thorup [50] O(m+ n log logmin{n,C})
Z/∈{0,1} Goldberg [51] O(m

√
n logmin{w(e) : e ∈ E})

Table 2.1: Best-bounds SSSP algorithms for different types of graphs and edge-weights restric-
tions. The abbreviations Und and Dir refer to undirected and directed graphs respectively.

Figure 2.2 (b) shows the shortest path tree computed from node s, involving all short-
est paths to the remaining vertices of the graph.

The following section describes this classical graph problem of computing all short-
est path and their distances from a source node (Single-Source Shortest-Path problem),
together with a taxonomy of solutions. It also includes the explanation of one of the most
relevant algorithms, the Dijkstra algorithm.

2.2 The Single-Source Shortest-Path (SSSP) Problem
The Single-Source Shortest-Path (SSSP) problem consists on computing the shortest paths,
from a source vertex s, to every vertex v ∈ V that is reachable from s. If v is unreach-
able from s, then d(s, v) = ∞. SSSP algorithms usually apply iterative methods that
label the vertices with a tentative distance from s, δ(v), found so far. These tentative dis-
tances can be updated with a lower value if a new path is found through another vertex u
that is shorter than the previous one. That is, relaxing the edge (u, v), δ(v) is updated if
δ(v) > δ(u) + w(u, v).

In this section, a brief review of the classical solutions to the SSSP problem is pre-
sented, including the description of Dijkstra’s algorithm.

2.2.1 Taxonomy of SSSP Algorithms

The SSSP algorithms can be classified in two main categories: Label-setting algorithms,
and label-correcting algorithms. Table 2.1 shows some of the best time-bound algorithms
for different types of graphs and edge-weights restrictions. See [39, 40, 41, 42] for more
details.

Label-setting algorithms

This kind of algorithms settles the tentative distance of a selected vertex v as the minimum
distance from the source node s at each iteration. This distance is the optimal one and it
will not be updated any more. After that, the algorithm traverses the outgoing edges of

28 Chapter 2. State of the Art of the Shortest-Path Problem

Algorithm 1 The generic label-correcting algorithm
1: for ∀v ∈ V do
2: δ(v) =∞;
3: δ(s) = 0; predecessor(s) = 0;
4: end for
5: while ∃ edge e = (u, v) : δ(v) > δ(u) + w(e) do
6: δ(v) = δ(u) + w(e);
7: predecessor(v) = u;
8: end while

the selected vertex trying to update the δ(ui) of its adjacent vertices ui. Hence, at most n
iterations are required to settle all vertices in the graph.

The basic label-setting approach is Dijkstra’s algorithm [44]. In summary, it handles
three subsets of V : Settled, reached and unreached vertices. The settled vertices have
found the optimal distance value, d(v) = δ(v). The reached vertices have a finite δ(v),
whereas the unreached vertices have a δ(v) = ∞. Initially, the algorithm settles s with
d(s) = 0, it traverses its outgoing edges reaching new vertices vi, if necessary it updates
their δ(vi). The process is repeated, settling the vertex with the minimum distance label
from the reached subset, until it is empty. Its time complexity is inO(n2) [43]. If the graph
is sufficiently sparse, this bounds can be improved to O(m + n log n) using Fibonacci
heaps [52].

Another kind of data-structure used is the so-called buckets. They used a parameter ∆,
named bucket width. A bucket is a linear array B where each Bi stores the set of vertices
whose δ(v) ∈ [i · ∆, (i + 1) · ∆). Having ∆ ≤ ∆0 = min {w(e) : e ∈ E}, the vertices
in the first non-empty bucket can be settled in any order. If ∆ > ∆0, we need to find the
smallest δ(v) in the bucket to preserve the label-setting nature of the algorithm. Alterna-
tive bucket approaches include nested (multiple levels) buckets and/or buckets of different
widths [53].

Label-correcting algorithms

In label-correcting algorithms, all distances are considered tentative until the final
iteration, when all of them become settled. A generic SSSP label-correcting algorithm
selects an arbitrary edge e = (u, v) that does not fulfill the optimality condition δ(v) >
δ(u)+w(e), and updates δ(v) appropriately. It repeats the process until there are not more
edges that violate the optimality condition.

The time cost depends on the order of edge relaxations. The worst case would be a
relaxing order in where all edges always violate the optimality condition. For graphs with
integer weights bounded by a constant C (w(v) ∈ [1, C]), it has a cost of O(n2 ·m · C),
and O(m · 2n) otherwise [54].

The classic Bellman-Ford version [47, 48] is an efficient implementation of the generic
label-correcting algorithm. Its algorithm establishes an order for the edges of a graph, and
relaxes them one by one in the same order at each iteration, updating distance labels if nec-
essary, until none of them changes during a complete pass. Each iteration requires O(m)
relaxations and it needs n− 1 passes. Therefore, it has a running time in O(mn).

2.2. The Single-Source Shortest-Path (SSSP) Problem 29

1 32
3

2
4 4 2

s

a b c

1 32
3

2
4 4 2

s

a b c

� ✁✂

✁

✂

✄ ✄
✂

☎

✆
✝

✞

(a) (b) (c)

Figure 2.3: Dijkstra’s algorithm steps: Initialization (a), edge relaxation (b), and settlement (c).

Improved label-correcting algorithms add to a setQ those vertices whose tentative dis-
tance label δ(v) has been decreased. After this, they select a node u from Q in each pass,
relaxing only its outgoing edges and updating tentative distances if necessary, instead of
computing all edges again.

There also exists a label-correcting version of the bucket approach. This version
chooses ∆ > ∆0 and extracts all nodes from the first non-empty bucket. However, the
vertices that were previously extracted, and whose tentative distance is now updated with
a lower value, should be stored again in the corresponding bucket to be processed with
its new value. These approaches are known as the approximate bucket implementation of
Dijkstra’s algorithm.

2.2.2 Dijkstra’s Algorithm

The best well-known solution for the SSSP problem is Dijkstra’s algorithm [44]. This
section describes it in detail as well as several relevant implementation choices.

Dijkstra’s algorithm constructs minimal paths from a source node s to the remaining
nodes, exploring adjacent nodes following a proximity criterion. This exploring process
is known as edge relaxation. When an edge (u, v) is relaxed from a node u, it is said
that node v has been reached. Therefore, there is a path from s through u to reach v
with a tentative shortest distance. Node v is considered settled when the algorithm finds
the shortest path from source node s to v. The algorithm finishes when all nodes are
settled.

The algorithm uses an array, D, that stores all tentative distances found from the
source node, s, to the rest of the nodes. At the beginning of the algorithm, every node
is unreached and any distances are known, so D[i] =∞ for all nodes i, except the current
source node D[s] = 0. Note that the reached nodes, that have not been settled yet, and
the unreached nodes are considered unsettled nodes. The algorithm proceeds as follows
(see Fig. 2.3):

1. (Initialization) It starts on the source node s, initializing the distance arrayD[i] =∞
for all nodes i and D[s] = 0. Node s is settled, and is considered as the frontier
node f (f ← s), the starting node for the edge relaxation.

30 Chapter 2. State of the Art of the Shortest-Path Problem

2. (Edge relaxation) For every node v adjacent to f that has not been settled (nodes a,
b, and c of Fig. 2.3), a new distance from source node s is found using the path
through f , with value D[f] + w(f, v). If this distance is smaller than the previous
value D[v], then D[v]← D[f] + w(f, v).

3. (Settlement) The non-settled node b with the minimal value inD is taken as the new
frontier node (f ← b), and it is now considered as settled.

4. (Termination criterion) If all nodes have been settled, the algorithm finishes. Other-
wise, the algorithm proceeds once more to step 2.

In order to recover the path, every reached node stores its predecessor, so at the end
of the query phase the algorithm just runs back from the target node, through these stored
predecessors, till the source node is reached.

Regarding the complexity of Dijkstra’s approach, the initialization has a cost in O(n).
The updating operation, that has a constant cost, is performed m times in the worst case.
The linear search in D for the node u with the lowest value (step 3) is performed in O(n).
Since it should be done n times in the worst case, this leads to a total upper bound of
O(n+m+ n2) ∈ O(n2) [43].

Dijkstra with priority queues

The most efficient implementations of Dijkstra’s algorithm for sparse graphs, that are
graphs with m << n2, use a priority queue to store the reached nodes [43]. The use of
this data structure helps to reduce the asymptomatic behavior of Dijkstra’s algorithm. To
implement a priority queue, the following operations are needed:

• Insert with priority: The structure will be sorted with respect to a key, called the
priority. The insertions of new elements are done according with their priority, to
keep the structure sorted in non-decreasing order. In our case, the key associated to
each node is the total distance found so far from the source node.

• Update element’s priority: This operation changes the value of the key of an
element and reorders the queue.

• Find minimum element: This operation finds the element of the structure with the
lowest priority (key), in our case the lowest distance.

• Delete minimum element: This operation, also called as pop operation, deletes the
element from the structure with the lowest priority.

If traditional binary heaps are used, such as Williams’ heaps [55], each inserting,
deleting or updating operation takes a time in O(log n). Selecting the next node to be
processed (the current node) simply implies to find the minimum element, with a tem-
poral cost in O(1), and to delete it, with a cost in O(log n). Implementing the pri-
ority queue with binary heaps decreases the algorithm’s asymptotic time complexity to
O((m + n) log n) ∈ O(m log n). If Fredman and Tarjan’s Fibonacci heaps [52] are used
instead, this time complexity is reduced to O(n log n + m). The Relaxed heaps [56]
achieve the same amortized time bounds as the Fibonacci heaps with fewer restrictions.
For a thoroughly review of the use of priority queues see [57, 58].

2.3. Parallel Solutions for the SSSP (Π-SSSP) 31

Algorithm Year Parallelization
Fine-Grain Parallel SSSP [59] 1997 Inner
Crauser [24] 1998 Outer
∆-stepping [60, 42] 2003 Outer
GPU Label-Correcting [61, 22] 2007 Outer
GPU Label-Setting_F∆=0 [23] 2009 Outer
GPU Label-Setting_U∆=0 [23] 2009 Outer
GPU Parallel Bellman-Ford [62] 2011 Inner-Outter
Coarse-Grain Parallel SSSP [59] 1997 Disjoint
Tang [63] 2008 Disjoint

Table 2.2: Parallel SSSP algorithm classification.

2.3 Parallel Solutions for the SSSP (Π-SSSP)
The greek term Παράλληλος was used to refer to some actions that were performed at the
same time, or concurrently. As this is the case for the following algorithms that are de-
scribed in this section, we wanted to use the notation Π-SSSP, for those parallel algorithms
that solve the SSSP problem. We have used the same notation rule for other contexts with
the same meaning during the dissertation of this Ph.D. thesis, such as Π-APSP to refer to
parallel APSP algorithms.

We can distinguish between two kinds of parallel strategies that can be applied around
the SSSP algorithms. The first parallelizes the sequential SSSP algorithm in its internal
operations, and the second performs several SSSP algorithms in parallel in disjoint sub-
graphs. The following paragraphs describe an overview of both strategies in more detail.

2.3.1 Parallelizing the Internal Operations of the SSSP Algorithm

The key of the parallelization of a single sequential Dijkstra algorithm is the inherent
parallelism of its loops. For each iteration of Dijkstra’s algorithm, the outer loop selects
a node to compute new distance labels. Inside this loop, the algorithm traverses with the
help of an inner loop its outgoing edges in order to relax the old distance labels. After
these relaxing operations, the algorithm calculates the minimum tentative distance from
the unsettled nodes set in order to extract the next frontier node. Table 2.2 summarizes a
list of parallel solutions, classified according to the parallelization method implemented.

Inner Loop Parallelism: Single-vertex Parallel Edge-traversing

Parallelizing the inner loop implies to simultaneously traverse the outgoing edges of the
frontier node f . Each of these outgoing edges (f, v) is assigned to a different processing
unit that checks, first, whether v belongs to the unsettled set U , and, if so, evaluates the
relaxing condition, δ(f) + w(f, v) < δ(v), with the aim of keeping the lowest value of
them.

One of the algorithms presented in [59], the Fine-Grain Parallel SSSP, is an example
of this kind of parallelization. Their authors have implemented a parallel Bellman-Ford

32 Chapter 2. State of the Art of the Shortest-Path Problem

algorithm mixed with Dijkstra’s ideas. The set of edges is divided into different disjoint
subsets in such a way that the number of outgoing edges of the same vertex is balanced
through these subsets. That is, if node u is connected to nodes x, y, and z, and node v to
a, b, and c, three edge subsets will be created: The first one will contain the edges (u, x)
and (v, a); the second one will contain (u, y) and (v, b); and, finally, the third one will
contain (u, z) and (v, c). Each processing unit handles one of these subsets, together with
a local heap that stores the tentative distances of the reached nodes. In every iteration,
each processing unit communicates to the others its local minimum δPUi, and, through a
reduce operation, all of them keep the global minimum. This minimum value corresponds
to the node that will be the following frontier node f , and it is broadcast together with
its δ(f). Then, each processing unit traverses its corresponding subset of outgoing edges
associated to this current frontier node, relaxing whenever possible the distances of its
successor vertices, and storing them in its local heap. A processing unit sends to the rest
a fake node with infinite value when its local heap is empty. The algorithm repeats this
process until there are not more nodes to compute in any of the local heaps.

Outer Loop Parallelism: Multiple-vertex Sequential Edge-traversing

Parallelizing the outer loop from a label-setting approach implies to compute, at each it-
eration i, a frontier set Fi of nodes that can be settled in parallel without affecting the
algorithm’s correctness. The main problem here is to identify the set of nodes v whose
tentative distances from the source vertex s, δ(v), are actually the minimum shortest dis-
tance, d(v). As the algorithm advances in the search, the number of reached nodes that
can be computed in parallel increases considerably.

Some label-setting algorithms that are based on this idea are the ones proposed in [24,
23]. Both algorithms define a limit value, that we name as the ∆ threshold, that determines
at each iteration which unsettled nodes have at that moment the minimum possible shortest
path distance, and thus, that can be safely settled. Note that the unsettled nodes with a
tentative distance lower or equal than this threshold can be settled and selected as a frontier
node without the need of following a particular order between them, and therefore, it is
possible to process all of them at the same time. The work described in [24] tries to
compute a bigger threshold, with the help of precomputed values, compared with the
work described in [23]. However, this latter work is designed to be executed in GPUs
instead of using classic CPU cores. As we will see, one of the main contributions of this
Ph.D. Thesis is based in the use of both algorithms, taking advantage of the aggressive
enhancement that represents to compute a bigger threshold in the development of a GPU
implementation of the SSSP algorithm. A full detailed description can be found in the
following chapter.

The parallelization of the outer loop for label-correcting approaches follows a similar
idea of augmenting, this threshold beyond the safety limit. By taking this risk, these
algorithms favor the early, tentative settlement of some unsettled nodes whose current
tentative distances are beyond this safe limit, making available the parallel computation
of more nodes, but at the cost of recomputing later some results if their speculation proves
to be wrong. Note that no settlement is real till the end of the algorithm, because the
last computation could invalidate all the previous results. Analogously to the frontier set,

2.3. Parallel Solutions for the SSSP (Π-SSSP) 33

Fi, used in the label-setting algorithms, we denominate as the gambling set, Gi, the set
of nodes that the label-correcting algorithms consider “good enough” to be tentatively
settled.

∆-Stepping is an example of a label-correcting algorithm [60, 42] that also parallelizes
the outer loop of the original Dijkstra’s algorithm, by exploring in parallel several nodes
grouped together in a bucket. Several buckets are used to group nodes with different
tentative distance ranges, (0,∆], (∆, c1∆], (c1∆, c2∆], and so on. At each iteration, the
algorithm relaxes in parallel all the outgoing edges from all the nodes in the lowest range
bucket. It first selects the edges that end on nodes inside the same bucket (light edges), and
later the rest (heavy edges). Note that this algorithm can find that a node that is currently
being processed has to be recomputed if another node reduces the tentative distance of the
first one at the same time, implying a possible bucket change of its reached nodes. The
implementations for GPUs presented in [61, 22] go even further, by considering part of the
gambling set Gi+1, all the unsettled nodes whose tentative distances have been updated in
the immediately previous iteration i.

Combining Inner and Outer Parallelism: Multiple-vertex Parallel Edge-traversing

The combination of both parallelization strategies would result in an algorithm where
each processing unit traverses a single outgoing edge, or a subset of outgoing edges, from
a node: (a) That belongs to the frontier set, for a label-setting approach, or (b) that belongs
to the gambling set, for a label-correcting philosophy. To the best of our knowledge, it
does not exists any implementation or study considering the former approach, that is, a
combination of both parallelizations following the restrictions of the label-setting crite-
ria. On the other hand, the work described in [62] presents a modified label-correcting
implementation of the Bellman-Ford algorithm ported to GPUs, that suits well with this
double parallelization behavior. This implementation associates to each GPU thread one
edge (u, v) of the graph, checking in each iteration, if it is possible, the relaxation of the
tentative distance of v by δ(u) + w(u, v), similar to Bellman-Ford’s algorithm.

2.3.2 Deploying Sequential SSSPs in Disjoint Subgraphs Concurrently

There are approaches that exploit parallelism by executing several sequential SSSP algo-
rithms in parallel in different parts of the graph. Implementations of these parallel algo-
rithms usually need some simple kind of graph partitioning, from which they obtain a set
of disjoint subgraphs of the input graph. Each processing unit is responsible of handling
a disjoint subgraph, executing a sequential SSSP algorithm in there. Every k iterations,
the computation is stopped to perform a communication phase. In this phase, each pro-
cess exchanges the distance information regarding the boundary vertices of its subgraph
with the process that handle the corresponding adjacent subgraphs, in order to update,
if necessary, their boundary tentative distances. If the tentative distance of a boundary
vertex is relaxed during this information exchange, the algorithm has to recompute the
boundary vertex in the corresponding subgraph, repeating the search with the new value
in order to ensure correctness. Although the algorithms that lie under this category follow
the label-correcting idea of recomputing the results due to this communication phase, the

34 Chapter 2. State of the Art of the Shortest-Path Problem

SSSP algorithms deployed inside each subgraph can use any of the previously described
approaches, label-setting or label-correcting algorithms.

The work presented in [63] is an example of using a label-setting algorithm, based
on Dijkstra’s algorithms with priority queues, with the described computation and com-
munication phases using disjoint subgraphs. In the exchanging information step, if the
tentative distance of a boundary node is relaxed, the algorithm simply reinserts this node
with the new value into the priority queue of the corresponding subgraph. Once this value
represents the minimum distance of the priority queue, the boundary node will become
the corresponding frontier node. After that, the algorithm will relax, if needed, its corre-
sponding successor distances, reinserting the nodes also in the queue, and repeating the
spreading of the exchanged value. The algorithm continues by iterating and updating the
boundary distances, until there are not any remaining nodes in the priority queues, and
there is not more boundary updates.

Finally, another algorithm presented in [59] follows the same ideas, but applying
an optimized Bellman-Ford algorithm on each subgraph. This modified version stores
whether the tentative distance of a vertex has been relaxed. In each iteration, the algo-
rithm first checks these conditions, and if the distance was updated, it tries to relax the
corresponding successors. Every time a distance is relaxed, a flag is set indicating that
there are more possible relaxations. In the communication step, the algorithm proceeds
with the updates if necessary, it checks the flag, and it resets it again for the following
iteration. These steps are repeated until, at the end of the communication step of an itera-
tion, the algorithm finds that there are no flags set, meaning that it is not possible to relax
distances anymore.

2.3.3 Deploying Parallel SSSPs in Disjoint Subgraphs Concurrently

To the best of our knowledge, there are not works that try to combine the use of a parallel
SSSP algorithm combined with the approach, described above, of deploying several of
them in disjoint subgrahps. It remains as an open question whether this kind of combina-
tion is really efficient against the other known approaches previously described.

2.4 The All-Pair Shortest-Path (APSP) Problem

The All-Pair Shortest-Path (APSP) problem consists on computing the shortest paths be-
tween all pair of vertices vi, vj ∈ V such that i 6= j. For a graph with n = |V |, the output
of the algorithm is a n×n matrix Di,j = (di,j) such that di,j is the distance of the shortest
path from vertex vi to vertex vj . In this section, a review of the sequential solutions to the
APSP problem is presented.

2.4.1 Taxonomy of APSP Algorithms

Depending on the behavior of each APSP algorithm, they can be classified as dynamic
programming or productivity-based approaches.

2.4. The All-Pair Shortest-Path (APSP) Problem 35

Dynamic-programming These approaches give solutions to different subproblems and
combine them to create the solution of the main problem. A dynamic-programming
algorithm saves subproblem answers, avoiding the work of recomputing them when
they are required to solve bigger subproblems.

Productivity-based These approaches computes independent subproblems using algo-
rithm particularly designed for them instead for the complete problem. Usually,
these approaches do not share the information results obtained from a subproblem
in order to fast the solution of the following one, or if they do, this sharing is reduced
for a particular subset of solutions.

According to the size of their spatial complexity, the APSP algorithms can also be
divided into linear spatial complexity and quadratic spatial complexity algorithms.

Linear spatial-complexity algorithms The first group stores the edges and its weights in
adjacency lists, having a spatial complexity in Θ(n+m). Usually, these algorithms
solve the APSP problem by executing a SSSP algorithm n times, once for each
vertex as the source.

Quadratic spatial-complexity algorithms The second group uses a matrix W , called
adjacency matrix, to represent the connections between vertices, that are, the edges
and their weights. For an edge e = (u, v) ∈ E, the matrix W has the corresponding
entry Wu,v = w(e). If e = (u, v) /∈ E then Wu,v = ∞. Therefore, the spa-
tial complexity of these algorithms is in Θ(n2). Usually, this kind of algorithms
takes advantage of the partial results of other subproblems, that represent tentative
shortest path distances, stored as elements of the matrix W . The main drawback of
all these algorithms is the big space consumption, that makes them impractical for
large graphs.

Combining both criteria proposed we obtain a four-class classification. The following
paragraphs describe the most representative state-of-the-art algorithms that match in each
category of our classification, describing their properties. Table 2.3 shows the best-time
bounds algorithms for each type of graphs or edge-weights restrictions. See [41] for an
overview.

Productivity-based algorithms with Linear spatial complexity

Due to its small space consumption (in O(m + n)), these algorithms are a better choice
for large sparse graphs than the quadratic spatial-complexity ones.

The first naïve approach to solve the APSP problem is to execute a SSSP algorithm for
each vertex v ∈ V . This strategy is known as the n-SSSP algorithm, or also the n×SSSP
approach. If the SSSP algorithm used is Dijkstra’s (n-Dijkstra) combined with Fibonacci
heaps, it will have a time-cost algorithm in O(n2 log n+ nm).

For graphs with negative-weight edges but no negative-weight cycles, Johnson’s algo-
rithm [74] uses the Bellman-Ford algorithm for reweighting the edge weights to positive
ones. Then, it executes n times the Dijkstra’s algorithm, leading to the same time-cost

36 Chapter 2. State of the Art of the Shortest-Path Problem

Weight / type Algorithm Time complexity
Unw / Dir Zwick [64, 65] O(n2.575)

Unw / Und Seidel [66], Galil et al. [67, 68] Õ(nω)

Unw / Und m�nω−1 Chan [69] O(mn/ log n)
R≥0 n-Dijkstra [44] O(mn+ n2 log n)

Karger et al. [70], McGeoch [71] O(m′n+ n2 log n)
R / Dir Pettie [72, 73] O(mn+ n2 log log n)
R Johnson [74] O(mn+ n2 log n)
R / Dense Floyd-Warshall [75, 76] O(n3)

Han [77] O(n3 log log n/(log n)2)
Z Hagerup [78] O(mn+ n2 log log n)

Z{−M..M} / Dir Zwick [64, 65] Õ(M0.68n2.575)

Z{1..M} / Und Shoshan and Zwick [79] Õ(Mnω)

Table 2.3: Best time-complexity bounds of APSP algorithms for different graphs. The abbre-
viations Unw, Und and Dir refer to unweighted, undirected and directed respectively. The ω
exponent is the smallest constant for which matrix multiplication can be performed using alge-
braic operations in O(nω+O(1)). The Õ(f) notation is a shorthand for O(f · (log n)O(1)) to hide
not-so-interesting, polylogarithmic factors.

than Dijkstra’s algorithm with Fibonacci Heaps. Later, Pettie [72, 73] reduced this bound
to O(n2 log log n+ nm) for directed graphs.

Yanagisawa have proposed in [80] the use of a Multi-Source Shortest-Path (MSSP)
algorithm, specifically the centralized shortest-path search [81], instead a of SSSP algo-
rithm to solve the APSP problem faster. To summarize, this algorithm partitions the graph
into regions composed byB vertices and later executes the MSSP search n/B times, once
for each region, leading to a productivity-based algorithm with increased linear spatial
complexity in O(m+Bn).

Productivity-based algorithms with Quadratic spatial complexity

The quadratic spatial complexity algorithms take advantage of the computations previ-
ously done for other vertices to speedup the following ones. The Dijkstra-based algo-
rithms with quadratic spatial complexity are faster in sparse graphs than other quadratic
spatial-complexity algorithms that are designed to be more efficient for dense graphs.

Karger [70] and independently McGeoch [71] introduced the term essential edges,
referring to those edges of the graph that actually participate in shortest paths. These al-
gorithms save unnecessary operations leading to a running time complexity in O(nm′ +
n2 log n), where m′ is the number of essential edges. Demetrescu and Italiano [82]
used this idea to propose a similar algorithm, using a Dijkstra-algorithm variant with
O(|LSP | + n2 log n) running time complexity, where LSP is the set of local shortest
paths in the graph.

Peng [83] optimized the Dijkstra algorithm for two well-known complex networks:
Scale-free networks and Small-world networks.

2.4. The All-Pair Shortest-Path (APSP) Problem 37

Algorithm 2 The dynamic programming Floyd-Warshall algorithm.
1: D ←W
2: for k ← 1 . . . n do
3: for i← 1 . . . n do
4: for j ← 1 . . . n do
5: di,j ← min(di,j , di,k + dk,j)
6: end for
7: end for
8: end for
9: return D

Author Year Time cost bound
Floyd-Warshall [75, 76] 1962 Θ(n3)

Fredman [84] 1976 O(n3(log log n/ log n)1/3),
Takaoka [85] 1992 O(n3(log log n/ log n)1/2)

Dobosiewicz [86] 1990 O(n3/(log n)1/2)

Han [87] 2004 O(n3(log log n/ log n)5/7)
Takaoka [88] 2004 O(n3(log log n)2/ log n)
Takaoka [89] 2004 O(n3 log log n/ log n)

Zwick [90, 91] 2004 O(n3(log log n)1/2/ log n)
Chan [92, 93] 2005 O(n3/ log n)

Han [94, 95] 2006 O(n3(log log n/ log n)5/4)
Chan [96] 2007 O(n3(log log n)3/(log n)2)
Han [77] 2012 O(n3 log log n/(log n)2)

Table 2.4: Time-bound evolution for FW-based algorithms in directed graphs with real edge
weights.

Dynamic-programming algorithms with Quadratic spatial complexity

The classic solution of the APSP problem is a dynamic programming approach created
by Floyd [75], inspired in the work of Warshall [76]. The Floyd-Warshall (FW) algorithm
(see Algorithm 2) iterates n times through all the elements of the matrix Wn×n. It leads
to a Θ(n3) time cost algorithm. Having D0 = W , it computes new matrices Dk in each
iteration k, trying to relax the old values of D(k−1) by dk ← min(d

(k−1)
i,j , d

(k−1)
i,k + d

(k−1)
k,j).

Therefore, the spatial complexity of the algorithm is in Θ(n2). Note that only one matrix
Dn×n is needed if the relaxations are always made on it.

The complexity of the FW algorithm has been reduced since then. Starting with Fred-
man’s algorithm [84] in 1976 that was the first in breaking the cubic complexity, until
now with the last approach of Han [77] (see Table 2.4). In fact, computing the APSP
problem is computationally equivalent to computing the product of two matrices, where
the multiplication and addition operations are replaced by addition and minimum opera-
tions respectively. However, the order of the loops cannot be changed arbitrarily as in the
case of matrix multiplication.

There are some implementations of the FW algorithm using different ways to improve

38 Chapter 2. State of the Art of the Shortest-Path Problem

...
Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

block (1,1) self-dependent block (3,3) self-dependent

Currently
computing

Computation
over

Computation
to be completed

Figure 2.4: Phases of the FW algorithm proposed by Venkataraman [97], that later was used by
Katz and Kider [98] for GPUs.

its performance. Venkataraman [97] optimizes the cache performance introducing a tiled
version (see Fig. 2.4), where the values of the adjacency matrix are computed in a par-
ticular order through three phases. The first phase computes the distances of the current
diagonal block. These diagonal bocks are known as self-dependent blocks because the
values needed to compute the new distances are all contained into it. Afterwards, these
new calculated values are used in the second phase, to compute the blocks of the same
row and column, the half-dependent blocks. Finally, in the third phase, all remaining tiles
are computing using the values obtained in the previous phase. The algorithm finishes
by repeating this step (with its three phases) n times, updating in each iteration the adja-
cency matrix W , that becomes the final result at the end. More improvements were made
in [99, 100] by applying standard cache-friendly optimizations.

Duin [101] avoids redundant updates by computing the shortest paths in order of
length. It takes advantage of the dynamic programming principle of optimality of sub-
paths [43]. To obtain this, it builds two shortest path trees per node, giving a compu-
tational overhead effort that is not compensated for sparse graphs. Han [102] proposed
an automatic tuning framework that produces very fast implementations of the FW algo-
rithm.

Better performance algorithms have been designed for particular input graphs, such
as graphs without edge weights, unweighted graphs, or only integer weights, in their
directed or undirected graph variants (see Table 2.3). Some of them apply fast matrix
multiplication algorithms1 to the all-pairs shortest paths problem.

2.5 Parallel Solutions for the APSP (Π-APSP)

There are two different trends to apply parallelization to the APSP problem. The first one
is to modify the purely sequential algorithmic solutions to support parallel computation,
whereas the second is related with the productivity of executing independent SSSP in
different computational resources. In this section we present an overview of the state of
the art for both approaches (see Table 2.5).

1See [103] for an overview, and for details on the last achievement, O(nω) with ω < 2.3727.

2.5. Parallel Solutions for the APSP (Π-APSP) 39

Parallel Dynamic-programming
1999 Diament et al. [104]
2004 Micikevicius [105]
2007 Harish et al. [61]
2008 Katz and Kider [98]
2009 Buluç et al. [106]
2009 Harish et al. [22]
2013 Wu [107]
2014 Djidjev et al. [108]

Parallel Productivity-based
1999 Diament et al. [104]
2006 Sen [109]
2007 Harish et al. [61]
2008 Okuyama et al. [110, 111]
2009 Harish et al. [22]
2010 Yanagisawa [80]
2014 Hajela and Pandey [112]
2014 Hajela and Pandey [113]

Table 2.5: Different existent implementations for both parallel APSP strategies, parallel dynamic-
programming and parallel productivity-based approaches.

Algorithm 3 Pseudo-code for the naïve parallel Floyd-Warshall algorithm
1: D ←W
2: for k ← 1 . . . n do
3: for all elements of the Adjacency Matrix D where 1 ≤ i, j ≤ n in parallel do
4: di,j ← min(di,j , di,k + dk,j)
5: end for
6: end for
7: return D

2.5.1 Strategy A: Parallel Dynamic-programming Solutions

There are different methods to parallelize a sequential APSP algorithm. This section
gathers and describes these techniques briefly, and their corresponding results.

Naïve Parallelization of FW

The naïve parallel version assigns the computation of the element of the adjacency
matrix to different computational units (see Alg. 3). Diament et al. made in [104] an
analysis of costs of this approach, and developed an implementation for a CPU cluster.

Micikevicius presented in [105] a GPU implementation for this approach, but the ex-
perimentation was only applied to small graphs due to memory restrictions. Lately, Har-
ish et al. in [61] presented more results with bigger graphs. In both GPU implementations,
each element of the adjacency matrix is computed by a different GPU thread.

Blocking Approach for FW

The divide-and-conquer version of the Floyd-Warshall algorithm is known as the the FW
blocking approach. This approach divides in blocks the adjacency matrix and computes
them in a particular order with the aim to take advantage of the cache memories while
maintaining the correctness of the result. Diament et al. also presented in [104] a cost
analysis together with a FW blocking implementation, and a comparison to their naïve
approach. The use of the caches significantly outperformed the non-blocking solution.

Katz and Kider [98] presents a CUDA implementation for APSP of this approach,

40 Chapter 2. State of the Art of the Shortest-Path Problem

efficiently using the GPU cache/shared memory for this blocking technique (based on
the work proposed by Venkataraman [97]). The algorithm first partitions the adjacency
matrixW into tiles, or blocks, of equal size. In the implementation of Katz and Kider, this
partitioning is strongly related to the threadblock size used to compute the algorithm in the
GPU. The next step of the algorithm is composed by three sequential phases (see Fig. 2.4),
that are carried out using a different GPU kernel for each phase. The first phase computes
the distances of the self-dependent block. Note that this self-dependent block is processed
using only a GPU threadblock in one multiprocessor of the hardware accelerator. On the
other hand, on phases two and three, where the distances of the half-dependent blocks
and the remaining ones are respectively computed, one GPU threadblock is responsible
of computing its assigned tile. This implementation achieved a speedup up to 5× over the
parallel FW implementation presented in 2007 by Harish et al. [61].

Wu [107] extended the work of Katz and Kider by creating a version that creates
subblocks of the tiles to efficiently compute bigger graphs. This author also presented an
implementation that supports the execution of the algorithm across systems with multiple
GPUs, or in a GPU cluster.

Based on Matrix Multiplication

Harish et al. [22] have implemented a solution for the APSP using a parallel matrix mul-
tiplication with blocking approach. These authors modify the parallel version of matrix
multiplication proposed by Volkov and Demmel [114], replacing the multiplication and
addition operations used in their kernel with addition and min operations, respectively.
Additionally, they skip the addition and minimum computation of all entries that involve
an infinite value, a decision that does not affect the correctness of the algorithm. For
fully connected small graphs, the times of their approach are slightly larger compared to
the Katz and Kider variant, whereas its implementation showed to be up to 4× faster for
general large graphs.

Based on using Gaussian Elimination

The work of Buluç et al. [106] presents a recursive APSP algorithm based on Gaus-
sian elimination (see Alg. 4). This algorithm divides the computation of each APSP step
recursively into two sub-APSPs computations, six matrix multiplications, and two matrix
additions. These sub-APSPs work with graph subsets involving graphs of half the size.
The recursion ends when the base case is reached, that is, when the graph subset has 16
or fewer vertices. Then, the FW algorithm is applied using the matrix multiplication GPU
kernel of Volkov and Demmel [114]. Their implementation achieved a speedup up to 10×
over the parallel FW implementation presented by Harish et al. [61].

Afterwards, Harish et al. [22] improved this last version by incorporating their pro-
posed modifications, described in the previous paragraphs, to the matrix multiplication
kernel of Volkov and Demmel. These modifications led to a speedup of more than 2×
over the original code.

The experimental results of both articles showed that this parallel approach has the best
results compared with the previously presented parallel FW and the parallel n × SSSP
algorithms, that will be described in the following section, in dense and sparse graphs,

2.5. Parallel Solutions for the APSP (Π-APSP) 41

Algorithm 4 Pseudo-code for recursive parallel APSP algorithm of Buluç et al. [106]

func_APSP(A)
1: if N < β then
2: A← FW (A);
3: else
4: A =

[
A11A12

A21A22

]
;

5: A11 ← func_APSP (A11);
6: A12 ← A11A12;
7: A21 ← A21A11;
8: A22 ← A22 ⊕A21A12;
9: A22 ← func_APSP (A22);

10: A21 ← A22A21;
11: A12 ← A12A22;
12: A11 ← A11 ⊕A12A21;
13: end if

respectively. However, their authors have only tested this method with very small graphs
(n < 10.000). Additionally, if the running times for larger sparse graphs of this approach
are estimated following its tendency, it seems to have worse scalability against the parallel
n× SSSP strategy (see the experimental results of [22, 106] for more details).

2.5.2 Strategy B: Parallel Productivity-based Solutions
There is a second kind of parallel approaches that computes the APSP problem using the
sequential solution of performing a SSSP algorithm for each vertex of the graph. They
usually have better performance than the parallelization of dynamic-programming APSP
algorithms for non-dense graphs [43, 22, 104, 106]. These approaches can be classified
regarding the aspect they try to parallelize according to [115]:

• Source-partitioned Solutions, that parallelize the serial n executions of a sequen-
tial SSSP algorithm, (Π - (n×SSSP)).

• Source-parallel Solutions, that involve the execution of a parallel SSSP algorithm
instead of a sequential one. We want to distinguish two particular configurations
inside this approach:

– Sequential Source-parallel Solutions, the n executions of the used parallel
SSSP algorithm are executed sequentially, (n×(Π - SSSP)).

– Partitioned Source-parallel Solutions, the n executions of the used parallel
SSSP algorithm are executed in parallel, (Π - (n×(Π - SSSP))).

Figure 2.5 shows the taxonomy of parallel solutions for the APSP problem focused
on the productivity-based approaches, where each green bar represents the execution of a
SSSP problem. Close to each productivity-based approach it is depicted the distribution
of the SSSP problems in the different computational units (CU). We have introduced the

42 Chapter 2. State of the Art of the Shortest-Path Problem

A
P

S
P

P
ro

du
ct

iv
ity

-b
as

ed
 S

ol
ut

io
n

 n
 x

 S
S

S
P

D
yn

am
ic

-p
ro

gr
am

m
in

g
S

ol
ut

io
n

 F
lo

yd
-W

ar
sh

al
lSe

qu
en

ti
al

 s
ol

ut
io

ns

Pa
ra

lle
l s

ol
ut

io
ns

 Π
-A

PS
P

n
x

(Π
 -

S
S

S
P

)

Π
 -

(n
 x

 S
S

S
P

)

Π
 -

(n
 x

 (Π
 -

S
S

S
P

))

P
ar

al
le

l D
yn

am
ic

-p
ro

gr
am

m
in

g
S

ol
ut

io
ns

N
aï

ve
 F

W

B
lo

ck
ed

 F
W

M
at

ri
x

M
ul

t.

G
au

ss
ia

n
E

lim
.

;
;

... ;
... ;

... ;

... ;

v
v

v

v v v

1
2

3

1 2 x
v v v1 2 k

CU
:

;
;

v 1
v 2

v 3

20
07

 H
ar

is
h

 e
t

al
.

20
10

 Y
an

ag
is

aw
a

20
08

 O
k

u
ya

m
a

et
 a

l.

20
07

 H
ar

is
h

 e
t

al
.

20
04

 M
ic

ik
ev

ic
iu

s

20
09

 H
ar

is
h

 e
t

al
.

20
04

 K
at

z
an

d
 K

id
er

20
12

 W
u

20
09

 H
ar

is
h

 e
t

al
.

20
09

 B
u

lu
ç

et
 a

l.

20
14

 D
ji

d
je

v
et

 a
l.

20
09

 H
ar

is
h

 e
t

al
.

S
ou

rc
e-

pa
rti

tio
ne

d
S

ol
ut

io
ns

S
ou

rc
e-

pa
ra

lle
l S

ol
ut

io
ns

n/
k

 x
 (Π

 -
M

S
S

P
)

;v n

CU
;

...

v v vn-
k

n-
k+
1

n

...

{

...

;

...

v v vn-
x

n-
x+
1

n

CU
 : 1

CU
 : 2

CU
 : x

P
ar

tit
io

ne
d

S
ou

rc
e-

pa
ra

lle
l S

ol
ut

io
ns

 Π
 -

H
 -

(n
 x

 (
Π

 -
S

S
S

P
))

;
;

... ;
;

;
;

... ;
;

CU
 : 1

CU
 : 2

CU
 : x

...

...

...

...

...

;
;

... ;
;

v v vn-
x

n-
x+
1

n

v v v1 2 x

;
;

... ;
;

;
... ;

;
HC

U
:

1
HC

U
:

2

HC
U

:
x

...

...

...

...

...

;
;

... ;
;

;
... ;

;
HC

U
:

3

; ;

CU
:

Pa
ra

lle
l H

et
er

og
en

eo
us

 s
ol

ut
io

ns

~
Π

H
-A

PS
P

Figure 2.5: Taxonomy of parallel solutions for the APSP.

2.5. Parallel Solutions for the APSP (Π-APSP) 43

notation ΠH-APSP, for the Partitioned Source-parallel Solutions deployed in systems that
contains heterogeneous computational units (HCU). These ΠH-APSP approaches are one
of the main points of study of this Ph.D. thesis.

The following paragraphs describe the implementations found in the literature accord-
ing to the classification previously described.

Source-partitioned Solutions

This approach parallelizes the execution of sequential SSSP algorithms. Although the im-
plementation of this approach is very simple, it does not attract the interest of the current
scientific community since more efficiency can be obtained parallelizing also the SSSP
algorithm involved in the execution, and even less since the arrival of parallel algorithms
for hardware accelerators. The last studies regarding this approach are [104, 109].

Sequential Source-parallel Solutions

These algorithms use parallel SSSP implementations that are executed in sequential order.
We can find two slightly different implementations from the literature that differ in the
algorithm used. The first uses the mentioned parallel SSSP solution, whereas the second
involves a more complex MSSP algorithm.

n×(Π - SSSP) Harish et al. in their works [61, 22] have presented implementations
following this strategy. They have used as the SSSP algorithm their own version
implemented for GPUs, that is executed n times, taking a different node as source
each time. Briefly resumed, their SSSP algorithm iteratively executes a sequence
of kernels with as many GPU threads as vertices of the graph, that is n, in order
to parallelize the internal operation of the outer loop, solving one SSSP problem
in parallel at once. When this algorithm has finished, another one is launched but
changing the source node, and so on until n executions.

n/k ×(Π - MSSP) Okuyama et al. in [110, 111] have extended this previous work by
using more complex GPU kernels. They first group the vertices of the graphs into
subsets of k nodes. The kernels they launch have k × n GPU threads, solving in
one kernel execution k SSSPs instead only one. Then, their approach needs just
n/k executions instead n. However, the key of this modification is not only the
reduction of the number of executions, but also the sharing of information obtained
during the computation between the nodes of the same subset through the GPU
shared memory. They have obtained speedups up to 1.9× compared with the orig-
inal approach, but only for small graphs (n < 1000). As the number of vertices of
the graph increases, the running times of both approaches tend to be the same [111].
Yanagisawa et al. in [80] have implemented a similar solution for CPU cores using
SIMD instructions.

Partitioned Source-parallel Solutions

This strategy parallelizes both dimensions at the same time, using a parallel SSSP algo-
rithm that are executed concurrently. To best of our knowledge there are no studies re-

44 Chapter 2. State of the Art of the Shortest-Path Problem

garding this kind of approach. This is due the joint use of different parallel programming
models is becoming stable nowadays.

The last trends of High Performance Computing (HPC) are focused on using all com-
putational resources available on a processing platform. One of the efforts of this Ph.D.
thesis is to study and develop both homogeneous and heterogeneous implementations fol-
lowing this yet unexplored Partitioned Source-parallel approach.

After the publication of our proposals, described in the following chapters, another
works have been developed in the scientific community. This fact proves the impor-
tance of these approaches in the new HPC era. These works are due to Hajela and
Pandey [112, 113]. The first one implements a solution involving several instances of
the GPU parallel implementation of the Bellman-Ford algorithm, in a multi-GPU envi-
ronment (homogeneous approach, Π - (n×(Π - SSSP))). The last work adapts the previ-
ous solution in order to take advantages of the CPU cores present in the computational
environment (heterogeneous approach, ΠH - (n×(Π - SSSP)), or simply ΠH - APSP).

2.6 Application Example: Shortest-Path Algorithms ap-
plied to roadmaps

The aim of parallelizing these algorithms is, not only the immediate reduction of the
execution time of themselves, but also their application in complex approaches, that use
them as a step in their algorithms. Usually, the parallelization of this step is the only way to
make feasible the complete approach due to the high temporal costs. One straight example
related with the shortest-path context are the costly preprocessing phases of the modern
methods and techniques used for routing in transportation networks. These approaches
compute shortest paths, and their distances, between two vertices of the graphs in the
order of nanoseconds [10, 11], thanks to complex previously precomputed values, that in
some cases, represent the solution of the whole APSP problem.

The topology of a road network hardly changes, so it is feasible to pay the high tem-
poral and spatial costs of computing these values once and store them. In other contexts,
where the static nature of the network is not present, such as routing in the Internet [7],
web searching [8, 9], real-time logistic control [4], scheduled means of transport [3, 116],
or traffic simulations [2], among others, the reduction of these costs is highly signifi-
cant. Additionally, in the previously mentioned context of routing, if it is desired to take
into account the current state of the roads in real-time, such as the information of the
traffic, the road cuts due to maintenance or natural events, or even the avoidance of low-
speed/bad-quality roads for a particular driver, the application of efficient parallel methods
is compulsory. The advent of mobile devices present a third challenge because of their
small memory size, that limits the amount of precomputed data that can be stored. Most
of the current approaches present a trade-off between the amount of memory used and the
query time needed: The more memory used, the better the query time. However, the new
devices nowadays have bigger computational capabilities, incorporating several proces-
sors that could be exploited to alleviate this mentioned lack of memory, by recomputing
values instead of storing them.

Many algorithms have been developed so far to solve the shortest path problem from

2.6. Application Example: Shortest-Path Algorithms applied to roadmaps 45

a source vertex to a target vertex. A thoroughly revision of the state of the art, and a com-
parison of their relative strengths/weakness through an case-study application is shown
in [20]. The following sections describe the problem of routing between two points, the
classic algorithms that solve it, and also the modern techniques in roadmaps together with
their corresponding preprocessing phases.

2.6.1 One-Pair Shortest-Path Problem

The One-Pair Shortest-Path problem (OPSP), also known as the Point-to-Point Shortest-
Path problem, is a variation of the classical SSSP problem (see Sect. 2.2), where it is
only computed the shortest path from a source node to a specific target node, and its
corresponding shortest path distance. The classic algorithm that solve this problem is a
slight variation of the naïve Dijkstra algorithm. It differs from the original solution in the
termination criteria. As the only path needed to compute is the one from source node s to
target node t, the Dijkstra algorithm works as usual until it settles the destination vertex.

As from the beginning of the computation it is known which is the destination node,
it is possible to create new improved algorithms that use this information in order to
reduce the running times. Deploying two Dijkstra searches, one from the source node,
and another from the target node, until they meet in the middle is one example of the
usage of this information. Applying heuristics, or pruning criteria, also results in new
more efficient algorithms.

Bidirectional Search

The Bidirectional Search algorithm [117, 118, 119] alternates between two Dijkstra’s
searches, one from s to t, and a second one, called backward search, from t to s. In
the backward search, the key of a node v is the distance from v to the target node t. Note
that, in a directed graph, the reversed edges should be considered for the backward search.

Having two searches to perform, it is possible to maintain two separate queues and use
a turn policy to take the next node, or to put all the reached nodes in the same queue, taking
always the one with the lowest key, independently of which search was being considered.
Both methods work correctly [120].

The termination condition for bidirectional search is slightly different than Dijkstra’s.
Let µ be the minimum distance between s and t found so far. At the beginning, µ = ∞.
When an edge (u, v) is relaxed in the forward search, with node v previously settled in
the backward search, then a path from s to t has been found, with a known distance. If
this distance is less than µ, then µ is updated and v belongs to the shortest path found so
far. The same occurs when a node u already settled by the forward search is reached by
the backward search. Algorithm finishes when both searches settle the same node. At that
point, the shortest path can be retrieved by traversing the predecessors (in both directions)
of the node that triggered the last update of µ.

Comparing with Dijkstra’s algorithm, this strategy, in terms of efficiency, is almost
twice as fast as the original algorithm (see [120] for details).

46 Chapter 2. State of the Art of the Shortest-Path Problem

5

4

t10

7
s

1

2

3

5 -10+6=1

4-10+9=3

t
7-6+0=1

9

6

s10
0

1

3

t1s
1

2

(a) (b) (c)

Figure 2.6: Settled nodes reordering from Dijkstra’s to A*.

Goal-Directed A* Search

This approach [121] uses heuristics that try to avoid nodes not involved in the shortest
path. Heuristics use domain information in order to look-ahead in the decision process,
trying to improve query times. However, if they are applied alone, their use does not
always lead to shortest paths. As we will see, an appropriate heuristic combined with
Dijkstra’s algorithm ensures correct results.

In a goal-directed A* search, a heuristic (or potential) function h′(v) returns a value
that represents a lower-bound estimation of the remaining distance from that node v to
the target one t. The query phase applies as a normal Dijkstra’s algorithm, where edge
weights w(u, v) are substituted with w′(u, v)← w(u, v)− h′(u) + h′(v). This new value
represents the additional cost with respect to the heuristic estimation from the source,
h′(s), in case edge (u, v) is taken. The closer the lower bound value to the real one, the
better the obtained results.

Dijkstra’s algorithm uses distances from the source to reached nodes as the only cri-
teria to decide which node will be selected next. Starting with the situation depicted in
Fig. 2.6 (a), Dijkstra’s algorithm will choose the upper branch, while the lower branch
belongs to the shortest path. On the other hand, A* estimates a lower bound distance
from all reached nodes to the target, for example, the Euclidean distance from the node
to the target for spatial graphs. Figure 2.6 (b) shows these the Euclidean distances in
circle-bounded numbers. With such an estimation, the transformation of edge weights,
w′(u, v)← w(u, v)− h′(u) + h′(v), leads Dijkstra’s algorithm to take a correct decision
faster (see Fig. 2.6 (c)). For the route planning case in road maps, the Euclidean distance
is a lower bound and therefore a valid estimator of h(x). However, the search space is not
always reduced enough to palliate the heuristic cost insertion (see experimental results
in [120, 122]).

There are also approaches that combines these heuristics with the bidirectional strat-
egy, having two potential (heuristic) functions, one for the forward search h′s, and other
for backward search h′t. To use the termination condition that stops when both searches
meet at the same node, proper potential functions should be selected. This issue leads
to two different set of approaches: Those that impose new termination conditions, called
Symmetric approaches [123], and those that use consistent potential functions, called
Consistent approaches (see [124] for details).

2.6. Application Example: Shortest-Path Algorithms applied to roadmaps 47

2.6.2 The Importance of Preprocessing: Routing Algorithms as Ex-
ample

During the last decade, preprocessing strategies have led to huge query speedups [125,
126] compared to the classic algorithms. Their speedups rely on the costly preprocessing
phase, where they compute and store some strategic values that later will be used in the
query phase. Depending on the nature of the resulting information from the preprocessing
phase, and thus, its use in the query phase, the algorithms can be grouped in two big
families: hierarchical and non-hierarchical.

Hierarchical Algorithms

The hierarchical methods aim to discover a hierarchy in the graph that, for road networks,
usually corresponds with their hierarchical nature. A graph hierarchy is a division of
the graph vertices into levels. To define it, some precomputation is needed. There are
different precomputations that can be done in the graph depending on the hierarchical
algorithm chosen. The precomputation generates additional information that is attached
to the graph, and it will be used in order to speed up the query time.

The most representative approaches that are in this category are Highway Hierar-
chies, Highway Hierarchies with Distance Table, Highway-Node Routing, Contraction
Hierarchies, Transit-Node Routing and Hub-based Labeling. We will briefly describe the
preprocessing and query phases of these algorithms.

The first hierarchical approach that led to a considerable speedup over Dijkstra’s al-
gorithm is Highway Hierarchies (HH) [127, 128]. This algorithm uses a preprocess-
ing phase to identify edges that are involved in shortest paths connecting neighborhoods
(groups of vertices). These edges will be considered highways. Together with their associ-
ated nodes, these highways will constitute the following level graphGi+1 in the hierarchy.
Before creating the next level, the preprocessing phase contracts the current graph Gi+1,
removing particular vertices and shortcutting them. The level information of all non-
contracted graphs is then used to augment G, creating a graph G+ that will be used as
input in the query phase. During the query phase, two Dijkstra searches are performed,
a forward one from the source vertex, and a backward one from the target vertex. Both
searches traverse the input graph, climbing to upper levels until they meet.

The Distance Table (DT) [129] is an optimization of the HH algorithm. It allows
the queries to avoid the searches in the highest level of a hierarchy, by precomputing the
all-to-all distances between vertices of this level. The HH approach together with this
optimization were the inspiration of several hierarchical approaches.

Highway-Node Routing (HNR) [130] needs a subset of vertices V ′ that have some
kind of importance in the graph before building the graph levels. Usually, this subset is
computed through a HH preprocessing phase. Once the multilevel graph is created, the
query works similarly to HH.

Transit-Node Routing (TNR) [131] also needs a subset of important vertices V ′,
called transit nodes. Depending on the proposals, this subset can be calculated through
a graph partition or using the resulting set of applying a preprocessing HH phase. The
preprocessing phase of TNR calculates the distance from every vertex v to its access
points. These access points are the transit nodes that cover the shortest-path tree whose

48 Chapter 2. State of the Art of the Shortest-Path Problem

root is v. The preprocessing stores, for each vertex in the graph, the shortest path distances
to its access nodes, and the shortest path distances between all pair of transit nodes. Then,
the query phase is performed just looking up into this distance table.

Contraction Hierarchies (CH) [132, 133] simplified the precomputation of HH using
only a contraction step. The preprocessing phase just contracts the vertices following a
priority total order, rank(v), and shortcuts them. Its query is similar to HH, considering
the vertex total order as levels in the graph. That is, the forward search only considers
those edges e = (u, v) : rank(u) < rank(v) whereas the backward one considers those
edges e = (u, v) : rank(u) > rank(v).

The Hub-based Labeling (HL) approach [134, 10] consists on defining two labels,
forward and backward, for each vertex in the graph. Each label stores all pairs of vertices
and their corresponding distances, found during a previous CH search, from the vertex
considered. The query just intersects the nodes stored in the forward label of the source
vertex with the nodes of the backward label of the target vertex.

Non-hierarchical Algorithms

The non-hierarchical preprocessing methods aim to avoid settling unnecessary vertices
using information obtained in a preprocessing phase that does not follow a hierarchical
structure. The nature of these approaches is diverse, extracting different sets of data during
the preprocessing phase. The following subsections will describe the approaches that are
in this category.

The most representative approaches that are in this category are Landmark-based rout-
ing, Geometric Containers, Edge Flags, Reach-based routing, Precomputed Cluster Dis-
tances, and combinations of some of them, such as REAL, or ReachFlags. The preprocess-
ing phase of these approaches differs between them because each one computes specific
values that needs in its query phase.

Landmark-based routing (ALT) [124, 135] calculates the distances from a subset of
vertices, called landmarks, to the remaining vertices and vice-versa. Applying the triangle
inequality with this distances in the query phase, it computes better lower bounds for the
distance from a vertex to the target vertex compared with a A* algorithm [121].

The Geometric Containers (GC) [136] and Edge Flags (EF) [137, 81] approaches
consist on computing a region that a search can reach through shortest paths if it traverses
an edge e. GC preprocessing phase calculates for each edge e = (u, v) the subset of
vertices y that are in a shortest path starting with e, P = 〈u, v, . . . , y〉. In order to reduce
the space consumption, the algorithm just stores a geometric shape that contains them. In
a GC query phase, the search can prune those edges whose containers (geometric shapes)
do not contain the target vertex. EF needs a previous region definition of the graph.
Its preprocessing phase computes all the shortest paths that end in every region. The
edges e = (u, v) involved in shortest path towards a region r are tagged with a flag. In an
EF query phase, the search can prune those edges that do not have the flag to the region
where the target vertex belongs.

The Reach-based [122] routing consists on using an upper bound, called reach value,
for each vertex to prune the search. This upper bound is like the maximum cost that a
vertex can bear to belong to a shortest path when a search reaches it. The reach value

2.6. Application Example: Shortest-Path Algorithms applied to roadmaps 49

of a vertex v is computed as follows. A vertex v in a shortest path Q = 〈s, . . . , t〉 has a
reach value r(v,Q), that is the minimum value between distance from source, d(s, v), and
distance to goal, d(v, t). If vertex v belongs to more than one shortest path between any
pair of vertices, its reach value r(v,G), r(v), in a graph G will be the maximum reach
value from all the shortest paths that it belongs to. Performing a Dijkstra algorithm in the
query phase, the insertion of a vertex v into the priority queue is avoided if is reached with
δ(v) > r(v) and with estimated distance to target de(v, t) > r(v).

The Precomputed Cluster Distances (PCD) [138, 139] approach is based on upper
and lower bounds to prune the search in the query phase. It needs a previous clustering
process of the graph vertices. The preprocessing phase computes these bounds calculating
the shortest-path distances between clusters. In the query phase, the search handles a
general upper bound and computes a lower one for every reached vertex. If this lower
bound is higher than the current upper one, then the vertex is pruned.

REAL [135] and ReachFlags [140] are improved versions of the Reach algorithm.
The former is an improved bidirectional variant of Reach combined with ALT, and the
latter is a combination of an improved variant of Reach and EF.

Hierarchical and Non-hierarchical Combinations

Other proposals combine hierarchical with non-hierarchical techniques. The use of sep-
arator nodes with multilevel techniques allow the creation of a series of interconnected
overlay graphs in a hierarchical fashion. HPMLG [141] and multilevel CRP [142] are
some examples. Highway Hierarchies Star (HH*) [143] combines the goal-directed tech-
nique of ALT with Highway Hierarchies. SHARC [144, 145] combines a hierarchical
multilevel approach with edge flags (SHortcut + ARC flags). Finally, CALT, CHASE and
TNREF [146, 140] are combinations of Core-Based Routing + ALT, Contraction Hierar-
chies + Edge Flags and Transit-Node Routing + Edge Flags respectively.

Parallel Opportunities for Routing Algorithms

Most of the algorithms deployed during the preprocessing phase of the routing approaches
are shortest-paths solutions, or slightly modified variations. The following list shows a
brief description of the algorithms that may be present in a preprocessing phase together
with the notation we have used to address them:

• SSSPf , any SSSP algorithm, label-setting or label-correcting, which search tra-
verses the edges using the natural direction (forward), computing shortest paths
from a node to its successors.

• SSSPb, any SSSP algorithm, label-setting or label-correcting, which search tra-
verses the edges using the opposite direction (backward), computing shortest paths
from the predecessors of a node v to v.

• LS-SSSP, a label-setting SSSP algorithm.

• FW, any variant of the Floyd-Warshall algorithm.

• GP, any graph partitioning algorithm.

50 Chapter 2. State of the Art of the Shortest-Path Problem

Alg. Preprocessing step Π-Approach
HH Candidate search Π-Prod. of LS-SSSPf

Candidate eval. Π-Eval.
Network contraction Π-Spec.

DT Distance comp. Π-Alg. of FW or Π-Prod. of SSSPf

HNR Subset V ′ selection Π-Prod. of LS-SSSPf and Π-Eval.
Covering set comp. Π-Prod. of SSSPf

Network creation Π-Eval.
CH Ordering Π-Eval.

Contraction Π-Spec.
TNR Subset T selection Π-Alg. of FW or Π-Prod. of SSSPf

Access dist. comp. Π-Prod. of LS-SSSPf

Transit dist. comp. Π-Alg. of FW or Π-Prod. of SSSPf

HL Label creation Π-Eval. and Π-Spec.
ALT Landmark selection Π-Prod. of SSSPf

Distance comp. Π-Prod. of SSSPf and SSSPb

GC Container comp. Π-Prod. of SSSPf

EF Region definition Π-Alg. for GP
Edge-flags comp. Π-Prod. of SSSPb

Reach Distance comp. Π-Alg. of FW or Π-Prod. of SSSPf

PCD Cluster definition Π-Alg. for GP
Distance comp. Π-Prod. of SSSPf

Table 2.6: Different parallel strategies that can be applied to the preprocessing phase of the most
relevant routing algorithms for roadmaps.

The first intuition for parallelizing the preprocessing phase of a routing approach is to
parallelize the sequential algorithm they used before (Π-Alg.).

Additionally, parallel productivity-based approaches (Π-Prod.) can also be deployed
if an algorithm has to be applied for each element h of a subset H , using all possible
productivity formulations. Remember that some of these formulations include the combi-
nation of concurrently executing different instances of parallel algorithm, as we have seen
for the APSP problem in Sect. 2.5.2.

There are preprocessing computations that are simple checks or element evaluations
where no parallel algorithm is needed. However, we can apply the parallel productivity-
based concept in these cases where every evaluating operation can be computed indepen-
dently from the rest (Π-Eval.).

Finally, some preprocessing procedures have an inherent sequential nature in where
each iteration needs to know the results of the previous one. For that special cases it could
be designed a particular algorithm following the ideas of both parallel productivity-based
approaches and speculative techniques. This algorithm would consider each iteration as
independent of the rest, and it would compute the following iteration by distributes spec-
ulative possibilities of it to the available computational devices of the preprocessing plat-
form. When the results needed to proceed with the following iteration are available, the
computational devices will store or discard the computations they made according to these

2.7. Summary 51

values. We refer to this possible parallel solution as Π-Spec..
Table 2.6 shows a summary of the parallel approaches we can apply in order to paral-

lelize the preprocessing phases, of routing algorithms, described in the previous section.

2.7 Summary
The study of parallel approaches that solve shortest-paths problems has shown that the
last trends use the Graphics Processing Units (GPUs) due to their powerful capabilities.
The exploitation of these devices in graphs with non-negative edge weights is one of the
main objectives of this Ph.D. thesis. Our work is focused on this kind of graphs due to the
wide variety of real-world graphs that fulfill this property.

In the context of the Single-Source Shortest-Path (SSSP) problem, the last state-of-
the-art implementation is presented in the work of Martín et al. [23]. This work is a port
of Dijkstra’s algorithm for the GPU devices, but without full taking advantage of their
powerful capabilities due to the sequential nature of the original algorithm. However, we
have seen in the literature, how other authors found some mathematical formulations that
allow to increase the number of situations where it is possible to apply parallel computa-
tions [24]. Implementing these formulations for a GPU approach, similarly to Martín et al.
solution, can lead us to a new GPU parallel solution with better performance.

Additionally, we have not found any study, from those that present a GPU solution,
that takes care about the important runtime configuration parameters that are needed to
configure a GPU execution of the algorithm. The correct tuning of this approaches can
lead us to solutions with lower execution times due to the proper use of the computa-
tional capabilities of this kind of hardware accelerators. The following chapter, Chapter 3,
presents the description and development of the new GPU parallel solution, while Chap-
ter 4 shows an exhaustive study of the runtime configuration parameters that are involved
around the shortest-path context in general, and for our solution in particular.

In the context of the All-Pair Shortest-Path (APSP) problem, we have found that there
are two different strategies to compute the paths and distances, dynamic-programming and
productivity-based approaches, together with their corresponding parallelization versions.
For the particular case of non-dense graphs, that is the focus of this Ph.D. thesis, the par-
allel approach of the productivity-based strategy usually delivers better performance than
the parallelization of dynamic-programming APSP algorithms [43, 22, 104, 106]. We
have found different parallel approaches inside this productivity-based strategy that are
classified according to the dimension they try to parallelize [115], but not all of them have
been studied and/or implemented in the solutions of the literature. Since the last trends
of High Performance Computing (HPC) are focused on using all heterogeneous compu-
tational resources available on a processing environment, one of the efforts of this Ph.D.
thesis is to study and develop both homogeneous and heterogeneous implementations,
following this yet unexplored Partitioned Source-parallel approach to solve the APSP.

These contributions have been published in the following articles:

1. “Parallel Approaches to the Shortest Path Problem - A Survey,” H. Ortega-Arranz,
Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, To be submitted to ACM Com-
puting Surveys

52 Chapter 2. State of the Art of the Shortest-Path Problem

2. “The Shortest Path Problem: Analysis and Comparison of Methods,” H. Ortega-
Arranz, D. R. Llanos, A. Gonzalez-Escribano, Book, 1st edition, ser.(Synthesis Lec-
tures on Theoretical Computer Science series), Morgan & Claypool.
Online, DOI: 0.2200/S00618ED1V01Y201412TCS001

http://dx.doi.org/0.2200/S00618ED1V01Y201412TCS001

Chapter 3
Using GPUs to solve the Single-Source
Shortest-Path Problem

An important current trend in parallel computation is to exploit the use of hardware ac-
celerators, such as Graphics Processing Units (GPUs). Their powerful capabilities have
triggered their massive use to speed up highly parallel computations. Programing for these
devices has been simplified by the introduction of high-level data parallel languages, such
as CUDA [21]. A CUDA executable program has some configuration and execution pa-
rameters, such as the threadblock size, and the L1 cache state, whose wise combined use
can lead to significant performance gains. The application of GPGPU (General Purpose
computing on GPUs) to accelerate problems related with shortest-path problems has in-
creased during the last few years. Some GPU solutions to the SSSP problem have been
previously developed using different algorithms, such as Dijkstra’s algorithm in [22, 23].

This chapter presents a new parallel approach to solve the SSSP problem in GPUs, for
non-negative edge weights, based on Crauser’s algorithm [24]. We present an experimen-
tal comparison of our algorithm with both its sequential version on CPU, and the fastest
parallel GPU implementation due to Martín et al. [23]. Additionally, our GPU version
has been enhanced by applying two CUDA optimization techniques: A proper selection
of the threadblock size, and the configuration of the L1 cache memory. The results of this
GPU-optimized version are compared with an optimized implementation of Dijkstra’s al-
gorithm taken from the Boost Graph Library [25]. We have used three different CUDA
architectures (Fermi GF100, Kepler GK104, and Kepler GK110B) for our experimenta-
tion, also making an architectural comparison of them in order to distinguish which one
is better for each kind of graph.

3.1 Defining the Frontier Set and the ∆ Threshold
As we stated in the previous chapter, Dijkstra’s algorithm, in each iteration i, calculates
the minimum tentative distance between all the nodes that belong to the unsettled set, Ui.
The node with the minimum tentative distance of Ui will be the next frontier node (see
Dijkstra’s algorithm in Sect. 2.2.2). If there are several unsettled nodes with the same
minimum tentative distance, the sequential algorithm will settle them one by one. As

53

54 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

Algorithm 5 Pseudo-code of Martín’s GPU implementation for Dijkstra’s algorithm.
1: while (∆ 6=∞) do
2: gpu_kernel_relax(U, F, δ); //Edge relaxation
3: vec_minimals = gpu_kernel_minimum(U, δ); //Settlement step_1
4: ∆ = min(vec_minimals)
5: gpu_kernel_update(U, F, δ, ∆); //Settlement step_2
6: end while

the graphs we are interested on do not have negative weights associated to the edges, the
choice/order of these settlements does not affect the correctness of the algorithm results
because it is impossible to reduce even more their tentative distance.

The label-setting parallelization of Dijkstra’s algorithm is based on safely settling at
the same time all possible unsettled nodes. The term safely settling means that after
traversing the outgoing edges of this frontier set Fi, it is not needed anymore to recompute
these results, because they are not wrong. We named ∆i to a limit value, computed in each
iteration i, that ensures that any unsettled node u with δ(u) ≤ ∆i can be safely settled.
Note that the bigger the value of ∆i, the more parallelism could be exploited. These safely
settled nodes will become the frontier nodes of the following iteration i + 1, creating a
new frontier set, Fi + 1. The outgoing edges of all these current frontier nodes will be
traversed in parallel to reduce the tentative distances of their adjacent nodes.

Description of the structures

Besides the basic structures needed to hold nodes, edges, and their weights, we define
three vectors that are used to store node properties:

(a) U [v], which stores whether a node v is an unsettled node;

(b) F [v], which stores whether a node v is a frontier node; and

(c) δ[v], which stores the tentative distance from source to node v.

3.1.1 Martín’s GPU Algorithm
In this subsection, we describe the GPU approach developed by Martín et al. [23]. In

that work, the four Dijkstra’s algorithm steps described in Sect. 2.2.2 are ported to a GPU
programming model (see Alg. 5). It is composed of three kernels that execute the internal
operations of the Dijkstra vertex outer loop.

The Frontier Set

The Martín et al. algorithm uses a conservative enhancement to increase the frontier set,
inserting only those nodes with the same minimum tentative distance. According to the
notation presented above, their frontier set on any iteration i, Fi+1, is composed of every
node x ∈ Ui with a tentative distance δ(x) equal to ∆i, being ∆i = min{δ(u) : u ∈ Ui}:

Fi+1 = {x ∈ Ui/δ(x) == min{δ(u) : u ∈ Ui}}

3.1. Defining the Frontier Set and the ∆ Threshold 55

Algorithm 6 Pseudo-code of the relax kernel.

gpu_kernel_relax(U, F, δ)
1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all j successor of tid do
4: if (U[j] == TRUE) then
5: δ[j] = Atomic_min(δ[j], δ[tid] + w(tid,j));
6: end if
7: end for
8: end if

Algorithm 7 Pseudo-code of the update kernel.

gpu_kernel_update(U, F, δ, ∆)
1: tid = thread.Id;
2: F[tid] = FALSE;
3: if (U[tid] == TRUE) and (δ[tid] = ∆) then
4: U[tid] = FALSE;
5: F[tid] = TRUE;
6: end if

After defining the frontier set, the authors have implemented two variants for the travers-
ing process of the outgoing edges: (1) The Successors variant, that follows the traditional
methods of the Dijkstra algorithm, traversing the outgoing edges of the frontier nodes;
and (2) the Predecessors variant, that traverses the incoming edges of the unsettled nodes
in a backward way, looking for frontier nodes.

Successors Variant

The successors variant iteratively deploys the three GPU kernels that execute the steps
of Dijkstra’s algorithm, until the termination condition is fulfilled. At that point, all nodes
have been either settled and their shortest path distances are known, or they are uncon-
nected to the source (infinite shortest path distance).

• The relax kernel (Alg. 6) calculates new tentative shortest path distances for the ad-
jacent unsettled successors of the current frontier nodes, f ∈ Fi. If these new com-
puted distances are lower than the current one, the minimum is kept. A GPU thread
is associated for each node in the graph. Each thread first checks if its assigned node
u belongs to the current frontier set by checking the boolean state stored in F [u].
Then, those threads responsible of a frontier node f traverse the outgoing edges
(f, v), reducing/relaxing the distances of the unsettled adjacent nodes, by checking
if the new value, δ[f] + w(f, v), is lower than the previous one, δ[v]. Note that,
having several concurrent GPU threads relaxing distances from different frontier
nodes, a race condition may happen if two or more threads read the same previous
tentative distance, δ[v], compute a lower one, δ[ft]+w(ft, v), but the higher value is

56 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

Algorithm 8 Pseudo-code of the relax kernel in Predecessors variant. Changes respect to
the successors variant are colored in red.

gpu_kernel_relax_predecessors(U, F, δ)
1: tid = thread.Id;
2: if (U[tid] == TRUE) then
3: for all j predecessor of tid do
4: if (F[j] == TRUE) then
5: δ[tid] = min(δ[tid], δ[j] + w(j,tid));
6: end if
7: end for
8: end if

the last stored. For this reason it is necessary to ensure an “atomic behavior” when
computing this relaxing process (see Line 5 of Alg. 6).

• The minimum kernel computes the minimum tentative distance of the nodes that
belongs to the Ui set. To do so, they use the reduce4 method included in the CUDA
SDK [147], but applying a minimum comparison instead of a sum operation. In a
previous step of the reduction process, each thread resets its corresponding value
of the shared memory to infinite, and it will not be updated/reduced for the settled
nodes when reading from the δ vector for performing the reduction. In this way,
the settled nodes are left out from the minimum computation process. This kernel
returns an array of a few minimum values, that are lately reduced in the CPU. The
resulting value of this final reduction is the ∆i limit, that in Martín’s algorithm
corresponds with the minimum tentative distance available in the iteration i. If the
minimum kernel returns an array of infinite values, that means that either all nodes
have been already settled, or the remaining ones are not connected to the source
node. Remember that, at the beginning of the algorithm, all tentative distances
were initialized to infinite.

• The update kernel (Alg. 7) settles the nodes that belong to the unsettled set, v ∈
Ui, whose tentative distance, δ(v), is equal to ∆i. This task extracts the settled
nodes from Ui. The resulting set, Ui+1, is the following-iteration unsettled set. The
extracted nodes are added to Fi+1, the following-iteration frontier set. Each GPU
thread checks, for its corresponding node v, whether U(v) ∧ δ(v) = ∆i. If so, it
assigns v to Fi+1 and deletes v from Ui+1, changing the corresponding elements of
the flag arrays.

Predecessors Variant

This variant differs from the traditional Successors variant in the way it reduces the
tentative distances of the unsettled nodes. That is, for every unsettled node, the Predeces-
sors algorithm checks whether any of its predecessor nodes belong to the current frontier
set (see Alg. 8). In that case, if the new distance through this frontier node is lower than
the previous one, the tentative distance is relaxed. The GPU predecessors implementation
assigns a single thread for each node in the graph. The relax kernel only computes those

3.2. Applying Crauser’s Ideas to Increase the ∆ Threshold 57

threads assigned to unsettled nodes u ∈ Ui. Every thread traverses back the incoming
edges of its associated node looking for frontier nodes.

3.2 Applying Crauser’s Ideas to Increase the
∆ Threshold

This section describes a proposal to parallelize the outer loop of Dijkstra’s algorithm
following the ideas of Crauser et al. [24] of incrementing ∆i. Our proposed GPU approach
will be named GPU Crauser in this dissertation. As explained above, the main problem of
this kind of parallelization is how to identify as many nodes as possible that can be safely
inserted in the following frontier set.

3.2.1 Crauser’s Algorithm

Parallelizing the outer loop of Dijkstra’s algorithm requires the identification of which
nodes can be settled at once, and thus, can be used as frontier nodes concurrently. Martín’s
algorithm inserts into the following frontier set, Fi+1, all nodes with the minimum ten-
tative distance in order to process them simultaneously. However, Crauser’s algorithm
introduces a more aggressive enhancement, allowing the insertion of nodes that have big-
ger tentative distances than the minimum δi into this frontier set. This leads to a higher
number of frontier nodes that can be processed at the same time in the following iteration.

The algorithm needs to compute in each iteration i, for each node of the unsettled
set, u ∈ Ui, the sum of: (1) its tentative distance, δ(u), and (2) its Out-Crauser Value,
representing the minimum weight of its outgoing edges, ω(u) = min{w(u, z) : (u, z) ∈
E}. Then, from these computed values, it calculates the total minimum value, also called
the ∆i threshold: ∆i = min{(δ(u) + ω(u)) : u ∈ Ui}. Finally, an unsettled node, u, can
be safely settled, becoming part of the next frontier set Fi+1, only if its δ(u) is lower than
or equal to the calculated threshold, δ(u) ≤ ∆i.

Fi+1 = {x ∈ Ui/δ(x) ≤ min{(δ(v) + ω(v)) : v ∈ Ui}}

Figure 3.1 shows a graph example where the Out-Crauser Values of the nodes s, a, b,
and c are highlighted, as well as their associated edges. Figure 3.2 shows the first steps of
the Crauser algorithm solving the SSSP for the source node s. When relaxing the frontier
node s, we reach the nodes a, b, and c, so we relax their tentative distance, that has a pre-
vious value of infinite (see Fig. 3.2(b)). Dijkstra’s algorithm would settle the node b, with
δ(b) = 1 as the minimum of all tentative distances. Martín’s algorithm performs the same
settlement, only inserting node b into the following frontier node, because there are no
more unsettled nodes with the same minimum value (∆0 = δ0(b) = 1). On the other hand,
the Crauser algorithm, due to the larger ∆ threshold (∆0 = δ0(b) + ω(b) = 1 + 3 = 4),
can settle all reached nodes composing a bigger frontier set F1 (see Fig. 3.2(c)).

58 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

1 32

3

4 4
2

s

c
2

a b

1

4

2

s a b c ...

T F F F F F

F T T T T T

0 8 8 8 8 8

... ...ω

δ
U

F0

0

321

0

Figure 3.1: Examples of a graph with Crauser’s out values, ω. Involved edges and weights are
highlighted in the figure. A snapshot of the structures used by the algorithm in the first iteration
(i = 0) is shown at the right of the figure.

1 32
3

2
4 4 2

s

a b c

1 32
3

2
4 4 2

s

a b c

1 32
3

2
4 4 2

s

a b c

8 8 8 8 80δ0

s

0 8 8

a b c

2 1 3δ0

s

0 8 8

a c

2 3
b

1δ0

2 3 21ω 2 3 21ω 2 3 21ω

(a) (b) (c)

Figure 3.2: Crauser’s algorithm steps: Starting point (a), edge relaxation (b), and settlement (c).

...

...x x

GPU

x... ...

...

minmin

20 1

+

0

...

...

+ + + + +
...

...

...

...

ω

δ0

1 2 n-1n/2

++

minmin minminminmin minmin

+

...

(relax kernel) (minimum kernel)

Figure 3.3: Graphical descriptions of the behavior of the GPU threads for: the minimum kernel
(right), and relax kernel (left) in the second iteration (i = 1) for the graph used as example.

3.2. Applying Crauser’s Ideas to Increase the ∆ Threshold 59

Algorithm 9 Pseudo-code of our Crauser minimum kernel, based on the reduce4 method
of the CUDA Software Development Kit (SDK). Additional code with respect to Martín’s
minimum kernel is colored in blue.

gpu_kernel_min(U, δ, ω, numVertices, dv_aux)
1: tid = thread.Id;
2: tid2 = thread.Id + blockDim.x
3: lid = local.thread.Id;

4: shared[lid] = inf;
5: __syncthreads();

6: int data1,data2 = inf;

7: if (U[tid] == TRUE) then
8: data1 = δ[tid] + ω[tid];
9: end if

10: if (tid2 < numVertices) then
11: if (U[tid2] == TRUE) then
12: data2 = δ[tid2] + ω[tid2];
13: end if
14: end if

15: shared[lid] = min(data1, data2)

16: for (int stride = blockDim.x/2; stride > 0; stride >>= 1) do
17: if (lid < stride) then
18: shared[lid] = min(shared[lid], shared[lid + stride]);
19: end if
20: __syncthreads();
21: end for

22: if (lid == 0) then
23: shared[lid] = min(shared[lid], shared[lid + 1]);
24: shared[lid] = min(shared[lid], shared[lid + 2]);
25: dv_aux[block.Id] = shared[lid];
26: end if

Algorithm 10 Pseudo-code of our Crauser update kernel. Modifications with respect to
Martín’s update kernel are colored in blue.

gpu_kernel_update(U, F, δ, ∆)
1: tid = thread.Id;
2: F[tid] = FALSE;
3: if (U[tid] == TRUE) and (δ[tid] ≤ ∆) then
4: U[tid] = FALSE;
5: F[tid] = TRUE;
6: end if

60 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

3.2.2 Porting Crauser’s Ideas to a GPU Implementation
The implementations of both Martín’s and Crauser’s algorithms look very similar because
they introduce a slight modification over the same base, the Dijkstra algorithm. One of
the main differences is the computation of the Out-Crauser Values. These values are
like a fixed “feature” of the nodes, since they do not change during the execution of the
algorithm. Therefore, their calculation is carried out in a precomputation phase, before
the algorithm starts the iterative process. The implementation of the first kernel of the
loop, the relax kernel, is identical, since the edge traversing for relaxing distances is the
foundation of Dijkstra’s algorithm. Figure 3.3 (left) shows a graphical illustration of the
behavior of the GPU threads when computing the relax kernel functions for the second
iteration of the example graph proposed in Fig. 3.2, described in the previous subsection.
The differences are found in the computation of the ∆ thresholds, located in the minimum
kernel, and in the settling process based on these limit values, located in the update kernel:

• The minimum kernel computes the minimum tentative distance of the nodes that be-
longs to the Ui set, plus the corresponding Out-Crauser Values. Algorithm 9 shows
the code based on the reduce4 method of the CUDA SDK, and the modifications
needed to apply the Crauser ideas. We insert an additional sum operation per thread
before the reduction loop. Figure 3.3 (right) shows a graphical illustration of the
behavior of the GPU threads when computing our modified minimum kernel. The
resulting value of this reduction is the new increased ∆i. Some NVIDIA CUDA
devices can maximize the occupancy with threadblock sizes that are multiples of
three. The modifications of lines 23-24 aim to make possible the compatibility of
this reduction algorithm with more threadblock sizes. Not only sizes that are multi-
ples of two, but also multiples of three.

• Algorithm 10 shows how each single GPU thread of the update kernel now checks,
for its corresponding node v, its belonging to the current unsettled set, and if its
tentative distance is lower to or equal than the ∆i threshold (U(v) ∧ δ(v) ≤ ∆i). If
that is the case, it assigns the node to the next frontier set and removes it from the
unsettled set. This usually results in a bigger frontier set for the following iteration,
Fi+1, or, in the worst case, equal to Martín’s version.

3.3 Experimental Evaluation of the GPU-SSSP Algorithm
In this section, we describe: The methodology used to design and carry out experiments
to validate our approach; the different scenarios we considered; the platforms and input
sets used; and the experimental results obtained.

3.3.1 Methodology
We have evaluated three different sets of experiments with different objectives. The first
set studies the relevance of our new GPU approach against the previous GPU algorithm
of Martín et al. described in the state of the art. The second set of experiments compare
our GPU approach against an optimized sequential version for CPUs. Finally, the third

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 61

set analyzes how the GPU architectural differences of the NVIDIA boards used affect the
execution times for input sets with different characteristics.

For all the studied experiments, we have randomly selected 100 source nodes from the
graph, using an uniform distribution, to solve 100 SSSP problems, obtaining an average
of the execution times. The details of the input sets selected will be described in the
following section.

A description of the platforms and devices used, the tuning values used for the opti-
mized GPU version, and the experimental scenarios considered are presented below.

Target Architectures

We have selected NVIDIA GPU devices with two different CUDA architecture families
(Fermi and Kepler), with very different features. The NVIDIA GPU devices used in our
experimentation are placed in different host machines:

• The first host machine is an Intel(R) Core i7 CPU 960 3.20GHz, with a global
memory of 6 GB DDR3, that runs an Ubuntu Desktop 10.04 (64 bits) OS. It contains
two boards that we named:

Fermi: a GeForce GTX 480 which CUDA architecture is the Fermi GF100, and

Kepler: a GeForce GTX 680 which CUDA architecture is the Kepler GK104.

• The second host machine for the third board is an Intel(R) Xeon E5 2620 2.1GHz,
with a global memory of 32GB DDR3 running an Ubuntu Server 14.04 (64 bits)
OS. We named the board it contains:

Titan: a GeForce GTX Titan Black which CUDA architecture is the Kepler GK110B.

The experiments have been launched using the 295.41 64-bit NVIDIA driver. The lat-
ter machine described is where the sequential CPU implementations have been executed,
due to the big amounts of global memory available to allocate the relaxed heap structure.
All programs have been compiled with gcc using the -O3 flag.

Proper Tuning Values for GPU Optimized Executions

The programmers of GPU devices have to decide by themselves the values for some
running configuration parameters. CUDA programming guidelines [13, 21] give some
recommendations in order to avoid values that lead to terribly non-efficient execution
times. These recommendations are based on the correct use of the underlying hardware
resources.

As it will be described in detail in the following chapter, there are still significant dif-
ferences between different values in the ranges suggested by CUDA. Even there are cases
where none of these recommended values are the optimal ones for a kernel execution.
Best values can be detected by exhaustive trial-and-error test. However, we are going to
use the values presented in Table 3.1 for our GPU optimized version. These values can be
predicted using kernel characterization techniques, which are presented in Sect. 4.6.

62 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

size/kernel deg2 deg20 deg200 ≥ deg1000
F K F K F K F K

24k relax 192-A 128-A 192-A 128-A 192-A 192-A 192-A 192-A
24k min 192-A 96-A 128/192-A 96-A 192-A 128-A 192-A 128-A
24k update 192-A 128-A 192-A 128-A 192-A 128-A 192-A 128-A
49k relax 192-A 256-A 256-A 256-A 256-N 256-A 256-N 256-A
49k min 192-A 96-A 128-A 96/128-A 192-A 256-A 192-N 256-A
49k update 192-A 128-A 192-A 128-A 192-A 256-A 256-N 256-A
98k relax 192-A 128-A 256-N 256-A 384-A 256-A 384-A 256-A
98k min 128-A 128-A 192-N 96-A 192-A 128-N 192-A 128-N
98k update 192-A 128-N 192-N 256-N 192-N 128-N 192-N 128-N

Table 3.1: Values selected for threadblock-size and L1 cache state through kernel characterization
process for Fermi (F) and Kepler (K). L1 states are: (A) Augmented or (N) Normal.

Experiment I: Comparison Against a State-of-the-art Algorithm

From the suite of different implementations described in [23], we used as reference the
fastest versions fully implemented for GPUs, that we name GPU Martín in this study. We
have left out the slower ones; the hybrid approaches that execute some phases on the CPU
and others on the GPU. The following paragraphs describe the experimentation scenarios
we have considered:

Scenario A: GPU Martín vs GPU Crauser
The first evaluated scenario is designed to compare both GPU implementations,
GPU Martín and GPU Crauser. Additionally, we have adapted our algorithm to
the predecessors variant. This allows to make experimental comparisons with both,
successor and predecessor, GPU Martín’s variants.

To fairly compare the performance gain of our approach to Martín et al. results,
we used in our approach the same CUDA configuration values used by them in
their study: (1) 256 threads per block for all kernels; and (2) L1 cache normal state
(16KB). We named this configuration the default configuration.

Scenario B: GPU Crauser vs Optimized GPU Crauser
The second scenario is designed to compare the best approach from Scenario A, our
GPU Crauser successors variant using the default configuration, to its optimized
version using the best values for the GPU parameters (see Table 3.1).

Additionally, we compare this last GPU version against the sequential execution of
Crauser’s algorithm ported for CPUs (CPU Crauser).

Experiment II: Boost Graph Library Comparison

We compare the results of our tuned approach with an optimized implementation of Di-
jkstra’s algorithm in a classical widespread-used graph library: The Boost Graph Li-
brary [25]. This sequential implementation uses Relaxed Heaps as the structure to imple-
ment the priority queues where the reached nodes are stored and sorted. This comparison

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 63

between both optimized approaches will show what are the conditions for which each
different approach is better.

Experiment III: NVIDIA Architectural Comparison

Since the characteristics and features of the upcoming GPUs are significantly different,
such as the number of cores (from 480 to 2880), the clock rate frequency of these cores
(from 1.4 Ghz to 0.98 Ghz), or the bandwidth of memory transfers, among others, it is
relevant to study how these variations affect to the final execution times. We compare
the results obtained launching the optimized GPU Crauser version on the different exper-
imental boards (Fermi, Kepler, and Titan), using the synthetic-random graph collection
and benchmarking/real-world networks. This comparison will show which are the archi-
tectural features that better fit with the graph properties.

3.3.2 Input set characteristics
In this section we describe the three different input sets used for our experiments. The first
one is due to Martín et al. [23]. We used for the first experiment (Experiment I) the input
set of synthetic graphs of Martín et al.’s study [23] to fairly compare the performance
differences between both GPU algorithms, GPU Martín vs GPU Crauser.

• Martín’s graphs: These graphs have sizes that range from 220 to 11 · 220 vertices.
This kind of graphs are very sparse, as we have kept the fan-out degree they chose,
d+(v) = 7 : v ∈ V . The generator tool creates seven adjacent predecessors for each
vertex. They inverted the generated graphs in order to study approaches based on the
successors version. The edge weights are integers that randomly range from 1 to 10.
As these graphs present a biased distribution of the nodes, where the first half of
vertices need more time to compute the solution than the second half (see Fig. 3.4),
we will use the following graph input sets for the remaining experiments.

The two remaining graph collections have been used in all designed experiments. The
second input set is composed by a collection of random graphs generated with a tech-
nique designed to produce random structures with specific properties. The third input set
contains real-world and benchmarking graphs provided by research institutions.

• Synthetic random graphs: We used the random-graph generation technique pre-
sented in [148] to create a second input set (PreZer algorithm). This decision was
taken in order to: (1) avoid dependences between a particular graph structure of the
input sets and performance effects related to the exploitation of the GPU hardware
resources; and (2) avoid focusing on specific domains, such as road maps, physical
networks, or sensor networks among others, that would lead to a loss of generality.

Briefly described, this technique generates random graphs for a given cardinality
of the vertex set, and a given edge-density of the graph. However, the process of
adding edges between any pair of nodes is completely random, so it is possible that
the generated graph is not fully connected. To solve this issue, after the creation
process, we modify the first edge of each node of the graph to force its connection

64 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

0

10

20

30

40

50

60

0 10000 20000 30000

T
im

e(
m

ill
is

ec
on

ds
)

Average time execution of groups of 32 SSSPs

Figure 3.4: Temporal cost of the different source nodes in the graph for the Kepler GPU.

with the node with the next number on an arbitrary-chosen ordering. This produces
a line of all nodes of the graph. Note that this modification ensures the complete
connectivity of the graph.

In order to evaluate the algorithmic behavior for some graph features, we have
generated a collection of graphs using three sizes (24 576, 49 152, and 98 304)
and five fan-out degrees (2, 20, 200, 1 000, and 2 000). We named random24k,
random49k, and random98k, to the collection of graphs with 24 576, 49 152, and
98 304 nodes, respectively. These sizes, smaller than Martín’s graphs, were chosen
with the aim of discovering the threshold where the sequential CPU version exe-
cutes faster than the GPU. Weights are integers randomly chosen, and uniformly
distributed in the range [1 . . . 100].

• Dimacs and social-network graphs: We used this set of graphs in order to observe
if the evaluated approaches not only performs well in synthetic laboratory graphs
but also in real contexts. We used some of the real-world and benchmarking graphs
facilitated by DIMACS [149, 150], such as the walshaw graphs (low degree), clus-
tering graphs (low degree), rmat-kronecker graphs (medium-high degree), and the
social-networks graphs (medium degree), including also a graph based on the flickr
structure provided by [151].

All the graphs of every input set used are stored using the Compressed Sparse Row (CSR),
depicted in Fig. 3.5, that involves the following elements:

1. Vector nodes[] with length n+1, which stores in the position x the index of the
vector edges[] where the list of adjacent nodes of vertex x starts. The list of
adjacent nodes for node x ends in the index value stored in nodes[x+1].

2. Vector edges[] with length m, which stores the adjacency nodes, the tail nodes of
the edges.

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 65

vector_nodes

s a b c d e f g
s
a
b
c
d
e
f
g

1 32

32
4 4

11

2
4

2
d e

gf

s

a b
c1 32

2 2
3 4

3 3 2 4
2 4 1

4 2 1
1 1 2

4

0 3 5 7 11 14 17 20 21

vector_edges

vector_weights

a b c s d c d s b e g a b f b c f d e g c

2 1 3 2 2 3 4 3 3 2 4 2 4 1 4 2 1 1 1 2 4

0 3 5 7 11 14 17 20

s a b c d e f g

Figure 3.5: Example of a graph representation using an adjacency matrix (left) and the Com-
pressed Sparse Row (CSR) storage format (right).

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

m
s
)

Number of nodes (multiples of 2
20

)

GPU Martin vs. GPU Crauser

Fermi Martin Pred
Kepler Martin Pred

Kepler Crauser Pred
Fermi Crauser Pred

Fermi Martin Succ
Kepler Martin Succ

Kepler Crauser Succ
Fermi Crauser Succ

Figure 3.6: Scenario A.1: Execution times of GPU Martín vs GPU Crauser using Martín graphs.

3. Vector weights[] with length m, which stores the weights associated to the edges
of edges[].

3.3.3 Experimental Results I - State of the Art Comparison
Scenario A: GPU Martín vs GPU Crauser

A.1 - Martín Graphs: The execution times for both parallel algorithms, GPU Martín and
GPU Crauser, with their respective variants, Successors and Predecessors, carried out in
the different CUDA architectures, Fermi and Kepler, are shown in Fig. 3.6. Due to the
extreme sparse nature of the graphs, there are not so many possibilities to take advantage
of the parallelism present in Crauser’s algorithm. Therefore, Fermi board, with a higher
clock rate, delivered better results than Kepler. Performance improvement in Fermi board,
over Martín’s algorithm, goes from 20.29%, for the Predecessors variant, up to 45.80%,

66 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

for the Successors variant. On the other hand, these improvements are not so significant
in the Kepler GK104 architecture, involving just 1.07% and 8.14% for Successors and
Predecessors variants respectively.

A.2 - Random Graphs: Figure 3.7 shows the execution times for the synthetic random
graphs. The x-axis represents the fan-out degree of the graphs in logscale. Note that
there are additional results for the 98k case (degree 5, 10, 50, 100, and 500) shown in this
figure, included in order to obtain smoother plots and clarify the trends and thresholds.
In order to clarify the figure, we have only shown the results obtained with the CPU
Crauser version, and the results of our GPU Crauser version executed in Titan, because
the execution times for the remaining GPU boards present the same trends related to size
and degree. Regarding the size, as expected, the execution times increase as the graph
size gets bigger. Having more nodes in the graph implies that there are more distance
combinations to be computed.

However, the algorithms have a complex behavior depending on the degree. The
graphs with a lower degree (2 to 20) give fewer possibilities to take advantage of the
algorithm parallelism because, in each iteration, there are fewer nodes that can be inserted
in the next frontier set. For the GPU Martín algorithm, this fact leads to worse execution
times than the tested sequential version (CPU Crauser).

As the degree increases in the graphs, all methods reduce their execution times, more
drastically for the parallel ones. However, when higher degrees are reached (1 000 and
2 000) the execution times rise again. Although it could seem that, with a higher degree,
it may be possible to take better advantage of the parallel algorithms, the computation
performed in the relax kernel increases because there are more distances to be checked.
Additionally, this checking operation must be done with an atomic instruction serializ-
ing the execution of two or more threads that try to access the same memory position
simultaneously.

The speedups obtained with our GPU Crauser solution versus (a) the sequential im-
plementation, and (b) the GPU Martín version, are shown in Table 3.2. The most repre-
sentative results for synthetic random graphs appear for the ones with a lower degree, up
to 18.42× against the CPU, and up to 32.20× compared to the GPU Martín.

A.3 - Real-world Grahps: Figure 3.8 shows, in logarithmic scale, the execution times
for real-world and benchmarking graphs. All approaches have similar trends and behav-
iors to those in synthetic random graphs, except for the GPU Martín algorithm, that cannot
beat the CPU Crauser version for some graph families. Our GPU approach still returns
the fastest execution times.

The speedups obtained with our GPU Crauser solution versus (a) the sequential imple-
mentation, and (b) the GPU Martín version, are shown in Table 3.3. The highest speedups
obtained, for the benchmarking/real-world set, are up to 45.38× and up to 130.25×
against the CPU Crauser and the GPU Martín approaches, respectively.

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 67

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2 20 20
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random24k - SYNTH - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 0

 500

 1000

 1500

 2000

 2500

2 20 20
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random49k - SYNTH - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random98k - SYNTH - CPU vs GPU

Martin Titan
CPU Crauser Xeon

Crauser Titan

Figure 3.7: Scenario A.2: Execution times of GPU Martín vs GPU Crauser using synthetic ran-
dom graphs.

68 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

Fermi Kepler Titan
GPU C vs. GPU C vs. GPU C vs.

CPU C GPU M CPU C GPU M CPU C GPU M
24k-d2 5.90× 24.61× 5.54× 24.66× 3.56× 21.62×
24k-d20 6.07× 11.04× 5.98× 11.23× 4.33× 12.11×
24k-d200 3.84× 2.50× 3.94× 2.39× 3.49× 2.40×
24k-d1000 3.00× 1.43× 3.08× 1.40× 3.76× 1.48×
24k-d2000 3.30× 1.22× 3.51× 1.21× 4.66× 1.25×
49k-d2 10.78× 29.97× 10.47× 29.20× 7.39× 29.62×
49k-d20 10.55× 9.66× 10.63× 9.62× 7.76× 9.40×
49k-d200 5.93× 2.18× 6.32× 2.10× 6.26× 2.30×
49k-d1000 3.62× 1.35× 3.80× 1.32× 4.55× 1.40×
49k-d2000 4.85× 1.20× 4.98× 1.18× 6.39× 1.19×
98k-d2 18.42× 31.85× 18.01× 31,70× 14.22× 32.20×
98k-d20 17.33× 7.75× 17.63× 7.73× 14.97× 8.55×
98k-d200 8.23× 1.87× 9.07× 1.86× 10.18× 2.07×
98k-d1000 5.91× 1.27× 6.13× 1.24× 8.16× 1.31×
98k-d2000 6.23× 1.13× 6.32× 1.13× 9.09× 1.16×

Table 3.2: Scenario A.2: Speedups of GPU Crauser (GPU C) vs. the sequential implementation
(CPU C), and vs. GPU Martin (GPU M) for the used GPU boards. Speedups above 10× are
highlighted in grey.

Fermi Kepler Titan
GPU C vs. GPU C vs. GPU C vs.

CPU C GPU M CPU C GPU M CPU C GPU M
walshaw 19.23× 27.99× 19.22× 28.00× 16.57× 29.20×
clustering 25.43× 23.97× 26.68× 26.63× 25.41× 30.61×
kronecker 27.09× 3.78× 30.76× 4.05× 43.05× 5.21×
social net. 33.30× 129.71× 37.09× 130.25× 45.38× 125.99×

Table 3.3: Scenario A.3: Best speedups obtained for each real-world/benchmarking family graph
of GPU Crauser (GPU C) vs. the sequential implementation (CPU C), and vs. GPU Martín
(GPU M).

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 69

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0 16726

22963
31163
40421

192244

325557

862664

Time (ms - logscale)

N
o
d
e
s
 (

lo
g
s
c
a
le

)

C
lu

s
te

ri
n
g
 -

 D
IM

A
C

S
 -

 C
P

U
 v

s
 G

P
U

M
a
rt

in

T

it
a
n

C
P

U
 C

ra
u
s
e
r

X
e
o
n

C
ra

u
s
e
r

T
it
a
n

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0 65536 131072 262144

524288

1048576

2097152

Time (ms - logscale)

N
o
d
e
s

K
ro

n
e
c
k
e
r

-
D

IM
A

C
S

 -
 C

P
U

 v
s
 G

P
U

M
a
rt

in

T

it
a
n

C
P

U
 C

ra
u
s
e
r

X
e
o
n

C
ra

u
s
e
r

T
it
a
n

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0 11143 16386

45087

78136

99617

143437

Time (ms - logscale)

N
o
d
e
s

W
a
ls

h
a
w

 -
 D

IM
A

C
S

 -
 C

P
U

 v
s
 G

P
U

M
a
rt

in

T

it
a
n

C
P

U
 C

ra
u
s
e
r

X
e
o
n

C
ra

u
s
e
r

T
it
a
n

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
0
0
0
0
0 434102

540486

820878

Time (ms - logscale)

N
o
d
e
s

S
o
c
ia

l
N

e
tw

o
rk

s
-

D
IM

A
C

S
 -

 C
P

U
 v

s
 G

P
U

M
a
rt

in

T

it
a
n

C
P

U
 C

ra
u
s
e
r

X
e
o
n

C
ra

u
s
e
r

T
it
a
n

Figure 3.8: Scenario A.3: Execution times of GPU Martín vs GPU Crauser using real-world
graphs.

70 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

m
s
)

Number of nodes (multiples of 2
20

)

Default GPU Crauser vs. Optimized GPU Crauser (Succ)

Kepler GPU Crauser
Opt. Kepler GPU Crauser

Fermi GPU Crauser
Opt. Fermi GPU Crauser

Figure 3.9: Scenario B.1: Execution times of GPU Crauser vs its optimized version using Martín
graphs.

Scenario B: GPU Crauser vs Optimized GPU Crauser

B.1 - Martín Graphs: Figure 3.9 shows the execution times for the fastest variant, the
GPU Crauser Successors variant, using the default and the optimized configurations. Ex-
periments are carried out in the Fermi and Kepler boards. The use of parameter tuning
techniques, which take better advantage of the GPU hardware resources, leads to faster
execution times of up to 9.75% for Fermi, and up to 5.11% for Kepler architectures.
Comparing the execution times of the optimized GPU Crauser Successors variant with
its analogous sequential version, the CPU Crauser Successors, we observe that the use of
the GPU offers a speedup of up to 26.68×, for Fermi’s architecture, and up to 21.4×, for
Kepler’s architecture.

B.2 and B.3 - Random and Real-world Grahps: Figure 3.10 shows that the use of
the parameter tuning technique to choose optimized configuration parameters (thread-
block size and L1 cache configuration) leads to significant percentages of performance
improvements for this set of graphs. The most significant are 14.39% for Fermi, 22.28%
for Kepler, and 22.93% for Titan (see Table 3.4). Note that, for the particular scenario
of graph 49k with degree greater than 200, there is hardly any improvement because the
proper values selected coincide with those used in the default configuration.

The performance gains obtained for real-world graphs are up to 9% for walshaw
graphs and almost 6% for social networks and kronecker graphs (see Fig. 3.11).

Applicability of configuration parameter values to other architectures

In all the previous experimental results where the Kepler board (GK104 Kepler archi-
tecture) and the Titan board (GK110B Kepler architecture) appear, we can see that the
configuration parameter values classified as appropriate values for the Kepler board are

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 71

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random98k - SYNTH - Kernel characterization

Fermi
Fermi opt

 50

 100

 150

 200

 250

 300

 350

 400

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random98k - SYNTH - Kernel characterization

Kepler
Kepler opt

 50

 100

 150

 200

 250

 300

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random98k - SYNTH - Kernel characterization

Titan
Titan opt

Figure 3.10: Scenario B.2: Execution times of GPU Crauser vs its optimized version using ran-
dom graphs in the Fermi, Kepler, and Titan boards.

72 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

GPU 24k 49k 98k
boards ≤20 200 >200 ≤20 200 >200 ≤20 50-200 >200
Fermi 1.8% 2.6% 3.3% 4.4% 7.0% 0.2% 4.2% 8.9% 14.4%
Kepler 0.9% 4.7% 13.7% 2.5% 7.3% 17.1% 6.5% 10.4% 22.3%
Titan 2.3% 6.3% 10.4% 6.6% 7.2% 16.7% 10.2% 7.4% 22.9%

Table 3.4: Scenario B.2: Synthetic random graphs; relative improvements on the execution time
between GPU Crauser using default configuration parameters, and optimized configuration param-
eters. Gains above 10% are highlighted in grey.

 0

 50

 100

 150

 200

 250

 300

 350

 400

11
14

3
16

38
6

45
08

7

78
13

6

99
61

7

14
34

37

T
im

e
 (

m
s
)

Nodes

Walshaw - DIMACS - Kernel characterization

Fermi
Fermi opt

Kepler
Kepler opt

Titan
Titan opt

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

65
53

6
13

10
72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

T
im

e
 (

m
s
)

Nodes

Kronecker - DIMACS - Kernel characterization

Fermi
Fermi opt

Kepler
Kepler opt

Titan
Titan opt

Figure 3.11: Scenario B.3: Social networks and kronecker graphs; execution times of GPU
Crauser using default configuration parameters, and the optimized configuration parameters.

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 73

also applicable to Titan with the same trends. This happens because they belong to the
same CUDA architecture family.

3.3.4 Experimental Results II - Boost Graph Library Comparison

Figure 3.12 shows, for the synthetic random graphs, the execution times of the sequential
reference Dijkstra Boost library implementation [25] that uses relaxed heaps, and our op-
timized solution. We observe that for graphs with low fan-out degree and small size, there
is a low level of parallelism associated. Thus, the sequential algorithms work better than
the parallel GPU implementation (6.8× faster than Fermi). However, as the complexity
of the graph increases, in terms of size and degree, also augmenting the level of paral-
lelism, the difference between the execution times from the Boost library compared with
the execution times from our GPU solution becomes bigger.

The greater the size of the graph, the earlier the performance of the GPU solution
surpasses the sequential one: (1) deg200 for the 24k-size scenarios, with a speedup of
2.13×; (2) deg20 for the 49k-size scenarios with a speedup of 1.28×; and (3) deg10 for
the 98k-size scenarios with a speedup of 1.24×. Finally, our GPU solution reaches a total
speedup of 6.9×, 10×, and 19× for the synthetic random graphs with degree 2 000 and
24k, 49k, and 98k nodes, respectively, using the Titan board.

Figure 3.13 shows the same experimental scenario for real-world graphs, where sim-
ilar conclusions can be obtained. The Boost library implementation performs well in the
walshaw graph family, with speedups of up to 13.09× vs our optimized version. How-
ever, our GPU approach starts to get closer to it in the clustering family graphs, and finally
offers a better performance than the Boost version in social-network and kronecker family
graphs (with speedups of up to 4.76×), while requiring lower quantities of memory.

The memory usage of each approach, displayed in Fig. 3.14, is different due to the
nature of each algorithm. The sequential implementation uses relaxed heaps as queue
data structure to store the reached nodes. When there are many edges per node in a graph,
the space usually needed by this queue increases exponentially, making the computation
impractical for cases with big sizes and high fan-out degree. In comparison, our GPU
solution only has three additional vectors, in addition to the data structures to store the
graph, and their size does not increase during the execution (see Sect. 3.1), leading to a
consumption of up to 11.25 times less memory space (kronecker_g500-logn21 graph).

3.3.5 Experimental Results III - Architectural Comparison

Figure 3.15 shows, for the synthetic random graphs, the execution times of the optimized
GPU Crauser executed in the different NVIDIA platforms used. We observe that the last
released board, NVIDIA Titan, did not always have the best performance for all cases.
For the scenario with the lowest size and degree (24k-deg2), the Fermi board obtained
the best performance with a difference of up to 39.40%. However, as the degree of the
graph increases, these performance distances get closer until they meet at degree 200 in
our experimental study. Finally, for more dense graphs, the Titan board reaches the best
performance with a gain of up to 40.53%, as compared with Fermi. This behavior also
appears for the other random graphs, but the meeting point between both architectures

74 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

2 20 20
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random24k - SYNTH - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2 20 20
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random49k - SYNTH - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random98k - SYNTH - boost vs GPU OPT

BOOST Xeon
Crauser Fermi opt
Crauser Titan opt

Figure 3.12: Experimental Results II: Execution times of the optimized GPU Crauser implemen-
tation, executed on Fermi and Titan boards, versus the optimized sequential Dijkstra’s algorithm
included in the Boost Graph Library, for synthetic random graphs.

3.3. Experimental Evaluation of the GPU-SSSP Algorithm 75

 1

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0 16726

22963
31163
40421

192244

325557

862664

Time (ms - logscale)

N
o
d
e
s
 (

lo
g
s
c
a
le

)

C
lu

s
te

ri
n
g
 -

 D
IM

A
C

S
 -

 b
o
o
s
t
v
s
 G

P
U

 O
P

T

B
O

O
S

T
 X

e
o
n

C
ra

u
s
e
r

F
e
rm

i
o
p
t

C
ra

u
s
e
r

T
it
a
n
 o

p
t

 0

 1
0
0
0

 2
0
0
0

 3
0
0
0

 4
0
0
0

 5
0
0
0

 6
0
0
0

 7
0
0
0

 8
0
0
0

 9
0
0
0

 1
0
0
0
0 65536 131072 262144

524288

1048576

2097152

Time (ms)

N
o
d
e
s

K
ro

n
e
c
k
e
r

-
D

IM
A

C
S

 -
 b

o
o
s
t
v
s
 G

P
U

 O
P

T

B
O

O
S

T
 X

e
o
n

C
ra

u
s
e
r

F
e
rm

i
o
p
t

C
ra

u
s
e
r

T
it
a
n
 o

p
t

 0

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0 11143 16386

45087

78136

99617

143437

Time (ms)

N
o
d
e
s

W
a
ls

h
a
w

 -
 D

IM
A

C
S

 -
 b

o
o
s
t
v
s
 G

P
U

 O
P

T

B
O

O
S

T
 X

e
o
n

C
ra

u
s
e
r

F
e
rm

i
o
p
t

C
ra

u
s
e
r

T
it
a
n
 o

p
t

 4
0
0

 6
0
0

 8
0
0

 1
0
0
0

 1
2
0
0

 1
4
0
0

 1
6
0
0 434102

540486

820878

Time (ms)

N
o
d
e
s

S
o
c
ia

l
N

e
tw

o
rk

s
-

D
IM

A
C

S
 -

 b
o
o
s
t
v
s
 G

P
U

 O
P

T

B
O

O
S

T
 X

e
o
n

C
ra

u
s
e
r

F
e
rm

i
o
p
t

C
ra

u
s
e
r

T
it
a
n
 o

p
t

Figure 3.13: Experimental Results II: Execution times of the optimized GPU Crauser implemen-
tation, executed on Fermi and Titan boards, versus the optimized sequential Dijkstra’s algorithm
included in the Boost Graph Library, for real-world graphs.

76 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

 1

 10

 100

 1000

 10000

 100000

(s
yn

-ra
ndom

)_
24k-

deg2000

(s
yn

-ra
ndom

)_
49k-

deg2000

(s
yn

-ra
ndom

)_
98k-

deg2000

 (w

alsh
aw)_

fe
_oce

an

(c
lu

st
erin

g)_
co

nd-m
at-2

005

 (k

ro
neck

er)_
g500-lo

gn21

(s
ocia

l n
et.)

_co
Papers

DBLP

M
e
m

o
ry

 (
M

B
 -

 l
o
g
s
c
a
le

)

Family graph

Memory usage

CPU BOOST
GPU Crauser

Figure 3.14: Memory usage of Boost library and GPU Crauser for certain graphs belonging to
different graph families.

decreases as the graph size increases. This occurs because the Fermi board has a lower
number of cores (480) than the other tested boards (1 536 for Kepler and 2 880 for Titan),
but a higher clock rate (1.40 Ghz against 1.05 and 0.98 Ghz). Thus, for graphs with
a low degree, where the level of parallelism is lower, it is better to use a higher clock-
rate GPU with fewer cores instead of a slower one with more processing units. On the
other hand, having higher degrees, there are more threads performing useful relaxing
operations. Therefore, for graphs with high degree and high size, it is better to use a GPU
with many more cores to exploit higher levels of parallelism.

For the real-world and benchmarking graphs (see Fig. 3.16), the GPU boards have
returned analogous results to those of the synthetic random graphs, where Fermi is the
fastest one for low size and low degree graph instances, and as these features increase,
Titan obtains better results.

3.4 Summary

In this chapter we have described how we have adapted the Crauser et al. SSSP algo-
rithm to exploit GPU architectures. We have compared our GPU-based approach with
its sequential version for CPUs, and with the most relevant GPU implementations pre-
sented in [23]. This new GPU version obtains significant speedups for all kinds of graphs
compared with the previous approaches tested, up to 45× and 130× respectively. It also

3.4. Summary 77

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 20 20
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random24k - SYNTH - GPU architecture comparative

Fermi
Kepler

Titan

 0

 50

 100

 150

 200

 250

2 20 20
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random49k - SYNTH - GPU architecture comparative

Fermi
Kepler

Titan

 50

 100

 150

 200

 250

 300

 350

 400

2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

T
im

e
 (

m
s
)

Degree (logscale)

random98k - SYNTH - GPU architecture comparative

Fermi
Kepler

Titan

Figure 3.15: Experimental Results III: Comparison of CUDA architectures using the optimized
GPU Crauser implementation for synthetic random graphs executed on the considered boards.

78 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0 16726

22963
31163
40421

192244

325557

862664

Time (ms - logscale)

N
o
d
e
s
 (

lo
g
s
c
a
le

)

C
lu

s
te

ri
n
g
 -

 D
IM

A
C

S
 -

 G
P

U
 a

rc
h
it
e
c
tu

re
 c

o
m

p
a
ra

ti
v
e

F
e
rm

i
K

e
p
le

r
T

it
a
n

 0

 5
0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

 2
5
0
0

 3
0
0
0

 3
5
0
0 65536 131072 262144

524288

1048576

2097152

Time (ms)

N
o
d
e
s

K
ro

n
e
c
k
e
r

-
D

IM
A

C
S

 -
 G

P
U

 a
rc

h
it
e
c
tu

re
 c

o
m

p
a
ra

ti
v
e

F
e
rm

i
K

e
p
le

r
T

it
a
n

 0

 5
0

 1
0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0 11143 16386

45087

78136

99617

143437

Time (ms)

N
o
d
e
s

W
a
ls

h
a
w

 -
 D

IM
A

C
S

 -
 G

P
U

 a
rc

h
it
e
c
tu

re
 c

o
m

p
a
ra

ti
v
e

F
e
rm

i
K

e
p
le

r
T

it
a
n

 4
0
0

 4
5
0

 5
0
0

 5
5
0

 6
0
0

 6
5
0

 7
0
0

 7
5
0

 8
0
0 434102

540486

820878

Time (ms)

N
o
d
e
s

S
o
c
ia

l
N

e
tw

o
rk

s
-

D
IM

A
C

S
 -

 G
P

U
 a

rc
h
it
e
c
tu

re
 c

o
m

p
a
ra

ti
v
e

F
e
rm

i
K

e
p
le

r
T

it
a
n

Figure 3.16: Experimental Results III: Comparison of CUDA architectures using the optimized
GPU Crauser implementation for real-world graphs executed on the considered boards.

3.4. Summary 79

obtains important speedups for some of the tested graph families compared with the opti-
mized sequential implementation of the Boost library [25].

We have observed that the algorithm due to Martín et al. is not as profitable in GPUs
as Crauser’s for graphs with a small number of nodes and a low fan-out degree, behaving
even worse than the sequential CPU Crauser version. This occurs due to the small thresh-
old for converting reached nodes into frontier nodes of their algorithm, and due to the low
level of parallelism that can be extracted for these graphs. Our optimized GPU solution
cannot beat the times of the Boost library in graphs with extremely low degrees for the
same reason. However, our approach runs faster when the size and degree increases, ob-
taining a speedup of up to 19× for some graph families, consuming up to 11.25× less
memory.

Most recent GPU architectures contain higher amounts of single processors at the cost
of reducing clock frequency, in order to take advantage of the huge parallelism levels of
the applications. However, as can be seen in our experimental results, there is a thresh-
old, related to the low application parallelism level, where previous CUDA architectures,
working with higher clock frequencies, obtain better execution times with a difference of
up to 40.5%. Therefore, the faster architecture in this application domain is not always
the most modern one, but depends on the features of the corresponding input set.

Finally, we have checked that is possible to obtain significant performance gains, up
to 22.43% in our GPU implementation compared with the non-optimized version, by
correctly tuning some CUDA configuration parameters. As we have briefly said in the ex-
perimental setup description, in Sect. 3.3.1, this optimized configuration can be obtained
by trial-and-error or through a prediction process based on a kernel characterization cri-
teria that will be described in the following chapter. This characterization process for
the kernels of our GPU SSSP algorithm is also shown there, together with the exhaustive
evaluation confirming the usefulness of the predicted values.

The work and conclusions described in this chapter have been published in the follow-
ing articles:

• “Comprehensive Evaluation of a New GPU-based Approach to the Shortest Path
Problem,” H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos,
International Journal of Parallel Programming, 43(5) pp. 918–938, 2015.
Online, DOI: 10.1007/s10766-015-0351-z

• “A New GPU-based Approach to the Shortest Path Problem,” H. Ortega-Arranz, Y.
Torres, D. R. Llanos, and A. Gonzalez-Escribano, in Proceedings of the 11th Inter-
national Conference on High Performance Computing and Simulation, ser.(HPCS’13),
Helsinky, Finland: IEEE, 2013, pp. 505–511.
Online, DOI: 10.1109/HPCSim.2013.6641461

http://dx.doi.org/10.1007/s10766-015-0351-z
http://dx.doi.org/10.1109/HPCSim.2013.6641461

80 Chapter 3. Using GPUs to solve the Single-Source Shortest-Path Problem

Chapter 4
Exhaustive Search for GPU Optimal
Parameter Values Within the Shortest-Path
Context

Arriving to a parallel implementation of a highly-parallel algorithm is an affordable task.
However, the optimization of GPU codes is a challenging activity. The main reason for
this difficulty is the high number of parameters, programming choices, and tuning tech-
niques available, many of them related with complex, and sometimes hidden, architec-
ture details. A useful strategy to systematically attack these optimization problems is
to characterize the different kernels of the application, and use this knowledge to select
appropriate configuration parameters in a systematic way.

In this chapter we use different kernel characterization criteria to tune the execution
of our proposed implementation for NVIDIA GPUs to solve the APSP problem. Our
experimental results show that the combined use of proper configuration policies, and
the concurrent-kernels capability of new CUDA architectures, leads to a performance
improvement of up to 58% (2.4× faster) with respect to a basic configuration among the
ones recommended by CUDA, considered as a baseline.

4.1 Problem Description: The Importance of Using
Proper Values for Tuning Parameters

Nowadays, GPUs are among the most powerful HPC devices. However, their use with
programming models such as CUDA implies to take several decisions in terms of runtime
configuration parameters. Some of these CUDA specific configuration parameters, such
as the threadblock size, the configuration of the L1-cache size, and the amount of concur-
rent kernels [21], do not need changes in an application code, turning out the optimization
of the application into a simple tuning process. The joint use of the considered techniques
can lead to significant performance improvements, but the problem is that there are many
possible combinations.

Until now, the only way to ensure which are the best values for these configuration/op-

81

82 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

timization parameters is to carry out an empirical study that explores the complete search
space. In order to avoid this costly task, CUDA gives some recommended values, such as
the use of threadblock sizes that maximize the occupancy, as a proper choice for a good
NVIDIA GPU performance [21]. However, the authors of [16] have shown through syn-
thetic micro-benchmarking that this recommendation does not always correlate with the
values that lead to the optimal performance. Instead, they proposed some rules to select
the optimal values depending on the kernel features.

Since we have a GPU implementation that we want to optimize using these tuning
techniques, we will follow the guidelines proposed by [16]. First we will refine and
extend these guidelines to accommodate them for the shortest path context, taking into
account some input graph features that modify the computing behavior of the GPU. Later
we will characterize the kernels of our GPU implementation in order to obtain predicted
values that are meant to be suitable for optimal/near-optimal executions.

In order to evaluate the validity of the new model, it is needed to check the correctness
of our predictions. This test is carried out by executing an exhaustive search that evaluates
the most relevant values for the configuration parameters.

Additionally, the usefulness of the model should be also evaluated, in terms of per-
formance improvements, by comparing the execution times obtained with the predicted
configurations against the execution times of a baseline configuration. This baseline con-
figuration represents the configuration that a GPU programmer could apply following the
recommendations of CUDA guidelines [21], leading to the poorest performance.

Since the second generation of NVIDIA architectures, CUDA supports concurrent
kernel execution. With this feature different kernels can be executed concurrently, allow-
ing better utilization of GPU resources. The maximum limit of concurrent kernels that
the architectures GF110 and GK104, used for other experiments in this Ph.D. thesis work,
support is up to 16 kernels. Note that, this limit can be lower depending on the usage
of the underlying hardware resources made by the launched kernels. Moreover, the ad-
vantages of concurrent kernel execution are automatically exploited by the CUDA kernel
dispatcher, providing a high efficiency without an extensive user intervention.

Using this feature, we aim to solve the APSP problem through the n × SSSP ap-
proach by concurrently executing several instances of the kernels involved in our GPU
SSSP implementations (relax, minimum, and update), where the different instances of
each one are assigned to different SSSP sources. Finally, the integrity of the model has
to be tested when it is used together with a concurrent kernel execution. Along with this
experimentation, we will try to obtain some guidelines for the concurrent kernel usage to
fit into the previously mentioned extended model for parameter tuning.

4.2 State of the Art: Scarce Models for GPU Configura-
tion Parameter Tuning

There exists multiple code tuning strategies for CUDA programming model [21]. These
strategies are currently more complicated to understand and use than those designed for
commercial CPUs. Therefore, squeezing the computational power of a GPU requires
much more programming effort. There is a lack of studies focused on the tuning of CUDA

4.2. State of the Art: Scarce Models for GPU Configuration Parameter Tuning 83

configuration parameters. A correct choice of them is critical to take advantage of GPU
capabilities, even when applying previous code optimizations techniques.

Regarding the threadblock size tuning, one of the first works that shows some inklings
of squeezing the GPU using these techniques is the work of Wynters [152]. He tested
several threadblock sizes in a matrix multiplication implementation using a GPU with
240 cores (pre-Fermi architecture). The comparison between the evaluated sizes shows
that the correct choice for this configuration parameter is very important, due to the high
difference in the execution times. However, the comparison is not completely fair since
threadblocks with very few threads are used (1, 4, 16, 36, 64, 81, 144) against threadblocks
of 256 threads. An example of a more recent work is [153], where the authors evaluated all
threadblock sizes multiples of the warp size, 32 threads, for their application. However,
this study is applied only to GPUs with Fermi’s architecture, and their implementation
only accepts cubic threadblock sizes (n×n×n), leaving out many possible combinations.

CUDA programming guidelines [13, 21] highlight the importance of using proper
threadblock sizes. Their recommendation is to choose one that maximizes occupancy of
the Streaming Multiprocessors of the target GPU, in order to reduce the memory latencies
when accessing the global memory of the device. However, there are situations where
other non-recommended values present significant better performance than these CUDA
values [16]. Results of previous studies made by our research group [15, 154] also show
the importance of adapting, not only the configuration parameters such as the threadblock
sizes, but also the shared memory vs. the L1 cache memory sizes, according to the specific
memory access pattern of the kernel to be tuned.

Regarding the management of the memory hierarchy, there are also few works that
study its importance in terms of performance gains, and they are only focused on Fermi’s
architecture. The authors of [155] show how the increment of the first cache mem-
ory of the hierarchy (L1-cache memory) significantly improves the total performance of
an application, by taking advantage of data locality. The CUDA programming guide-
lines [13, 21] pose that experimentation is required to determine the best combination of
L1 cache/shared memory for a given kernel. Some examples of works that experimentally
compared their implementations with different managements of the L1 cache in order to
find the best configuration are [156, 157].

All works previously mentioned do not systematically explore a wide range of the joint
use of these configuration parameters, nor relate their use with the underlying hardware
effects, nor give some guidelines to apply proper values in order to optimize other GPU
applications, nor even consider more modern NVIDIA CUDA architectures. Only the
work presented in [16] covers a complete study on which are the proper values to use
according to some characteristics of the GPU kernels. However, this model does not
consider some situations where these kernel characterizations could change depending on
the application-dependent parameters, nor the joint effect of using the modern feature of
launching several kernels concurrently.

The creation of such a model, that can predict parameter values that lead to optimal/near-
optimal execution times, will be useful for the final GPU programmers, alleviating them
from the burden of performing an empirical search of these proper values, as it was done
in [158, 159]. Additional examples where these studies would have been useful can be
found in tools such as FLAME [160], and MCUDA [161]. Despite the valuable work

84 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

carried out in them, the user still needs to manually determine by trial-and-error the best
values of configuration parameters. Such a model can also be used to complement other
frameworks that try to automatically tune the GPU kernels. We will cover this point in
more detail in Sect. 6.2.

4.3 Kernel Characterization Model:
Code-Dependent Parameters

In this section we describe the kernel characterization with respect to a classification cri-
teria based on the work presented in [16]. This criteria is based on three kernel code
features that can be obtained by inspection of the source code: Memory access pattern,
Computational load ratio, and Data sharing. We have refined the criteria by determin-
ing new specific value ranges, and classification methods for each of these three features.
These ranges have been determined by experimental measures for the platforms consid-
ered [162].

Memory Access Pattern (MAp)
It refers to how each thread accesses the global memory positions at a given moment.
Three different kind of patterns are defined:

(a) Full-coalesced: Each warp of threads requests only one transaction segment (also
known as cache line) at the same time. This means that every thread is request-
ing data in the same segment, and therefore, the number of memory requests is
small. The memory requests are overlapped with the instruction computation or the
memory-request latencies of the following warps. This overlapping is optimized
when the SM occupancy is maximized [21].

(b) Medium-coalesced: Each warp requests between two and four transaction segments
at the same time. This means that there are threads of the same warp that request
data from different segments. Thus, the overlapping benefits of computation and
global memory latencies depend on other kernel features described below.

(c) Scatter: Each warp requests more than four transaction segments. Thus, the number
of memory requests significantly increases with respect to the full-coalesced pattern
needing more warps with high computational load to compensate the memory la-
tencies.

Computational Load Ratio (CLr)
It refers to the mean ratio of logic or arithmetic instructions per thread compared to the
memory accesses of the same thread. Note that this metric is related to the operational
intensity metric of [163], but our metric considers the number of memory transfers inde-
pendently of their number of bytes, which differs depending on the L1 activation config-
uration (32 bytes when deactivated, and 128 otherwise).

We define three ranges for this ratio:

4.4. Kernel Characterization Model: Graph-Dependent Parameters 85

• Low CLr, ratio values between 0 and 10.

• Medium CLr, ratio values between 10 and 100.

• High Clr, ratio values over 100.

Note that during the time that one or more warps are computing, other warps blocked
due to global memory request can finish their communication (global memory transaction)
phase, hiding the memory latencies. Broadly described, the communication-computation
overlapping is optimized using maximum-occupancy threadblock sizes for full-coalesced
memory access patterns with a low CLr, medium-coalesced memory access patterns with
a medium CLr, and scatter access patterns with a high CLr.

Data Sharing Across Blocks Ratio (DSr)
It refers to the ratio of data sharing compared to the number of memory accesses per
thread. We name the limit values for this metric as:

• High DSr, when all threads of a block re-uses all values fetched by other threads;

• Low DSr, when there is no DS (each thread accesses to different data).

• We consider all situations between the limits described as Medium DSr.

When there is a high DSr in a kernel, the recommendation in [16] is to increase
the number of threads per block in order to take profit of the data present in the cache
memories. Moreover, they recommend to augment the L1 cache size in order to store
more reused values for Fermi’s GF100 architecture, or to increase the L1 local data band-
width for Kepler’s GK104.

4.4 Kernel Characterization Model:
Graph-Dependent Parameters

For the problems related with the calculations of the shortest paths within a graph, the
kernel characterization criteria not only depends on the kernel programming but also on
the graph properties, such as the mean fan-out degree and the size of the graph.

Depending on these two graph parameters, the number of required hardware resources
and the memory hierarchy bottlenecks vary for the programmed kernels. Thus, the rec-
ommendations for proper values of the configuration parameters depending on the kernel
characterization could slightly vary.

Number of Vertices of the Graph
The behavior of the GPU changes when the number of launched threads overpasses the
maximum limit of active threads that it can support. In this case we say that the GPU
enters in a stressed situation. Let stressing ratio, st(G,GPU), being G a graph, and GPU

86 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

the particular device used, be the ratio between the number of launched threads and the
maximum number of active threads of the GPU device.

In our GPU Crauser solution, the number of launched threads is equal to n, that is the
number of vertices of the input graph G. Note that, for the particular case of minimum
kernel, the number of launched threads is equal to n/2, but it still depends on this graph
feature. Thus, we can associate this graph property, n, with the previously defined ratio,
st(G,GPU), to determine the behavior of a particular GPU:

• Low stressing ratio those with st(G,GPU) ∈ (0, 1.5];

• Medium stressing ratio as those with st(G,GPU) ∈ (1.5, 3]; and

• High stressing ratio as those with st(G,GPU) > 3.

Mean Fan-out Degree
The behavior of the particular relax kernel (see Alg. 6) also depends on the number of
outgoing connections the nodes of the graph have. This is because every GPU thread as-
signed to a frontier node has to explore all its adjacent vertices checking their belonging
to the corresponding unsettled set Ui, and checking if the new obtained distance is lower
than the previously stored value to keep the minimum one. Therefore, a high mean fan-out
degree implies more memory accesses for each thread of the relax kernel. The augmen-
tation of the size of the L1-cache can alleviate the burden of these overloading accesses.
Note that the behavior of the remaining kernels, minimum and udpate, does not directly
depend on this graph feature, because the GPU threads do not check any value regarding
the adjacent successor vertices of their assigned nodes.

Let d(G) be the mean fan-out degree of the input graph G(V,E), defined as the mean
number of outgoing edges for the graph nodes. We classify the input graphs according to
the values of the mean fan-out degree as:

• Low d(G) graphs those graphs with d(G) ∈ [1, 20);

• Medium d(G) graphs those graphs with d(G) ∈ [20, 200]; and

• High d(G) graphs those graphs with d(G) > 200.

This parameter may affect the DSr code-dependent parameter for the same kernel.
Thus, the classification of the specific kernel features should be taken into account.

4.5 Characterizing the Kernels of the SSSP Algorithm
A trial-and-error optimization of the GPU performance would imply a very large ex-
perimentation space due to the big number of possible combinations. Through the ker-
nel characterization model described above and the guidelines proposed in [16], we can
classify the GPU kernels of a program, and therefore predict which configuration values
would lead to a good performance for our GPU implementation. Table 4.1 summarizes

4.5. Characterizing the Kernels of the SSSP Algorithm 87

the relax, minimum and update kernel properties using the classification criteria described
above.

relax kernel: The code of this kernel is shown in Alg. 6.

(MAp) The first condition (line 2) performs coalesced memory accesses, whereas the
inner instructions carry out low/medium coalesced accesses. Therefore, we
consider that it has a medium-coalesced pattern.

(CLr) The computational load ratio is low because there are less than 10 logic/arith-
metic instructions, and several global memory accesses.

(DSr) Finally, the data sharing across blocks will increase as d(G) and n increase.

minimum kernel: The code of this kernel is shown in Alg. 9.

(MAp) It has a full-coalesced pattern because contiguous threads access to contiguous
memory addresses.

(CLr) There are more than 20 logic/arithmetic operations considering the min opera-
tions and the for loop against a pair of values to retrieve from global memory,
so it has a medium CLr.

(DSr) The data sharing across blocks is not affected by d(G) nor n, and hardly any
data sharing is performed, so it has a low DSr.

update kernel: The code of this kernel is shown in Alg. 10.

(MAp) All data structures are accessed with a full-coalesced pattern.

(CLr) There is just one instruction per memory access (low CLr).

(DSr) There is no data sharing present in this kernel (low DSr).

4.5.1 Predictions for the Threadblock-size Values
With the previous characterization of the GPU kernels, we can then predict which would
be the proper values for the thread-block size in terms of the input sets characteristics
st(G,GPU) and d(G), in order to obtain an optimal/near-optimal execution time for our
application (see Table 4.2):

• relax kernel: A medium-coalesced access pattern with a low CLr suggests the use
of the minimum value of the threadblock-sizes that maximize the occupancy. De-
pending on the st parameter the kernel data sharing across blocks varies. As this
reutilization increases, the optimal threadblock size is higher:

– low st: The lowest value that maximizes the occupancy (192 for Fermi, and
128 for Kepler);

88 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

Kernel d(G) MAp CLr DSr
Relax Low medium-coalesced low low

Medium medium-coalesced low medium
High medium-coalesced low high

Minimum Low/Med./High full-coalesced medium low
Update Low/Med./High full-coalesced low low

Table 4.1: The characterization of the relax, minimum and update kernels depending on the mean
fan-out degree, d(G). The characterization parameters are the Memory access pattern (MAp), Com-
putational load ratio (CLr), and Data sharing across blocks (DSr).

Kernel st Threadblock-size L1-Cache management
FERMI KEPLER FERMI KEPLER

relax
Low 192 128 Increased Increased

Medium 192 / 256 128 / 256 Increased Increased
High 192 / 256/ 384 256 Increased Increased

minimum
Low 128 / 192 96 / 128 Increased Increased

Medium 128 / 192 96 / 128 Increased Increased
High 128 / 192 96 / 128 Disconnected Disconnected

update
Low 192 128 Increased Increased

Medium 192 128 Increased Increased
High 192 128 Disconnected Disconnected

Table 4.2: Prediction values resulting from the kernel characterization process.

4.6. Experimental Evaluation 89

– medium st: The two lowest values that maximize the occupancy (192/256 for
Fermi, and 128/256 for Kepler);

– high st: Even higher values than the ones predicted for medium stressing ratio
due to high reutilization (192/256/384 for Fermi, and 256 for Kepler).

• minimum kernel: A full-coalesced access pattern with a medium CLr suggests the
use of the minimum value of the threadblock sizes that maximize the occupancy,
or even slightly lower values, although they do not fully maximize the occupancy
(128/192 for Fermi, and 96/128 for Kepler). The behavior of this kernel is not
affected by the st parameter.

• update kernel: A full-coalesced pattern with a low CLr leads to the use of the min-
imum value of the threadblock sizes that maximize the occupancy (192 for Fermi,
and 128 for Kepler). The behavior of this kernel is not affected by the st parameter.

4.5.2 Predictions for L1-cache Management
The characterization of the kernels also allows us to predict which is the proper state that
should be chosen for the L1-cache memory (deactivated, normal state, increased) to obtain
a optimal/near-optimal execution time of our application.

In the SSSP kernels, the shared memory is not totally filled up, so the increase on
the size of the L1-cache memory does not lead to performance degradations, and this
augmentation alleviates the memory thrashing effects. However, when there is too much
thrashing in the L1 cache, as it happens when the GPU enters in stressed situations, the
performance can be improved by deactivating this memory. This occurs because the de-
activation of the L1 cache memory implies the reduction of the size of the transaction
segments (from 128 to 32 bytes). This size reduction accelerates the transmission of the
requested segments. The number of requested transaction segments from global memory
is highly increased for graphs that cause a high-stressing situation to the GPU.

Therefore, the predictions for all SSSP kernels are:

• to increase the L1-cache memory for graphs with a low/medium st(G,GPU); and

• to deactivate the L1-cache memory for graphs with a high st(G,GPU).

For the particular case of the relax kernel, that has a high DSr (data sharing across
blocks), the recommendation is to always increase the size of the L1-cache memory, even
when it is executed on high-stressing situations. A high ratio of data sharing across blocks
reduces the theoretical thrashing effect of a high-stressing situation.

4.6 Experimental Evaluation
In this section, we describe the methodology used to design and carry out the experiments
to validate the kernel characterization model. We also study its usefulness through the
different experimental scenarios we considered, the input sets used, and the experimental
results.

90 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

4.6.1 Methodology
We have performed a complete experiment that allows us to carry out three different
studies of the results, checking different premises. This experiment tested a wide range
of combinations of the possible configuration values, for the threadblock size, L1-cache
memory management, and number of concurrent kernel, across the full search space.
Afterwards, each study analyzes the experimental results focusing on different objectives:

• The first study evaluates the influence of launching more kernels concurrently in the
predictions, and also tries to find some guidelines to add to the model.

• The second study checks the validity of the model by comparing the values that
returned the best execution times with the ones predicted in Sect. 4.5.

• The third study measures the usefulness of these predictions in terms of perfor-
mance gain against a configuration that follows the recommendations of CUDA
programming guidelines.

We issued these experimental studies for the APSP problem, using the n×SSSP ap-
proach, measuring the execution time of the whole program and of each kernel separately.
The measures were repeated with different input sets, and for two different architectures,
Fermi GF100 and Kepler GK104.

A complete description of the platforms and devices used, and the experiments carried
out, is presented below.

Target architectures

The experiments have been carried out using the CUDA Toolkit 4.2, and the GPU devices
GTX 480 (Fermi GF100) and GTX 680 (Kepler GK104) with 23 040 and 16 384 maxi-
mum concurrent threads respectively. The host machine used is an Intel(R) Core(TM) i7
CPU 960 3.20GHz, with 6 GB of memory with an Ubuntu Desktop 10.10 (64 bits).

Experiment: Exhaustive Evaluation of CUDA Runtime Configuration Parameters

This experiment is carried out by executing an exhaustive search in the workspace that
evaluates the most relevant values for the CUDA configuration parameters. The follow-
ing paragraphs enumerates the considered values in our experimental searching for the
optimal execution times (see Table 4.3).

• Threadblock size: CUDA recommends the use of threadblock sizes that maximize
the SM occupancy of the GPU [21]. These sizes are dependent on the GPU architec-
ture, being 192, 256, 384, 512, and 768 for Fermi, and 128, 256, 512, and 1 024 for
Kepler. Nevertheless, following the recommendations of [16], we have also evalu-
ated lower values (occupancy ≥ 0.75). Note that all values should be multiples of
32 (warp size) in order to maximize the core exploitation of the SM. Consequently,
the block sizes that lead to a medium ratio of SM occupancy have been also tested
(96 and 128 for Fermi, and 96 for Kepler). The grid and blocks use one-row shapes

4.6. Experimental Evaluation 91

Configuration parameter Used values
FERMI GF100 KEPLER GK104

Threadblock size 96 / 128 / 192 / 256 / 96 / 128 / 256 /
384 / 512 / 768 / 1024 512 / 1024

L1-cache management Deactivated / Normal / Increased
#concurrent kernels 1 / 2 / 4 / 8 / 16 / 32

Table 4.3: Tested values in our experimental scenario for the different configuration parameters.

to couple the thread indexes with the elements of the unidimensional array where
the graph is stored.

• Cache L1 state We have included in our experimentation the three different states
that this cache can adopt for the GPU boards considered: Normal state (16K of
cache L1), Augmented state (48K of cache L1), and No-L1 state (cache L1 deacti-
vated).

• Number of concurrent kernels We have evaluated the following number of con-
current kernels: 1, 2, 4, 8, 16, and 32. The concurrent kernel technique allows to
send several instances of the same kernel simultaneously with a synchronized end.
Each of these instances operates in a different memory workspace to solve its corre-
sponding SSSP task. Due to the concurrent kernel synchronization, these memory
workspaces are transferred with a single operation.

Experimental Study I: Compatibility with Concurrent Kernels

This study is focused on the influence of executing more than one kernel concurrently in a
GPU with the model predictions of threadblock / L1-cache memory sizes. The analysis of
the results will determine if the recommendations given by our model can be maintained
when applying concurrent kernel execution or not. Finally, if this parameter is indepen-
dent, the results of this study can be used to create new guidelines to extend the kernel
characterization model.

Experimental Study II: Validation of Model Predictions

Assuming that the concurrent-kernel execution does not affect the predicted values, the
second study evaluates the validity of the model. This study check the correctness of the
model predictions by comparing them with the values that delivered the optimal execution
times.

Experimental Study III: Usefulness of Model Predictions

The objective of this study is to measure which is the maximum performance gap between
an optimized configuration, applying the kernel characterization model, and a naïve not

92 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

so good configuration, that could be obtained by any programmer that follows the CUDA
guidelines recommendations [21].

Once we have obtained the best configuration combining the three techniques in the
experiment, we compare it with this naïve configuration, that we have called the baseline
configuration. This baseline configuration applies the following values:

1. From the threadblock sizes recommended by the CUDA guidelines, that usually
offer a good performance, it uses the one that returns the lowest performance;

2. No cache adjustments, default configuration (normal state); and

3. No kernel concurrency (one kernel at a time).

4.6.2 Input set characteristics

The used input set is composed by the collection of synthetic random graphs described
in Sect. 3.3.2. In order to reduce the huge amount of results due to the high number
of values to combine, we have chosen only the graphs with a mean fan-out degrees
d(G) ∈ {2, 20, 200} from the synthetic random suite. The sizes n ∈ {24 576, 49 152, 98 304}
of these graphs have been designed to have scenarios with the stressing ratio in the three
levels previously defined (24k–low stressing ratio, 49k–medium stressing ratio, 98k–high
stressing ratio).

4.6.3 Experimental Results: Exhaustive Evaluation of CUDA Run-
time Configuration Parameters

Due to the high number of results returned from combining all possible configuration val-
ues, the complete set of figures with all the results of the remaining experimental scenarios
are presented in the Appendix A. These figures are the result of formatting the raw data
resulted from this experimentation in order to allow an easy comparison between different
dimensions at once.

As an example, Figs. 4.1 and 4.2 show the execution times for all the possible value
combinations of the configuration parameters, for the 24k-d2 and the 98k-d200 used
graphs for the Fermi GF100 architecture. These graphics are organized as follows. A
graphic is depicted for each kernel executed using a particular graph set (with a specific
number of nodes and fan-out degree). Inside this graphic we find that: The results are
grouped in three coupled frames depending on the configuration of the L1 cache memory;
The running times obtained using a different number of concurrent kernels executed are
depicted with a curve colored depending on the particular threadblock size used. A hor-
izontal line is depicted for the minimum running time inside each frame, with the same
color than the one used to depict its corresponding threadblock curve. Each line crosses
all three frames in order to ease the comparison of the minimums, being the lowest line
of the complete graphic the one that represents the configuration with the fastest running
times, for that kernel using this particular graph set.

4.6. Experimental Evaluation 93

 5

 6

 7

 8

 9

 10

 11

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 6

 7

 8

 9

 10

 11

 12

 13

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure 4.1: Exhaustive search for optimal values in the graph 24k-d2 scenario for the Fermi
GF100 architecture. Different threadblock sizes, states of the L1-cache, and number of concur-
rent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and update
kernel (bottom). Each different key depicted inside the top frame of each state of the L1 cache
memory is the same for the remaining frames with equal L1 cache memory configuration.

94 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 12

 14

 16

 18

 20

 22

 24

 26

 28

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure 4.2: Exhaustive search for optimal values in the graph 98k-d200 scenario for the Fermi
GF100 architecture. Different threadblock sizes, states of the L1-cache, and number of concur-
rent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and update
kernel (bottom). Each different key depicted inside the top frame of each state of the L1 cache
memory is the same for the remaining frames with equal L1 cache memory configuration.

4.6. Experimental Evaluation 95

4.6.4 Study I - Compatibility with Concurrent Kernel Execution
The results suggests that the use of the concurrent-kernel execution with the other two
techniques does not interfere with the predictions made. In all cases the best configura-
tion values using only one concurrent kernel matches the same value using more concur-
rent kernels.

Using this technique, a performance improvement in all scenarios is obtained; up to
52.8% for Fermi, and up to 44.3% for Kepler (both cases for the update kernel in 24k-d2),
with the exception of the d200 cases for the relax kernel. In there, it was better to leave
a sequential-kernel execution instead launching concurrent kernels. This occurs because
the number of memory accesses significantly increases when each thread is looking for
around 200 successors of its corresponding frontier node (see line 3 of Alg. 6). The mini-
mum kernel has also to carry out more memory accesses when calculating the minimum
value for graphs with bigger d(G) because there are more reached nodes with tentative-
distance values to compute in each iteration. This effect can be seen in the d200 scenarios,
where the optimal concurrent-kernel number is lower compared to the other cases. Oth-
erwise, for the update kernel, the increment of d(G) of each graph does not lead to more
memory accesses, so the optimal number of concurrent kernels is the same for all cases.

Following these results we can include into the programmer guidelines the recom-
mendation of reducing the number of concurrent-kernel deployment for kernels with big
number of memory accesses.

4.6.5 Study II - Validation of Model Predictions
Table 4.4 shows the best and the baseline values of CUDA parameters for the APSP ker-
nels. The first columns contain, the st(G), and the graph properties, n and d(G). The
remaining ones show the best values found for the studied parameters. These optimal val-
ues match almost all predicted values obtained following the optimization guidelines of
the kernel characterization model (see Sect. 4.5) for both architectures, Fermi and Kepler.
For the unmatched predicted values, the differences between the execution times deliv-
ered by them and the optimal performance are lower than the 1%. Therefore, we can also
consider them as proper values for optimal performances.

Summary of the applied optimization guidelines

For those kernels of any application that fulfill the same characterizations presented in
Table 4.1, we expect that they will present the same performance behavior when using the
same configuration values. Thus, we can extrapolate the following optimization guide-
lines for selecting threadblock size and L1-cache state management:

(1) Use the minimum size that maximizes the occupancy for kernels with a:

i Full-coalesced memory access pattern, a low CLr, and a low DSr (see all sce-
narios of update kernel in Table 4.4 (c)).

ii Medium-coalesced memory access pattern, a low CLr, and a low DSr (see
24k-scenarios of relax kernel in Table 4.4 (a)).

96 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

iii Full-coalesced memory access pattern, a medium CLr, a low DSr, and high
stressing ratio (see 98k-scenarios of minimum kernel in Table 4.4 (b)).

(2) Use lower sizes than the minimum one that maximize the occupancy for:

– Full-coalesced memory access patterns with a medium CLr, a low DS, and
a low/medium st kernels (see 24k and 49k scenarios of minimum kernel in
Table 4.4 (b)).

(3) Jump to higher maximizing occupancy sizes from the minimum one for:

– Medium-coalesced memory access patterns with a low CLr, and a medium/high
DS kernels (see 49k and 98k-scenarios of relax kernel in Table 4.4 (a)).

(4) Increase the L1 cache size for non-high stressing situations for the GPU, or high
data sharing situations:

– As predicted, the use of a bigger cache L1 size speeds up the execution time
compared with the normal size configuration, because thrashing effects are
alleviated, and compared with a deactivated cache configuration, because the
global memory requests are slower than cache ones. That is the case of 24k-
scenarios (low st(G)) and most of the 49k-scenarios (medium st(G)), and the
98k-scenarios of relax kernel (high DSr).

(5) Deactivate the L1 cache size when the GPU enters in a high-stressing state with
non-high data sharing.

– In the 98k-scenarios (high st(G)) with non-high DS, the number of memory
accesses is increased, due to the thrashing effect. As it was predicted, in order
to alleviate the memory traffic, it is better to disconnect the L1 cache, due to
the reduction of the transaction segment size.

Similar performance behavior for Fermi and Kepler

Although each architecture has its own values that maximize the occupancy, both archi-
tectures have presented a similar behavior in our experimentation. We can observe from
Table 4.4, that the optimal values for all kernels deployed on both architectures follow
the guidelines described in Sect. 4.5. Thus, we conclude that the lessons learned, and
described above, can be applied to any Fermi and Kepler board. The experimental results
described in Sect. 3.3.3 showed that the predicted values used here to achieve an opti-
mal performance for the Kepler GK104 architecture delivered also the same performance
trends for a GPU with a Kepler GK110B architecture.

4.6.6 Study III - Usefulness of Model Predictions
Figure 4.3 shows the execution time breakdown of the different scenarios chosen for Fermi
architecture in terms of the times consumed by each kernel, and other operations, such as
memory transfers. For each scenario, we present two bars, one for the baseline time, and

4.6. Experimental Evaluation 97

st Graph Fermi GF100 Kepler GK104

Low
24k-d2 192-8-Increased→ 41.4% 128-4-Increased→ 35.3%
24k-d20 192-4-Increased→ 16.5% 128-4-Increased→ 28.8%
24k-d200 192-1-Increased→ 12.0% 128-1-Increased→ 30.8%

Medium
49k-d2 192-4-Increased→ 35.4% 256-4-Increased→ 34.3%
49k-d20 192/256-2-Incr.→ 28.2% 256-2-Increased→ 38.3%
49k-d200 256-1-Increased→ 34.0% 256-1-Increased→ 49.4%

High
98k-d2 192-8-Increased→ 39.7% 256-8-Increased→ 40.9%
98k-d20 256-2-Increased→ 34.8% 256-2-Increased→ 48.9%
98k-d200 384-1-Increased→ 47.2% 256-1-Increased→ 62.4%

Baseline configuration 768-1-Normal 1024-1-Normal
(a) Relax kernel

st Graph Fermi GF100 Kepler GK104

Low
24k-d2 128-8-Increased→ 48.5% 96-8-Increased→ 43.8%
24k-d20 128-4-Increased→ 41.6% 96-8-Increased→ 38.1%
24k-d200 128-4-Increased→ 41.1% 96-8-Increased→ 35.5%

Medium
49k-d2 128-4-Increased→ 34.7% 96-8-Increased→ 40.5%
49k-d20 128-2-Without→ 30.0% 96-4-Increased→ 34.1%
49k-d200 128-2-Without→ 30.5% 96-4-Increased→ 34.7%

High
98k-d2 192-4-Without→ 30.0% 128-4-Increased→ 36.8%
98k-d20 192-2-Without→ 25.4% 128-2-Without→ 27.1%
98k-d200 192-2-Without→ 26.0% 128-2-Without→ 28.1%

Baseline configuration 768-1-Normal 1024-1-Normal
(b) Minimum kernel

st Graph Fermi GF100 Kepler GK104

Low
24k-d2 192-8-Increased→ 54.4% 128-8-Increased→ 45.3%
24k-d20 192-8-Increased→ 45.5% 128-8-Increased→ 36.8%
24k-d200 192-8-Increased→ 45.0% 128-8-Increased→ 34.5%

Medium
49k-d2 192-8-Increased→ 44.6% 128-8-Increased→ 37.4%
49k-d20 192-8-Without→ 37.4% 128-8-Without→ 28.6%
49k-d200 192-8-Without→ 38.1% 128-8-Without→ 29.6%

High
98k-d2 192-8-Without→ 41.0% 128-8-Without→ 40.2%
98k-d20 192-8-Without→ 29.2% 128-8-Without→ 27.3%
98k-d200 192-8-Without→ 32.0% 128-8-Without→ 30.4%

Baseline configuration 512/768-1-Normal 1024-1-Normal
(c) Update kernel

Table 4.4: The best values of configuration parameters (threadblock size, number of concurrent
kernels, and L1 cache state) obtained experimentally for the relax (a), minimum (b) and update
kernels (c) and their percentage of performance gain with respect to the baseline configurations.

98 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

24k-2deg

24k-20deg

24k-200deg

49k-2deg

49k-20deg

49k-200deg

98k-2deg

98k-20deg

98k-200deg

T
im

e
 (

s
e

c
o

n
d

s
)

Execution times of the different APSP scenarios (Fermi architecture)

53.9% 37.5% 21.5%

44% 35.7% 36.3%

40.1% 33.9% 45.2%

Graph scenarios (size - fan-out degree)

Relax

Minimum

Update

Rest

Figure 4.3: Execution time breakdown of the GPU kernels as well as other operations (data trans-
fers) on the different scenarios, and the performance gain percentages for Fermi architecture be-
tween the baseline (left column) and the best configurations (right column).

one for the best execution time experimentally obtained for any tested configuration value
combination. The performance gain percentages are written above the bars. The execution
breakdown observed in Kepler is similar. For Fermi, the use of the considered techniques
turns out in a global performance gain from 21.5% to 53.9%, whereas for Kepler they are
in the range from 33.75% to 58.53%.

The joint use of these optimization techniques not only returns performance improve-
ments in the total execution time of the GPU implementation, but also it always improves
the execution time of each kernel independently (see non-white boxes in Fig. 4.3). Com-
paring the best values of the configuration parameters with the results for baseline values
(see percentages of Table 4.4), we obtain the following performance gains for Fermi:

1. relax kernel from 12% to 47.2%,

2. minimum kernel from 25.4% to 48.5%, and

3. update kernel from 29.2% to 54.4%.

For Kepler, the performance gains are:

1. relax kernel from 28.8% to 62.4%,

2. minimum kernel from 27.1% to 43.8%, and

3. update kernel from 27.3% to 45.3%.

Additionally, the use of the concurrent-kernel technique has significantly reduced the
memory transfer times between CPU and GPU (see the white boxes in Fig. 4.3). This
transfer time is reduced because of the fact that it is more efficient to transfer bigger
data sets than a lot of smaller data sets. Due to the data offloading-transfer management
chosen for our implementation, the higher the number of concurrent kernels, the bigger
the amount of data in a single transfer, and the less transfer iterations needed.

4.7. Summary 99

Unstable evolution for default values in new architectures

The default layouts of the new boards and architectures is changing. As we previously
described in Sect. 4.6.1, the default state of the L1 cache memory configures it with a to-
tal of 16 KB, we named normal state. Nevertheless, with the advent of new architectures,
such as the Kepler GK110B, or Maxwell GM204, NVIDIA changed the default config-
uration from this normal state to the deactivated state [164, 165]. Although these new
releases maintain the possibility of handling all possible states of previous architectures
(increased, normal, and deactivated) with equivalent sizes, now the programmers should
compile their programs with a specific flag to configure the GPU kernel execution with the
increased and normal states. Thus, if we change what we consider the baseline configura-
tion, described in Sect. 4.6.1, the performance differences against the optimized version
are even more significant for some of the kernels considered, as the three-fold speedup of
relax kernel in the 98k-d200 scenario shown in Fig. 4.2.

4.7 Summary

This chapter has shown how the combined use of different configuration and optimization
techniques can significantly enhance the kernel performance of a GPU solution. When
applied to our problem case study, the APSP problem, we obtained a global performance
improvement up to 58% (2.4× faster) compared with baseline configurations.

The experimental results have shown how the kernel characterization technique is
a useful procedure to predict proper configuration parameter values for the threadblock
size and the cache L1 state, leading to significant performance improvement in NVIDIA
GPUs. The experimental results described in Sect. 3.3.3 showed that the predicted values
used here to achieve an optimal performance for the Kepler GK104 architecture deliv-
ered also the same performance trends for a GPU with a Kepler GK110B architecture.
Thus, we can conclude that the predicted values obtained from the kernel characterization
procedure can be applied to any Fermi and Kepler board.

We have shown that the CUDA recommended values are not always the proper choice,
and due to the big search space of possible combinations, we find these predictions and
guidelines very helpful for non-expert CUDA programmers, or even for auto-tuning tools
that aim to automatically configure the kernel execution for an optimal performance. Fi-
nally, the non-stable default configuration for the new boards makes the tuning and porta-
bility processes more difficult, turning the usage of the predictions and guidelines in help-
ful “compulsory” practices if a good application performance is desired.

Regarding to the concurrent-kernel technique, the experimental results suggest that
its use does not interfere with the predictions of the kernel characterization criteria. This
technique results more profitable for kernels with few memory accesses (high ratio of
operations per memory accesses). Additionally, for the case of the offloading-data transfer
management used in our APSP implementation, it does not only reduce the total execution
time for a pack of kernels, but also promotes design changes that decrease the transfer
times by copying to the GPU a big block of data only once, instead of transferring small

100 Chapter 4. Exhaustive Search for GPU Optimal Parameter Values

data blocks multiple times.

The work and conclusions described in this chapter have been published in the follow-
ing articles:

• “Optimizing an APSP Implementation for NVIDIA GPUs Using Kernel Character-
ization Criteria”, H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R.
Llanos, The Journal of Supercomputing, vol. 70, no. 2, pp. 786-798, 2014.
Online, DOI: 10.1007/s11227-014-1212-z

• “A Tuned, Concurrent-Kernel Approach to Speed Up the APSP Problem,” H. Ortega-
Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, in Proceedings of
the 13th International Conference on Computational and Mathematical Methods
in Science and Engineering, ser.(CMMSE’13), Almería, Spain: eds. I.P. Hamilton
and J. Vigo-Aguilar, 2013, vol. 4, pp. 1114-1125.
Online: CMMSE Proceedings

http://dx.doi.org/10.1007/s11227-014-1212-z
http://cmmse.usal.es/cmmse2015/images/stories/congreso/volume4-cmmse-20013.pdf

Chapter 5
Using Heterogeneous Computing to Solve
the All-Pair Shortest-Path

This chapter studies solutions to the All-Pair Shortest-Path problem for sparse graphs
when combining parallel algorithms and parallel-productivity methods in heterogeneous
systems (ΠH-APSP solutions, see Sect. 2.5.2). As we have previously seen, this problem
can be divided into independent Single-Source Shortest-Path subproblems, thus distribut-
ing the computation space into the different processing units that are usually present in
modern computing systems, i.e. CPUs and GPUs. Although the powerful GPUs are
significantly faster than the CPUs, we will see that their combined use leads to further
reduction on execution times. Furthermore, two different policies are compared to solve
the scheduling issue: An equitable scheduling, where the workspace is equitably divided
between all computational units independently of its nature, and a work-queue retriev-
ing scheduling, where a computational unit retrieves a new task when it has finished its
previous work, generating a dynamic balance.

5.1 Problem Description: Π-APSP Approach
The new generation of high performance computing (HPC) trends to assemble different
kinds of multi-core CPU and many-core devices (like GPUs) in the same heterogeneous
computing system. The goal of heterogeneous environments is to jointly exploit all com-
putational capabilities of the devices with different hardware-resource configurations.

The different nature of these heterogeneous computational units (HCU) makes nec-
essary to implement the same algorithm in different ways, in order to take the maximum
profit of each underlying architecture. However, although each HCU has its own code im-
plementation, usually some of them solve a problem faster than others due to its different
computational resources. In order to alleviate this imbalance problem and to maximize
the exploitation of the heterogeneous systems, different methods of load balancing can be
applied.

Load-balancing is one of the challenging problems which has a tremendous impact on
the performance of parallel applications, especially in heterogeneous environments. The
objective of load-balancing methods is to distribute the workload proportionally, accord-

101

102 Chapter 5. Using Heterogeneous Computing to Solve the All-Pair Shortest-Path

ing to the computational power of the devices. In this way, these methods allow to avoid
device overloads when others are idle. However, in order to obtain a good performance
exploiting heterogeneous systems, the programmer needs to manually implement these
load-balancing methods. One example of a basic load-balancing technique is to assign
more work to the most powerful HCU, as it could be the GPU, and the remaining work to
the conventional CPUs.

In this chapter we are going to solve the APSP problem for sparse graphs combining
parallel algorithms and parallel-productivity methods in heterogeneous systems. The first
level of parallelism we have used is the parallelization of Dijkstra’s algorithm. As we saw
in Sect. 2.2.2, the naïve Dijkstra’s algorithm is a greedy algorithm whose efficiency is
based in the ordering of previously computed results. This feature makes its paralleliza-
tion a difficult task. However, there are certain situations where parts of this ordering can
be permuted without leading to wrong results neither to performance losses.

On the other hand, as long as the APSP problem can be divided into independent
SSSP subproblems, we use this feature to distribute the computation space into different
processing units. Thus, a second level of parallelism is exploited by executing n times
in parallel an SSSP solution, using a parallel algorithm (Π-SSSP) for the GPUs, and a
sequential algorithm (SSSP) in the CPU cores.

5.2 State of the Art: Towards Heterogeneous Computing

Heterogeneous computing [18] is a computing paradigm that tries to jointly exploit dif-
ferent kind of computational units, not only the traditional CPU cores, but also graphical
accelerators (GPUs) [166], multi-core chip coprocessor (XeonPhi) [167], or customized
integrated circuits (FPGAs) [168], among others. During the last decade, the interest of
the scientific community has significantly raised for these heterogeneous environments,
although their programming is a tedious task that has a long learning curve. Compared to
the classic homogeneous computing that involved only symmetric CPUs, this new com-
puting paradigm offers higher peak performance in certain kind of parallel problems while
being both energy and cost efficient [18, 169].

Load-balancing methods for heterogeneous systems try to properly distribute the work-
load among different computing units according to some criteria, such as their computa-
tional capabilities or its available hardware resources, with the aim to increase the total
performance of the heterogeneous system. Depending on the moment when the workload
is assigned to the different computational units, the load-balancing methods can be clas-
sified in static or dynamic. The rest of this section presents a brief discussion of different
works that include these load-balancing techniques.

The static load-balancing techniques define the task distribution before starting the
computation. The methods included in this category can be used for those problems
where the required workload information is available at that point. As example of very
simple approaches, having different sizes of portions of the workload already fixed before
computing, the authors of the works [170, 171] assign the bigger portions to the most
powerful devices. Another approach is presented in [172, 173], that divided all the work-
load in tasks of the same size instead, but the number of tasks assigned to each device

5.3. Load-balancing Techniques 103

depends on its computational capabilities or hardware resources, respectively.

Although there are situations where this information is not directly available, there
are indicators that could be used to indirectly make an estimation or an approximation of
it. For example, the authors of [174] created a model to estimate the execution time of
each task, based on the number of instructions and input data size. Thus, determining the
size of each single task before starting the computation, they have enough information to
decide which hardware would be the most suitable to efficiently compute it, depending
on this estimated temporal cost returned by the model. Similar works that also apply the
estimations of a specific prediction model are [175] and [176]. The model of the first work
studies the costs of data transfer between the CPU and GPU, and the returned scheduling
distributes the workload with the aim to reduce these communications. Analogously, the
model of the second work assigns the workload in order to reduce the memory bottlenecks.

On the other hand, when the information of the tasks is not available until the com-
putation has significantly advanced, or it is completely unknown, usually it is better to
apply dynamic load-balancing techniques. These methods schedule the workload while
the algorithm is computing. The authors of [177, 178] dynamically create a complete
dependence-graph in order to classify the application tasks as dependent or independent.
Only independent tasks are launched to GPU devices in order to reduce the costly data
transfers through inter-GPU communications. The work presented in [179] obtains a
good load balance between CPUs and GPUs, by dynamically assigning, when available,
big enough workload portions to the GPUs in order to keep these devices busy. The previ-
ously described work of [171] implements a dynamic load-balancing mechanism after the
static distribution of the tasks into queues by performing task-stealing and task-donation
techniques.

5.3 Load-balancing Techniques

For the hybrid approaches that simultaneously exploit different computational units, that
are GPUs and CPU cores in our case, we define two different types of threads responsible
of the computation in each of them. The threads of the first type are executed on a CPU
core with the aim to govern the logic of the algorithms designed for one GPU device:
Control the data transferences from host memory to device memory, and launch the cor-
responding GPU kernels. If there are more GPU devices in the systems, more threads
executed on different CPU cores are needed. The threads of the second type are also ex-
ecuted on CPU cores but their purpose is to carry out the computations and the logic of
the algorithm designed for CPUs. Due to the huge differences between both computa-
tional units when processing each work unit, defined as a task, it is needed to balance the
complete workload in order to obtain a good performance.

This section describes the different load-balancing policies we have implemented to
distribute the different tasks among the computational units: Equitable Scheduling, and
Work-queue retrieving Scheduling.

104 Chapter 5. Using Heterogeneous Computing to Solve the All-Pair Shortest-Path

00: #parallel /* Parallel region */
01: if (idThread < numGPUs){ /* For GPUs */
02: selectGPU(idThread); /* GPU selection */
03: atomic{ taskid = retrieve_work(taskQueue) };
04: while(taskid != NULL){
05: launch_GPU_Kernel(taskid);
06: atomic{ taskid = retrieve_work(taskQueue) };
07: }
08: }else{ /* For CPU cores */
09: atomic{ taskid = retrieve_work(taskQueue) };
10: while(taskid != NULL){
11: launch_CPU_Kernel(taskid);
12: atomic{ taskid = retrieve_work(taskQueue) };
13: }
14: }
15: #end parallel

Figure 5.1: Work-queue retrieving technique implementation.

5.3.1 Equitable Scheduling
A simple way to apply load-balancing to a heterogeneous system is to equitably distribute
the work without taking into account the computational capabilities of the devices. This
kind of techniques usually lead to easy implementations, but at the expense of having a
temporal cost equal to the time that the worst device needs to compute its work. Equitable
Scheduling can be classified as a static load-balancing technique.

Our Equitable Scheduling (ES) approach statically divides the workspace between the
computing threads giving to each one the same quantity of tasks. If nc represents the
number of computing threads, id the thread identifier, and nt = n/nc the number of tasks
per thread, this approach makes each thread responsible for computing the tasks from
id · nt to id · nt + nt − 1. If this task division is not exact, the first threads takes one of
the remaining tasks until there is no more work to do.

5.3.2 Work-queue retrieving Scheduling
The work-queue retrieving scheduling is commonly employed to accomplish a dynamic
distribution of the work between any kind of hardware device during the execution of the
program. The threads responsible of handling hardware accelerators of the heterogeneous
system can retrieve a task from the global task queue. Note that the access to the global
task queue must be implemented with some kind of synchronization in order to avoid
that two or more devices retrieve the same task. Usually, this synchronization involves a
bottleneck in the execution times. Work-queue retrieving scheduling can be classified as
a runtime, dynamic load-balancing technique.

Our Work-queue retrieving Scheduling (WS) approach allows an idle thread that has
finished its previous work to retrieve the following task ti. This task is immediately elim-
inated from the queue at the moment it is taken. Then, the thread computes the corre-

5.4. Experimental Evaluation on a Heterogeneous Shared-Memory System 105

sponding SSSP problem with node i as source. Finally, when the thread ends its work, it
comes back to the global task queue in order to take another one, repeating the process
till there is no more pending work. The synchronization of the task retrieving has been
implemented using an atomic region. That means that only one thread can be retrieving
the next task at any moment.

The algorithm shown in Fig. 5.1 is the pseudocode of work-queue retrieving technique
to solve the APSP problem. The lines 01 and 08 indicate that the first threads are assigned
to GPU devices and the rest to CPU cores. The taskQueue stores the list of all tasks, and
the atomic{} primitive creates a mutual exclusion region to avoid a simultaneous retrieving
of the same task from different idle threads.

5.4 Experimental Evaluation on a Heterogeneous Shared-
Memory System

We will first describe the methodology used for our experiments, as well as the load-
balancing techniques evaluated, the input set problems used, and the experimental results.

5.4.1 Methodology

In order to evaluate the efficiency and potential of the proposed solution for the APSP
problem in heterogeneous systems, we have conducted two experiments with different
objectives and input sets, but using the same described load-balancing techniques. The
first one checks the efficiency of working in heterogeneous systems against a reference im-
plementation, that uses just one GPU. This experiment also studies which load-balancing
technique presents the best results using synthetic graphs with an irregular but known
distribution. The second one compares the same techniques using bigger graphs and tak-
ing random sources, with the aim to evaluate their scalability computing arbitrary nodes
whose required time to be solved is unknown.

A description of the platforms and devices used, the load-balancing involved to speedup
the solution of the APSP, and the experiments carried out is presented below.

Target Architectures

The evaluated heterogeneous system is composed by two different computational units,
CPUs and two GPUs, with the following characteristics:

• The CPU of the host machine is an Intel(R) Core(TM) i7 CPU 960 3.20 GHz with
4 cores, and active hyperthreading.

• the first GPU is a NVIDIA GeForce GTX 680 (Kepler GK104).

• the second GPU is a NVIDIA GeForce GTX 480 (Fermi GF100).

The host machine used has 6 GB DDR3 of memory with an Ubuntu Desktop 10.10
(64 bits). The experiments have been carried out using the CUDA Toolkit 4.2.

106 Chapter 5. Using Heterogeneous Computing to Solve the All-Pair Shortest-Path

Heterogeneous Descriptioninstances

G1
Single GPU thread (Kepler)
(reference implementation)

E2 / W2 2 GPU threads (Fermi & Kepler)
E3 / W3 2 GPU threads + 1 CPU threads
E4 / W4 2 GPU threads + 2 CPU threads
E6 / W6 2 GPU threads + 4 CPU threads
E8 / W8 2 GPU threads + 6 CPU threads

E14 / W14 2 GPU threads + 12 CPU threads
E16 / W16 2 GPU threads + 14 CPU threads

Table 5.1: Experimental instances used on the shared-memory system. “E” instances use the eq-
uitable scheduling whereas the “W” instance use the work-queue retrieving load-balancing tech-
nique.

Experiment I: Heterogeneous Approach for the Complete APSP

The objective of this experiment is to determine whether the use of a heterogeneous sys-
tem, combining traditional CPU cores with modern GPUs, turns out to be a relevant ap-
proach to speed up computationally-costly problems such as the APSP. In order to check
this hypothesis, we have compared the execution times of several instances of our het-
erogeneous implementation against the execution times of the reference implementation.
This reference implementation, instance “G1”, is executed in the same host machine of the
previously described heterogeneous system, but it only uses the most modern GPU device
as computational unit, the GeForce GTX 680 (architecture Kepler GK104), governed by
one OpenMP thread.

Several instances with different number of OpenMP threads for both equitable and
work-queue retrieving methods have been executed in order to determine which load-
balancing technique/configuration returns the best performance in different scenarios.
We have tagged each instance, depending which load-balancing technique implements,
with the label “E” for equitable scheduling instances, and “W” for work-queue retriev-
ing scheduling instances, followed by a number that represents the number of OpenMP
threads used (see Table 5.1). Thus, the evaluated instances “E3” and “W8” are a imple-
mentation of Equitable Scheduling with 3 threads, and a implementation of Work-queue
retrieving Scheduling with 8 threads, respectively. The first two threads are always as-
signed to the two GPU hardware devices, one for each graphic accelerator. The rest of the
threads are executed in the CPU cores. Therefore, the instances “E2” and “W2” only use
the GPUs resources with the corresponding load-balancing technique.

All the instances have to resolve the complete APSP problem in synthetic graphs with
220 nodes. As it is described in the following sections, these graphs have a known specific
node distribution where the cost of solving an SSSP problem for source nodes is correlated
with the source node index. This fact allows to do predictions of the temporal costs of a
task for a given computational unit. This is very useful in order to discover which policy
suits better this kind of graphs, and under which certain situations.

5.4. Experimental Evaluation on a Heterogeneous Shared-Memory System 107

0

10

20

30

40

50

60

0 10000 20000 30000

T
im

e(
m

ill
is

ec
on

ds
)

Average time execution of groups of 32 SSSPs

Figure 5.2: SSSP Execution time for different source nodes of the Martín graphs using the
GeForce GTX680 (Kepler GK104).

Experiment II: Random Scalability for the Heterogeneous Approach

The objective of this second experiment is to study the behavior of the implemented load-
balancing techniques in a scenario where it is not known the cost of the following task
to be computed, and also to check the scalability of the instances in larger graphs within
these conditions. Thus, instead of traversing the SSSP tasks to be computed in order, from
source node 0 to n, the order in which tasks are assigned to devices is chosen randomly
with a uniform distribution. In this way, the distribution made when using the equitable
distribution will contain nodes costly nodes, and light nodes with the same probability.
For the selection of these source nodes we have used the random function srand48() from
the C standard library.

The bigger graphs computed in this experiment also belong to the same synthetic suite
used in the previous scenario, but here the number of nodes of these graphs ranges from
220 to 11·220. However, due to the large amount of computational load needed to solve the
APSP in these graphs, we have bounded the problem to 512 random source-nodes-to-all
in order to reduce the global execution time.

5.4.2 Input Set Characteristics

The input set used is composed by the collection of Martín’s synthetic graphs, described
in Sect. 3.3.2. The irregular distribution of this kind of synthetic graphs leads to differ-
entiate two types of source nodes, in terms of the cost of solving each SSSP subproblem.
Figure 5.2 shows the execution time needed to solve each SSSP from source node 0 to
source node n, grouping them in intervals of 32 nodes, using the GPU of the reference
implementation, the Kepler GK104. It is possible to appreciate that the first half of nodes
of the graph are more costly than the second half, where the required time to compute
a SSSP is considerably smaller. This set with these particular characteristics and known

108 Chapter 5. Using Heterogeneous Computing to Solve the All-Pair Shortest-Path

0

10000

20000

30000

40000

50000

60000

70000

G1 E2 E3 E4 E6 E8 E14 E16

T
im

e(
se
co
nd

s)

Techniques

Figure 5.3: Execution times of different instances using the Equitable Scheduling policy for
Martín’s graphs with |V | = 220.

0

10000

20000

30000

40000

50000

60000

70000

G1 W2 W3 W4 W6 W8 W14 W16

T
im

e(
se
co
nd

s)

Techniques

Figure 5.4: Execution times of different instances using the Work-queue retrieving Scheduling
policy for Martín’s graphs with |V | = 220.

distribution is very interesting for our designed experiments because we will be able to
observe the different behavior of using this information in the Equitable Scheduling, and
the versatility of the Work-queue retrieving Scheduling.

5.4.3 Experimental Results I - Complete APSP Evaluation
In this section we present the experimental results obtained for the execution of the com-
plete APSP, using the Martín graphs with size n = 220, for the two considered load-
balancing techniques.

5.4. Experimental Evaluation on a Heterogeneous Shared-Memory System 109

Equitable Scheduling

Figure 5.3 presents the execution times of the equitable scheduling technique for in-
stances with different number of OpenMP threads. The performance of the reference
approach (G1) is significantly improved when a second GPU device is used (E2). How-
ever, a two-fold speedup is not reached because the architectures of the two GPUs are
different. This means that the total execution time corresponds to the execution time of
the less powerful GPU device. Nonetheless, E2 presents a 30% performance improvement
with respect to the reference.

The use of one and two additional CPU cores (E3 and E4) helps to decrease this criti-
cal execution time because the number of subproblems (SSSP problems) that the critical
GPU has to resolve is reduced. The instance E4 shows a 65% performance improvement
compared with the reference (a speedup of 2.86×). The more threads launched, the less
the computation load assigned to each device. Nevertheless, due to the irregular nature of
the graph (see the distribution time in Fig. 3.4), there is a threshold where the equitable
partition approach overloads too much the CPU cores. This occurs when the most costly
tasks, that were assigned to GPUs in previous equitable instances, are now assigned to
CPU cores. For this reason, the total execution time of the approach E6 is significantly
increased, even surpassing the reference time. Furthermore, when more than six threads
are launched, the total time execution is reduced again. This occurs because the number
of tasks assigned per computational unit is less and all devices are used. However, their
times still overpasses the reference times because the low number of assigned tasks to
GPU devices is quickly computed, becoming idle whereas the CPU cores are still solving
their assigned costly tasks.

Work-queue retrieving Scheduling

Figure 5.4 shows the execution time results of the work-queue retrieving scheduling tech-
nique for instances with different number of OpenMP threads. The performance of the ref-
erence approach (G1) is significantly improved by any instance that uses the work-queue
retrieving method (Wi). The instance that uses only two GPUs has a 44% performance im-
provement with respect to the reference. As we increase the number of OpenMP threads,
more hardware devices are used, thus reducing the execution times. Although the most
costly tasks are also taken by the CPU cores, while they are computing their subproblem,
the GPUs are continuously retrieving tasks.

The instance with the fastest execution times is W4, leading to a 60% performance
improvement (a speedup of 2.5×). However, when the number of launched threads ex-
ceeds the number of total computational units (W14 and W16), the execution of threads
that belong to the same CPU core is concurrent. This behavior leads to slight penalties,
reaching to only a performance improvement of 40% with respect to the reference.

Experimental Conclusions

The best execution time for the complete APSP scenario is achieved with an equitable
scheduling implementation, E4, leading to an 65% of performance improvement com-
pared with the reference G1 (a speedup of 2.86×). However, the next approaches that

110 Chapter 5. Using Heterogeneous Computing to Solve the All-Pair Shortest-Path

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(s

e
c
o

n
d

s
)

Number of nodes (multiples of 2
20

)

G1
E2
E3
E4
E6
E8

E14
E16

Figure 5.5: 512 nodes execution times using the Equitable Scheduling policy for Martín’s graphs.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(s

e
c
o

n
d

s
)

Number of nodes (multiples of 2
20

)

G1
W2
W3
W4
W6
W8

W14
W16

Figure 5.6: 512 nodes execution times using the Work-queue retrieving Scheduling policy for
Martín’s graphs.

closely follows this improvement are those that use a work-queue retrieving implementa-
tion (W{3...8}), instead of other equitable scheduling instances with similar thread config-
urations.

5.4.4 Experimental Results II - Random Scalability Evaluation

In this section we present the experimental results obtained for the execution of 512 dif-
ferent random SSSP, using the complete graph suite due to Martín, with graphs which
number of nodes range from 220 to 11 · 220.

5.5. Summary 111

Equitable Scheduling

Figure 5.5 presents the execution times for instances for the equitable scheduling imple-
mentation, and different OpenMP launched threads for the different number of nodes of
the graph considered. The execution times grow proportionally for bigger graphs as more
paths to more nodes should be computed for a single source. The overhead of the schedul-
ing technique is too low to be noticeable in this trends. The best performance is obtained
with the E2 configuration, leading to a 45% performance improvement with respect to the
reference.

The heterogeneous approaches with CPU cores (E{3...16}) have worse execution times
than the reference because the CPUs are also computing costly tasks due to the random
nature of the node selection. However, as it happened in the Complete APSP scenario,
this time is reduced when more threads are launched.

Work-queue retrieving Scheduling

Figure 5.6 shows the results when using the work-queue retrieving implementation for
different number of OpenMP threads launched. As it happens in the Complete APSP sce-
nario, the execution time of any work-queue retrieving instance (W{2...16}) is better than
the reference (G1). The instance of two threads that only uses GPU devices, W2, has
a very good performance with respect to the reference (46% better). Inserting an addi-
tionally CPU core to the heterogeneous system, W3, leads to an even better performance
improvement of 47%. However, adding more than one CPU core to the heterogeneous
system, W{4...16}, leads to slightly worse execution times compared with the best one.

Experimental Conclusions

For the 512-source-to-all scenario, the best results are reached with a work-queue re-
trieving implementation, W3, with a 47% improvement compared to G1. All equitable
scheduling instances involving CPU cores lose performance with respect to the reference
implementation. The version that only uses GPUs, E2, delivers a performance improve-
ment of 45%.

5.5 Summary
We have presented solutions of the APSP problem for heterogeneous systems composed
by GPUs and CPU cores using equitable and work-queue retrieving load-balancing tech-
niques. The experimental results have shown that:

(1) The equitable scheduling can be tuned up using information of the graph features
information to achieve the best performance times, avoiding critical code regions,
but being very sensible to changes of the input graph.

(2) The work-queue retrieving implementation has a more consistent performance be-
havior than the equitable scheduling because it is more independent from the graph
nature.

112 Chapter 5. Using Heterogeneous Computing to Solve the All-Pair Shortest-Path

In particular, the best solution in the first scenario is achieved using a very specific
equitable scheduling, with a performance improvement up to 65% compared with the
reference single-GPU solution (a speedup of 2.86×). However, the same configuration
has not shown the same efficiency in the second experiment. Additionally, the remaining
equitable instances that involve CPU cores have not shown a significant performance im-
provement if the nature of the graph is not taken into account. On the other hand, most
of the work-queue retrieving implementations have returned good performances for both
tested scenarios.

Our first conclusion is that the joint use of very different computational power de-
vices is useful to improve the total execution time compared with the use of a single-GPU
implementation. The second conclusion is that a previous study of the nature of the in-
put problem is very important, because it allows the programmer to better map the most
costly tasks to the most powerful devices. In our case, the equitable scheduling that maps
all costly tasks to the GPUs and leaves light ones to the CPU cores is the implementation
that has delivered the best performance. Finally, the application of work-queue retriev-
ing techniques results in a more versatile implementation with respect to the equitable
scheduling because it is less sensitive to the nature of the input problem.

The work and conclusions described in this chapter have been published in the follow-
ing article:

• “The All-Pair Shortest-Path Problem in Shared-Memory Heterogeneous Systems,”
H. Ortega-Arranz, Y. Torres, D. R. Llanos and A. Gonzalez-Escribano, in book
High-Performance Computing on Complex Environments, ser. Series on Parallel
and Distributed Computing. John Wiley & Sons, Inc., 2014, pp. 283-299.
Online, DOI: 10.1002/9781118711897.ch15

http://dx.doi.org/10.1002/9781118711897.ch15

Chapter 6
TuCCompi Programming Model

During the last decade, parallel processing architectures have become a powerful tool to
deal with massively-parallel problems, such as the All-Pair Shortest-Path problem, that
benefits from High Performance Computing (HPC) techniques. As it is shown in the pre-
vious chapter, the use of heterogeneous environments, combining different computational
processing devices, such as CPU cores and GPUs, turns out to be the most promising
solution for HPC. However, as we have also described in Chapter 4, maximizing the
performance of any GPU parallel implementation of an algorithm requires an in-depth
knowledge about the GPU underlying architecture, becoming a tedious manual effort only
suited for experienced programmers.

This chapter presents TuCCompi, a multi-layer abstract model that simplifies the pro-
gramming on heterogeneous systems including hardware accelerators, by hiding the de-
tails of synchronization, deployment, and tuning. TuCCompi chooses optimal values for
the configuration parameters using the kernel characterization criteria described in Chap-
ter 4. As we will see, this programming model is very useful to tackle problems character-
ized by independent, high computational-load independent tasks, such as embarrassingly-
parallel problems. We also present the description of a prototype implementation of
the model, and its evaluation in different heterogeneous environments, using the All-Pair
Shortest-Path problem, described in Sect. 2.4, as a case study.

6.1 Problem Description: The Need for Speed and the
Lack of an Unified Solution

There are many computing-intensive problems that can be solved dividing them into many
independent tasks that can be executed in parallel, without requiring any communica-
tion among them. They are called embarrassingly-parallel problems [180]. Many real
problems are included in this category, such as index processing in web search [181],
bag-of-tasks applications [182], traffic simulations [183], Bitcoin mining [184], volume
rendering [185], some molecular physics computations [186], biomedical-domain data
processing [187], or computational geometry problems [188]. Although the paralleliza-
tion of embarrassingly-parallel problems does not require a very complex algorithm to

113

114 Chapter 6. TuCCompi Programming Model

take advantage of parallel computing environments, their high amount of computational
work requires High Performance Computing (HPC). Deployment, load balancing, and
tasks synchronization details should be tackled by the programmer in a specific way for
different applications, and different execution environments. In order to give support
to the massive demand of HPC, the last trends focus on the use of heterogeneous envi-
ronments including computational units of different nature, such as CPU cores, graphics
processing units (GPUs) and other hardware accelerators. The exploitation of these envi-
ronments offers a higher peak performance and a better efficiency compared to classical
homogeneous cluster systems [18]. Due to these advantages, and since the cost of building
heterogeneous systems is low, they are being incorporated into many different computa-
tional environments, from academic research clusters to supercomputing centers.

Despite the wide use of heterogeneous environments to execute massively-parallel
problems, there are two issues that limit the usability of these systems. The first one is
the lack of computing frameworks that can easily schedule the workload in such com-
plex environments. Some works have been presented to integrate the use of different
programming languages or tools [189, 190]. However, the programmer still needs to
tackle different design and implementation problems related with each level of paral-
lelism. These problems are specially more complex when integrating GPU programming
techniques. The second limitation is the lack of a tuning methodology that efficiently
unleashes all the power of GPU devices. Although there are languages, such as CUDA,
that aim to reduce the programmer’s burden in writing parallel applications, it is a diffi-
cult exercise to correctly tune the runtime configuration parameters in order to efficiently
exploit all underlying GPU resources. As it was shown in Chapter 4 of this dissertation,
the CUDA recommendations do not always lead to the optimum performance, leaving to
the programmers the responsibility of searching for the best values. This search usually
implies to carry out several time-consuming trial-and-error tests. Until now, there was
not a parallel model that automatically selects the optimal values for CUDA configuration
parameters, such as the threadblock size-shape, or the state of L1 cache memory, for each
kernel. These optimization techniques significantly enhance the GPU performance.

6.2 State of the Art: Looking for One Tool to Rule All
Parallel Levels

There are several works integrating, in the same tool, different parallel languages or mod-
els with the aim to consider different levels of parallelism. We can find the following
contributions as examples of works that combine two different levels of parallelism, such
as OpenMP with MPI, or OpenMP with CUDA using multiple GPUs. The work presented
in [191] is a framework for the development of hybrid MPI+OpenMP programs, generat-
ing parallel code depending on the features extracted when compiling the input sequential
functions. However, it does not support conversions for CUDA. Similar to the previous
approach, the tool llCoMP [189] is another source-to-source compiler that translates C
annotated code to MPI + OpenMP or CUDA code, that is only focused in parallel-loop
problems. Additionally, this compiler does not support the joint use of CUDA with the
other parallel models, leaving its suitability for heterogeneous environments limited. Be-

6.3. TuCCompi: The Distributed Heterogeneous Computing Model 115

sides this, the llCoMP compiler does not easily support the use of new GPU architectures
or other kind of accelerators. Other programming library for hybrid architectures support-
ing GPUs is SkelCL [192]. It tries to enhance the OpenCL interface in order to coordinate
different GPUs of the same shared-memory machine. The limitations of this library are
similar to the previously described works, it does not support load distribution between
GPUs of different machines, or even, other computational units of different nature, such
as the CPU cores.

Going further, the following paragraphs describe approaches that combines all tradi-
tional parallelism levels combining the well-known OpenMP, MPI, and CUDA models
together. A parallel programming approach using hybrid CUDA, MPI and OpenMP pro-
gramming is presented in [193]. The authors focus on a model to solve iterative problems.
However, they do not take into account any generic CUDA optimization technique, and
their model does not support any mechanism to include new load distribution policies.
The authors in [194] have created a hybrid tool, that includes the same parallel models
used by the previous mentioned work, to solve a ray-casting volume rendering problem.
They test the system scalability when the input data size is increased. The limitations
of this tool are that it is only focused in a single parallel application, not even including
any CUDA optimization technique, nor any automatic mechanism to efficiently exploit
heterogeneous environments.

A more general approach is the work presented in [190], where the authors pro-
posed a framework called OMPICUDA used for developing parallel applications on hy-
brid CPU/GPU clusters by mixing OpenMP, MPI and CUDA programming models. This
framework presents some limitations: it does not support recursive functions, nor GPUs
with 1.x architecture. Additionally, it cannot be easily modified to support a new parallel
model. The task programming library StarPU [195] does not presents such limitations
and has different optimized heterogeneous scheduling techniques for CPU/GPU clusters.
However, none of these approaches provides or considers any tuning techniques for bet-
ter exploiting GPU capabilities, or policies to select proper values of CUDA configuration
parameters. A skeleton programming framework that uses StarPU is SkePU [196]. SkePU
tries to find the optimal threadblock size by automatically checking all possibilities using
trial-and-error executions, but it does not provide a model for tuning this parameter, nor a
easy system to change proper values for new architectures. Finally, all presented works do
not support the automatic exploitation of the concurrent-kernels feature of modern GPUs.

6.3 TuCCompi: The Distributed Heterogeneous Comput-
ing Model

TuCCompi (Tuned, Concurrent Cuda, OpenMP and MPI) is a multi-layer, skeleton-based
abstract model, that transparently exploits heterogeneous systems and squeezes the GPU
capabilities by automatically choosing the optimal values for important runtime config-
uration parameters. Each layer represents a level of parallelism. The first layer han-
dles the distributed-memory environment, coordinating different shared-memory systems
(nodes), whereas the second layer manages the computational units that are inside the
nodes. The third layer automatically deploys the execution in the hardware accelerators,

116 Chapter 6. TuCCompi Programming Model

MPI

OpenMP

CUDA

Concurrent

Kernel

Node 1

Desktop

Node 2

Desktop

Node n

Laptop

CPU
core

GPU

1..c 1

GPU

1..c 2

CPU
core

SP SP SP SP

SP SP SP

SP SP SP

SP

SP

Multiple Kernels

SP SP SP SP

SP SP SP

SP SP SP

SP

SP

SP SP SP SP

SP SP SP

SP SP SP

SP

SP

Multiple Kernels

SP SP SP SP

SP SP SP

SP SP SP

SP

SP

Multiple Kernels

GPU

1..c 1

CPU
core

2nd layer

1st layer

4th layer

3rd layer

Distributed environment

Shared-memory systems

Figure 6.1: Layer deployment of TuCCompi model in a heterogeneous cluster.

such as the GPUs, whereas the fourth layer automatically handles concurrent works in-
side these GPUs. Finally, an internal tuning mechanism automatically selects the optimal
values for GPU configuration parameters for each kernel, and each GPU architecture.

These execution layers are integrated with different coordination mechanisms, that are
all abstracted to provide the programmer an unified view of the computing in heteroge-
neous systems. She has to program her applications in two programming levels: (1) a
coordination programming level, that abstracts the work distribution across the computa-
tional units inside the distributed shared-memory nodes (1st and 2nd Layers); and (2) a
deployment programming level, that abstracts the management of computational unit of
different nature (3rd, 4th and Tuning Layers).

6.3.1 The Multi-Layer Architecture

This section gives a description of the different layers defined in our model. A graphical
representation is depicted in Fig. 6.1.

The 1st Layer (Distributed Environment)

Nowadays, one of the most economic ways to assemble a heterogeneous system is to in-
terconnect a set of different individual machines, also called nodes, such as personal com-
puters, laptops, virtual host machines, or even other supercomputing systems composed
in turn by other machines. It is necessary to apply communication and synchronization
mechanisms in order to coordinate these nodes. The first layer of TuCCompi (see Fig. 6.1)
is responsible of managing this node coordination without taking into account the hard-

6.3. TuCCompi: The Distributed Heterogeneous Computing Model 117

ware details and features of each machine. This layer is abstracted at the coordination
programming level, allowing the programmer to skip thinking in terms of more complex
message-passing models.

The 2nd Layer (Shared-Memory Systems)

Nodes are nowadays composed by several processing units that share a global address
space. Additionally, there are other accelerator devices, such as GPUs, and Xeon Phi,
that are usually controlled by a host system (CPU) and are capable of executing kernels
independently. In this layer of TuCCompi we use the concept of “computational unit”
for any CPU core or device hosted in a node. This second layer is responsible of the
coordination of all computational units inside the node. For the programmer’s point of
view, this layer is also encapsulated in the abstraction of the coordination programming
level. It also hides the fact that each special device is controlled by a dedicated thread
that executes a different code. The programmer sees all devices and CPU cores in an
homogeneous form.

The 3rd Layer (GPU Devices)

This layer implements the abstraction used at the deployment programming level. It is
the responsible of the coordination and deployment actions needed for special devices,
such as GPUs, or Xeon Phis, in an homogeneous form. This is done by hiding the details
needed to manage different address spaces, offloading codes, etc.

The 4th Layer (Concurrent GPU Kernel Execution)

The most recent NVDIA GPUs support concurrent-kernel execution [13], where different
kernels of the same application context can be executed on a GPU at the same time. This
feature is very helpful when kernels that use just few resources are launched, allowing a
concurrent execution of other kernels, and thus, exploiting at the same time all resources
of the device. Although at first glance this feature seems to be profitable only when low
resource-consuming kernels are launched, the concurrent execution of higher resource-
consuming kernels also gives performance gains. This occurs because several kernels
of the same application context work on the same memory areas taking advantage of
the data-caches, originating less number of cache-misses and therefore alleviating the
global memory bottlenecks. The programmer provides a parameter to define the number
of tasks that will be concurrently deployed in a single GPU for each application. This
layer internally takes care of the synchronization of the concurrent kernel launching. It
contributes to the functionalities encapsulated in the deployment programming level.

The Tuning layer

While correctness of an NVIDIA CUDA program is easy to achieve, the optimal exploita-
tion of the GPU computational capabilities is much more complicated than in traditional
CPU cores. Usually, it requires an extensive CUDA programming experience. Some ex-
amples of code tuning strategies are the choice of an appropriate threadblock size and

118 Chapter 6. TuCCompi Programming Model

shape, the maximization of the coalescing of the memory accesses, or the occupancy
optimization of the Streaming Multiprocessors, among others. Moreover, the resource
differences between each GPU architecture and release, such as the number of computa-
tional units, cache-sizes, and other features, make it even more difficult to find the optimal
configuration for a given GPU. Besides this, the optimal values also depend on the mem-
ory access pattern and the characteristics of the code of each executed kernel. This layer
allows the programmer to supply to the deployment programming level with an abstract
characterization of the CUDA kernel codes in terms of human-understandable features.
With these values, the model internally chooses proper values for the execution param-
eters. This solution also opens the possibility to integrate techniques to automatically
analyze and characterize the CUDA kernel codes for specific GPU devices.

6.3.2 TuCCompi Model Usage

To build a program using TuCCompi, a programmer should provide the following el-
ements (see Fig. 6.2): (1) Coordination programming level, implemented as a main C
language program using TuCCompi primitives and macros, and (2) Deployment program-
ming level, including the sequential-CPU and the parallel-GPU specific codes for each ap-
plication, named as PLUG-IN_CPU and PLUG-IN_GPU respectively, and characterizations
of the accelerator kernel codes.

In this way, the application programmer does not have to provide: (a) the values of
GPU configuration parameters for an optimal execution on each different GPU, (b) the
code implementation for concurrent kernel deployment, (c) the code implementation for
the management of the distributed and shared computational-units, nor (d) the communi-
cation between all involved nodes.

Coordination Programming Level - TuCCompi Main Program Implementation

Figure 6.3 shows an example of the code that the user has to implement in order to start
and control the execution. The primitive TuCCompi_COMM in Line M01 initializes the sys-
tem. Afterwards, the user can introduce his code, including variable declarations, initial-
izations and the sequential code needed for the application. Line M03 shows the primitive
needed to set the number of kernels that the GPU devices will execute concurrently (infor-
mation for the 4th execution layer). Line M04 shows the primitive used to initialize and
execute the functions implemented in the corresponding plug-ins. This synchronization
expression transparently executes the CPU-plugin code for the CPU cores, or the special-
ized GPU-plugin code for the GPU devices, using the same semantics, across a whole
heterogeneous cluster. The first parameter of this macro represents the kind of scheduling
policy desired by the user (described below). It is used internally by the 1st and 2nd exe-
cution layers to balance the workload across the different computational units. Line M05
shows the primitive needed to make the process wait until all computational units of all
nodes have finished. The user is free to insert more code to execute other kernels, before
the finalization of the heterogeneous cluster communication, shown in line M07.

6.3. TuCCompi: The Distributed Heterogeneous Computing Model 119

Main program:
C code + TuCCompi calls

Programmer Application

Plug-in
GPU

Code A

Plug-in
GPU

Code B

Plug-in
CPU

Code A

Plug-in
CPU

Code B

Kernel
A

TuCCompi

SP SP SP SP

SP SP SP

SP SP SP

SP

SP

GPU

SP SP SP SP

SP SP SP

SP SP SP

SP

SP

GPU

CPU

CPU

Sch
Plug-in
Sch
Plug-in
Sch
Plug-in

Scheduling
Policies

Characterization
Policies

Char
Plug-in

Cluster

Kernel
Characterization

Kernel
B

Kernel
C

Figure 6.2: TuCCompi model usage. Elements in the dashed box are provided by the programmer.
Note that the user can develop different versions of each plug-in (Code A, Code B, . . .) but only
one at a time will be deployed into TuCCompi framework.

M00: main(){
M01: TuCCompi_COMM();
M02: (main user code)
M03: TuCCompi_SETCK(number);

M04: TuCCompi_PARALLEL(MS, plugin_Cpu(..), plugin_Gpu(..));

M05: TuCCompi_SYN();
M06: (main user code)
M07: TuCCompi_ENDCOMM();
M08: }//main

Figure 6.3: User implementation of the TuCCompi main-program. The programmer has to add to
his code the boxed primitives.

Coordination Programming Level - Workload Scheduling

The TuCCompi model includes three different policies to distribute the workload between
all available cluster resources through the first parameter of the primitive shown in line
M04 of Fig. 6.3.

The first one, EQ1, is an equitable policy that schedules the same number of tasks
to each node of the 1st layer (distributed memory environment), independently of the
number of CPU cores, GPUs, or other accelerators that the nodes have inside. Later, each

120 Chapter 6. TuCCompi Programming Model

C00: plugin_Cpu(user_vars ...) {
C01: (Cpu user code)
C02: }//pluginCPU

G00: plugin_Gpu(user_vars ...) {
G01: (Gpu user code)

G02:
TuCCompi_GPULAUNCH(kernelname1, total_numthreads,

TuCCompi_PARLLCK(vector1, type, lng), ...);

G03: TuCCompi_GPUSYN();

G04:
TuCCompi_GPULAUNCH(kernelname2, total_numthreads2,

TuCCompi_PARLLCK(vector2, type, lng), ...);

G05: TuCCompi_GPUSYN();
G06: }//pluginGPU

Figure 6.4: Plugin_Cpu (top) and Plugin_Gpu (down) interfaces. The programmer adds to his
code the boxed pieces of code to deploy the CPU plugin in TuCCompi, and he has to replace the
CUDA kernel launch primitives for the boxed TuCCompi macros for the GPU plugin.

node equally divides the assigned workload between all its own computational units (CPU
core/Accel.), also in a balanced way.

The second one, EQ2, is also an equitable policy, but it divides the workspace directly
between the computational units of the whole cluster at the 2nd layer. The workspace
division does not consider the computational unit nature.

The third one, MS, follows a master-slave model. One computational unit is sacrificed
to act as the master, and the rest of the computational units work as slaves. The slaves
enter into a working loop, requesting tasks from the master when they become idle, until
the master sends a termination signal to them. Thus, the more powerful units will ask for
more work, and therefore they will process more tasks than the less powerful units. As
the master can be located at any cluster node, these asking-for-tasks requests are issued
through distributed-environment communications.

Additionally, TuCCompi also offers the possibility of including a scheduling policy
programmed by the user through the Scheduling plug-in (see Sect. 6.4).

Deployment Programming Level - User-code Plug-ins

Figure 6.4 (top) shows the interface of the sequential code that will be executed in a CPU
core computational unit. The user is responsible for inserting the code to implement the
algorithm that solves a single task (line C01, Cpu user code).

Figure 6.4 (bottom) shows the code that will be executed in a CPU thread assigned
by TuCCompi to manage one or more associated GPUs. The control of the GPU often
involves active waits. In this case, a CPU core should be sacrificed to execute this GPU-
controller thread. The user should define the code that handles the logic control of the
algorithm that comprises the use of one or several GPU kernels. This code will be respon-
sible of launching the corresponding kernels. Line G02 shows the TuCCompi macro that

6.3. TuCCompi: The Distributed Heterogeneous Computing Model 121

carries out a kernel launch, with the name of the kernel as first parameter, and followed
by other user variables that have been previously allocated in the GPU. The model trans-
parently executes as many kernel instances as indicated by the programmer in the main
control program (CK value) (see line M03 of Fig. 6.3). Every concurrent kernel launched
will need its own workspace to compute its results. The second primitive of line G02 gives
to the kernel one memory pointer for each data structure needed. The needed parameters
are: The variable name; the native type of the elements that it contains; and the number of
elements that compounds it. As we said before, the algorithm implementation can require
the execution of different kernels that should be sequentially launched for a single task
computation (line G04). The TuCCompi primitive of line G03 forces the CPU to wait
for the finalization of an executing kernel, or kernels concurrently launched, providing a
synchronization mechanism.

Deployment Programming Level - Kernel Characterization

The user has to provide a general characterization of the kernels along with its defini-
tion. This information is easily expressed in our prototype implementation through the
TuCCompi_KERNELCHAR(kernel_name, num_dims, A, B, C, D) primitive. The val-
ues for parameters A, B, C and D have to be chosen from the kernel-characterization clas-
sification shown in Table 6.1. TuCCompi model will automatically optimize the use of
the underlying hardware of any kind of GPU found in the platform, for each possible
combination of these parameters. The current prototype implementation includes support
for any GPU with Fermi or Kepler CUDA architecture, following the guidelines and opti-
mizations proposed in the work of [16], and extended in this Ph.D. thesis (see Chapter 4).

Figure 6.5 shows some examples of the code used to characterize the kernels. Lines
K00 and K04 describes the characterization of kernels k1 and k2 respectively, indicating
the kernel name, the number of dimensions of the threadblock, and the classes chosen
from the classification criteria described in Table. 6.1. In the case that the user does not
know how to classify the kernels, he can use the default values provided by the model. The
primitive used for this default case is TuCCompi_KERNELCHAR(kernel_name, num_dim,
def, def, def, def). Note that this def word used to configure the default configu-
ration cannot be combined with any other word that represents a kernel characterization.

6.3.3 The External-Work Attachable to TuCCompi

In order to facilitate to the programmer the porting from sequential code to parallel code,
and vice-versa, the functionality of TuCCompi could be complemented with other works
related with this kind of code transformation, that are already present in the scientific
community. For example, accULL [197] receives a sequential code and automatically
transforms it to parallel GPU code. Another example of code transformation is Ocelot
[198], that works in the opposite way. Given a GPU implementation, Ocelot transforms
it to sequential code. MCUDA [161] is another tool/framework that also makes GPU-to-
CPU code conversion. TuCCompi model does not aim to deal with code transformations,
but these works can be easily attached as previous functional modules to our multilayer
model (see Fig. 6.6). Another attachable module could be the work of elastic kernels

122 Chapter 6. TuCCompi Programming Model

Parameter Description Choice
A Global memory-access pattern scatter/ mediumcoalesced/

coalesced/ def
B Ratio of arithmetic instructions per thread high/ medium/ low/ def

compared to the global-memory accesses
C Ratio of L1 cache memory lines evictions high/ medium/ low/ def

compared to the size of this memory
D Ratio of memory data reutilization compared to high/ medium/ low/ def

the number of arithmetic instruction per thread

Table 6.1: TuCCompi kernel-characterization classification. The def choice can be used when
the user does not know the kernel characterization.

K00: TuCCompi_KERNELCHAR(kernelname1, 2, scatter, none, high, low);
K01: __global__ void kernelname1 (...){
K02: (kernel implementation)
K03: }

K04: TuCCompi_KERNELCHAR(kernelname2, 1, coalesced, low, low, high);
K05: __global__ void kernelname2 (...){
K06: (kernel implementation)
K07: }

Figure 6.5: Example of kernel characterizations and implementations. The programmer adds the
boxed primitive before the kernel implementation to characterize it.

Main Program

Programmer Application

Plug-in
GPU

Kernel

Plug-in
CPU
Code

Plug-in
GPU
Code

Ocelot
accULL

Plug-in
CPU
CodeKernels

+

Kernels

+

Figure 6.6: Usage of TuCCompi with attachable code-transformation modules.

6.4. The Prototype Internals 123

presented in [199]. They do manual source-to-source code transformations in order to
obtain GPU kernels that exploit more the multikernel feature of the GPU devices.

6.4 The Prototype Internals
In this section we will discuss the internals of the TuCCompi prototype we have devel-
oped to test the model functionality. The functions and primitives described here have a
correspondence with the model layers described in Sect. 6.3.1.

Cluster Inter-Node Communication (1st Layer): TuCCompi_COMM

Once a TuCCompi program is in execution, each process initializes its MPI-identification
variables, and enters into a global communication step carried out by exchanging a few
MPI messages. An arbitrary process is the coordination handler, that we name as parent
process. It receives from the remaining processes the number of the computational re-
sources they are able to manage. Then, the parent process sends to each process a global
identification number for each resource inside the whole heterogeneous cluster. Addition-
ally, the parent process sends more information about the heterogeneous cluster, such as
the total number of computational units and the numeration per node.

Fig. 6.7 shows the implementation of this first phase. We will now review the data
structures involved. The v_cu vector stores the number of computational units from each
process. The v_id vector stores the number from which the numeration of computational
units should start for the process i. The total_cu variable stores the total number of
computational units. The id_mpi variable stores the identifier of the MPI process. The
n_proc variable stores the total number of MPI processes. Finally, the PARENT constant is
the identifier of the MPI process that coordinates the communication. In this first phase,
lines 02-04 initialize some values and ask to the second layer how many computational
units has the machine. Lines 05-09 receive information from the rest of processes. Lines
10-14 perform the heterogeneous-environment information shipping. Lines 15-21 corre-
spond to the behavior of the rest of process, that looks up for the available resources, sends
this value to parent process and receives the cluster information. If the programmer needs
to modify the information exchanged during this phase, she just has to slightly modify
some code lines of this function only, that was designed to gather the behavior of both
kind of processes, the coordinator and the rest.

Cluster In-Node Synchronization (2nd Layer): TuCCompi_PARALLEL

Once the TuCCompi model has been initialized and the user variables have been declared,
the TuCCompi_PARALLEL primitive automatically creates as many OpenMP threads as the
number of CPU cores that will perform the parallel execution on each node. Figure 6.8
shows the code that is executed when the programmer uses the TuCCompi_PARALLEL
primitive for the master-slave scheduling policy, (EQ1 and EQ2 policies are not shown
due to space restrictions). The master-slave implementation just divides the workload be-
tween the cluster nodes and the computational units. The slaves execute each task without

124 Chapter 6. TuCCompi Programming Model

00: comm(v_cu, v_id, total_cu, id_mpi, n_proc){
01: if (id_mpi == PARENT){
02: v_id [PARENT] = 0;
03: v_cu [PARENT] = second_layer_resources()
04: total_cu = v_cu[PARENT];
05: for (int i=1; i<n_proc; i++){
06: v_id [i] = total_cu;
07: RECV(v_cu [i], i);
08: total_cu += v_cu [i];
09: }
10: for(int i=1; i<n_proc; i++){
11: SEND(v_id, i);
12: SEND(v_hilos, i);
13: SEND(total_cu, i);
14: }
15: }else{
16: cu_local = second_layer_resources()
17: SEND(cu_local, PARENT_process);
18: RECV(v_id, PARENT_process);
19: RECV(v_cu, PARENT_process);
20: RECV(total_cu, PARENT_process);
21: }
22: }

Figure 6.7: Implementation of the comm() cluster-information gathering function, called from
TuCCompi_COMM().

needing any more communication with the master. Lines 05-07 initialize the intra-node
computational units identifiers. Lines 08-09 check whether any of the current OpenMP
threads should act as the master, executing the default master function. If there are GPUs,
each one is governed by its corresponding OpenMP thread. Therefore, lines 10-15 ob-
tain the device properties, entering into the ask-for-tasks working loop and executing the
parallel GPU code provided by the pluginGPU (see Sect. 6.3.2). The normal CPU cores
also enter into the ask-for-tasks working loop but executing the code of the pluginCPU
(see Sect. 6.3.2) (lines 16-18). Lines 14 and 17 show the code responsible for obtaining
the following task to be executed by invoking the pluginSLAVE macro. When all tasks
have been already computed, the function behind this macro returns a value higher than
the total number of tasks in order to leave the ask-for-tasks working loop.

Kernel Launch and Concurrent Kernel Execution (3rd and 4th Lay-
ers): TuCCompi_GPULAUNCH

Before the task-threads spawn (Line 03 of Fig. 6.8), the second layer (shared-memory
process) detects how many GPUs are available in the shared-memory node (Line 01
of Fig. 6.8). Once in the parallel region, an OpenMP thread is assigned to one CPU

6.4. The Prototype Internals 125

00: #define TuCCompi_PARALLEL(MS, pluginCPU, pluginGPU)\
01: cudaGetDeviceCount(&TuCCompi_gpuCount);\
02: omp_set_num_threads(omp_get_num_procs());\
03: #pragma omp parallel\
04: {\
05: int task;\
06: int TuCCompi_local_id = omp_get_thread_num();\
07: int TuCCompi_global_id = v_id[id_mpi] + TuCCompi_local_id
;\
08: if(TuCCompi_global_id == TuCCompi_master) {\
09: pluginMASTER;\
10: } else if(TuCCompi_local_id < TuCCompi_gpuCount){\
11: cudaDeviceProp props;\
12: cudaGetDeviceProperties(&prop,TuCCompi_local_id);\
13: int gpu_arch = props.major;\
14: while((task = pluginSLAVE) < total_tasks)\
15: pluginGPU;\
16: } else\
17: while((task = pluginSLAVE) < total_tasks)\
18: pluginCPU;\
19: }#pragma

20: #define TuCCompi_SYN()\
21: #pragma omp barrier\
22: MPI_Barrier(MPI_COMM_WORLD)

23: #define TuCCompi_END()\
24: MPI_Finalize();

Figure 6.8: TuCCompi_PARALLEL() and other macro-definition codes.

core in order to govern each hardware accelerator, also storing some relevant proper-
ties of the GPU, such as its architecture (Lines 11-13 of Fig. 6.8). Afterwards, this
thread is the responsible of handling the logic control of the algorithm implemented
in pluginGPU, actually launching the different kernels invoked through the primitive
TuCCompi_GPULAUNCH(kernel_name, total_numthreads, kernel_vars), whose in-
ternal definition is shown in Fig. 6.9.

The model automatically detects if the concurrent execution of several kernels (the
multikernel feature) is supported by the GPU using the properties previously retrieved.
Otherwise, the model always launches only one kernel at the same time. The multikernel
feature is also embedded in the GPU launching primitive (Line 01 of Fig. 6.9). Ad-
ditionally, in order to make possible that each kernel works in a different workspace, the
PARLLCK(variable_name, variable_type, variable_length)macro automatically
computes the memory offset allocation of the corresponding variables that are task-dependent
(Lines 04-05 of Fig. 6.9).

126 Chapter 6. TuCCompi Programming Model

00: #define TuCCompi_GPULAUNCH(k_name,total_numthreads,uservars)\
01: for(int parll = 0; parll < CK; parll++)\
02: k_name<<<t_grid(k_name, arch, total_numthreads),\
03: t_threads(k_name, arch)>>>(uservars)\

04: #define TuCCompi_PARLLCK(var_name,var_type,var_length)\
05: var_name + parll * sizeof(var_type) * var_length

06: #define TuCCompi_GPUSYN()\
07: cudaThreadSynchronize()

Figure 6.9: Declarations for the automatic kernel launch and multikernel support.

Automatic Kernel Tuning (Tuning Layer): TuCCompi_KERNELCHAR
The optimization layer automatically configures the kernel parameters depending on:

(1) The GPU architecture where it is going to be launched.

(2) The kernel characteristics provided by the user.

As long as the model recognizes the architecture of the GPUs that are present in each
cluster node, it only needs to know the characterization of each user-defined kernel. This
characterization is indicated by the programmer before the kernel definition (see previous
example of Fig. 6.5). It is automatically mapped to a structure that contains the optimal
values for all classified architectures (see Fig. 6.10). As can be seen in lines 02-03 of
Fig. 6.9, these values are already embedded in the primitive of kernel launching as a call to
the t_grid() function, that returns the optimal number of blocks, and t_threads(), that
returns the optimal number of threads per block. In this way, TuCCompi automatically
selects the optimal configuration of the grid, and the threadblock size-shape. Note that,
currently, our prototype only supports one dimension for the threadblock shape, and the
t_grid() function returns correct values if the size value, that is the total number of
threads, is multiple of the corresponding optimal threadblock size. The modifications to
support non-multiple total sizes can be done straightforward applying the ceil function.

If the user does not know how to characterize her kernel, the default values can be
used. These values are the ones recommended by CUDA [21], to maximize the SM
Occupancy. Although these recommended values sometimes work well, we have seen
in Chapter 4 that there could be performance differences compared to the proper values
proposed in TuCCompi (as we stated in Sect. 6.3.2).

Advanced TuCCompi Model Features

TuCCompi model has additional functionalities and features, such as the possibility of
executing a more complex workload scheduling policy created by the user, or the possi-
bility of changing the optimal values for each kernel and GPU. We will now describe two
plugin systems that help to introduce these functionalities.

6.5. Porting the SSSP Implementation to TuCCompi 127

00: #define TuCCompi_KERNELCHAR(name, numDim, A, B, C, D)\
01: int k_##name[4] = k_##A##B##C##D

02: #define t_threads(name,arch) k_##name[arch]
03: #define t_grid(name,arch,size) size/k_##name[arch]

04: #define k_defdefdefdef {256, 256, 256, 256}
05: #define k_scatterlowhighlow {256, 256, 96, 64}
06: #define k_coalescedlowlowmedium {256, 128, 192, 128}
07: #define ...

Figure 6.10: Some declaration examples for the automatic GPU kernel optimizations.

Scheduling plug-in system

The current master-slave policy involved in the prototype gives a simple implementation
where only one task is scheduled to each slave independently of its computational power.
The master and the slaves execute, respectively, the master-function and slave-function
codes provided in the scheduling plug-in. Additionally, if the problem, or the user, needs
a different granularity or a particular load distribution that follows a special pattern or
policy, the model allows the programmer to use her own scheduling implementation.
This is done by injecting new distribution policies through a scheduling plug-in sys-
tem, using an extended primitive TuCCompi_PARALLEL(MS, pluginCPU, pluginGPU,
pluginMASTER, pluginSLAVE).

This is very useful if the user has in the heterogeneous environment some devices
that work very fast compared with the rest. In this case, it may be a good choice that
the master gives them a pack of tasks instead of a single one. When an OpenMP thread
responsible of a GPU device asks for tasks, it can retrieve the corresponding device infor-
mation that could be sent to the master in the requesting message. With this information,
the master could give a pack of tasks to the most powerful devices and a single one to the
less powerful computational units. Thus, the master can produce a more complex distri-
bution depending on the capabilities of the computational units that are asking for work.
Figure 6.11 shows a customized implementation of the scheduling plug-in created for the
case study.

Characterization plug-in system

The optimal values for GPU configurations used by the Characterization plug-in are stored
in a file. These values can be easily updated if new devices with different architectures or
resources are added to the heterogeneous environment. Moreover, it is also easy to modify
these values if the user wants to experiment with new combinations of parameters.

128 Chapter 6. TuCCompi Programming Model

00:void master_scheduler(task_ini,total_tasks){
01: int next_task = task_ini;
02: while(next_task < total_tasks){
03: RECV(id_slave, any_slave, slave_info);
04: if(slave_info == (FERMI or KEPLER)){
05: if((next_task + CK) <= total_tasks){
06: SEND(next_task, id_slave);
07: next_task = next_task + CK;
08: }else{
09: SEND(END_SIGNAL, id_slave);
10: token++;
11: }
12: }else{
13: SEND(next_task, id_slave);
14: next_task++;
15: }
16: }
17: while(token < total_cu-1){
18: RECV(id_slave, any_slave);
19: SEND(END_SIGNAL, id_slave);
20: token++;
21: }
22:}

23: int slave(id_slave, mpi_master, tag){
24: SEND(id_slave, mpi_master, tag);
25: RECV(task, mpi_master, id_slave);
26: return task;
27: }

Figure 6.11: Our case-study implementation for the functions, master (top) and slave (bottom), of
the distribution plug-in.

6.5 Porting the SSSP Implementation to TuCCompi

In the previous chapters of this dissertation we have presented two different ways to solve
the APSP problem through the n×SSSP approach. The first one, described in Chapter 4,
uses one single GPU, where several tuned kernels are launched concurrently, and each of
them takes care of one SSSP task at a time. The second one, described in Chapter 5, uses
a complete heterogeneous single-node system, combining 8 CPUs and 2 GPUs. Each
of these computational units (CPU/GPU) takes care of one SSSP task at a time, so the
concurrent kernel feature of the GPU and the tuning techniques were not exploited.

In order to illustrate the capabilities of the TuCCompi framework prototype, we will
use the APSP problem as our case study. This problem is a representative example with
good characteristics to evaluate the model features, carrying out, at the same time, het-
erogeneous computing in more than one shared-memory system and a tuned, concurrent

6.5. Porting the SSSP Implementation to TuCCompi 129

00: TuCCompi_KERNELCHAR(relax, 1, mediumcoalesced, low, high, high);
01: __global__ void relax (...){
02: (relax kernel implementation)
03: }

04: TuCCompi_KERNELCHAR(minimum, 1, coalesced, medium, low, low);
05: __global__ void minimum (...){
06: (minimum kernel implementation)
07: }

08: TuCCompi_KERNELCHAR(update, 1, coalesced, low, low, low);
09: __global__ void update (...){
010: (update kernel implementation)
011: }

Figure 6.12: Inserting information for TuCCompi prototype related with the characterization of
the SSSP kernels.

00: SSSP_pluginGPU(...){
01: user code
02: while(){
03: TuCCompi_GPULAUNCH(relax,num_v,v_d,a_d,w_d,
07: PARLLCK(p_d, bool, num_v),
08: PARLLCK(f_d, bool, num_v),
09: PARLLCK(c_d, int, num_v))
11: TuCCompi_GPUSYN()
12: TuCCompi_GPULAUNCH(min,num_v,v_d,a_d,w_d,
16: PARLLCK(p_d, bool, num_v),
17: PARLLCK(f_d, bool, num_v),
18: PARLLCK(c_d, int, num_v))
20: TuCCompi_GPUSYN()
21: TuCCompi_GPULAUNCH(update,num_v,v_d,a_d,w_d,
25: PARLLCK(p_d, bool, num_v),
26: PARLLCK(f_d, bool, num_v),
27: PARLLCK(c_d, int, num_v))
29: TuCCompi_GPUSYN()
30: }
31: user code
32: }//SSSP_pluginGPU

Figure 6.13: TuCCompi pseudo-code for the pluginGPU.

130 Chapter 6. TuCCompi Programming Model

kernel execution.
Additionally, being an embarrassingly parallel problem, it suits perfectly with TuCCompi’s

approach for the first three layers. Besides, the GPU solution for this problem involves
three kernels of very different nature and characterization. This variety allows us to check
the behavior of the fourth and tuning layers.

In this section we will explain in detail the corresponding plug-ins for the scheduling
policies and the porting of the algorithm to TuCCompi’s model.

Scheduling plug-ins

Each SSSP computation is a single independent task. We have slightly modified the naïve
master-slave behavior in order to show how easily is to customize the scheduling plug-
in (see Fig. 6.11). The master distinguishes the nature of the slave that is requesting a
task. Depending on the slaves computational power, the master will send more or less
tasks. The TuCCompi model is better exploited if the master gives more tasks to the
modern GPUs (Fermi, Kepler and so on) due to their multi-kernel execution feature. This
implementation sends CK tasks to each modern GPU, and only one for the Pre-Fermi
architectures, or the CPU cores.

The lines 00-22 of Fig. 6.11 show the master implementation, whereas the lines 23-27
show the slave implementation. The master will manage the task distribution while there
are task to be executed (lines 01-16). To do so, the master waits for a task request from
any slave (line 3). If the slave is a modern GPU (Fermi or Kepler) (line 04), the master
checks if there are CK available tasks to be sent. In this case, it sends the identifier of
the first task of the pack to the corresponding slave, and updates the task counter (lines
05-07). However, if there are not enough tasks for this type of slave, the master sends to
it the termination signal and updates the counter of slaves that have already finished (lines
08-11). If the requesting slave is an old GPU (pre-Fermi) or a CPU core, the master only
sends a single task to the slave (lines 12-15), thus, the task counter is simply incremented.
When all tasks have been scheduled and carried out, the master sends the termination
signal to the rest of active slaves when they request more tasks (lines 17-21).

Regarding the slave implementation, it first notifies the master that it is idle (line 24).
Then the slave receives the identifier of the task pack to be executed, one task for CPU
cores and Pre-Fermi GPUs, and CK tasks for the modern GPUs in this prototype (line 25).

SSSP plug-ins

Figure 6.12 shows the primitives used for the insertion of the characterization of our SSSP
kernels (relax, minimum and update) using our TuCCompi prototype. These characteriza-
tions have been obtained through manual inspection of the codes (see Sect 4.5), choosing
values in the classification criteria used by TuCCompi, described in Table 6.1. Figure 6.13
shows the adaptation made to the code in order to introduce the deployment primitives of
TuCCompi for the pluginGPU.

6.6. Experimental Evaluation of TuCCompi Prototype 131

Small Heterogeneous Cluster (Small HC)
Node CPUInfo #CPU cores GPU details

pegaso IC2 i7 960 3.20GHz 8
GeForce GTX 480 +
GeForce GTX 680

nodoyuna IC2 Q8200 2.33GHz 4 -
trasgo/apolo IC2 Q6600 2.40GHz 4/4 -
geopar IX E7310 1.6GHz 16 -
patan IC2 E6550 2.33GHz 2 -
atc01/02 IC2 6300 1.86GHz 2/2 GeForce 9600GT / -
atc03 AMD AtX2 3600+ 2 GeForce 8500GT
atc09 IC Q8299 2.33GHz 4 -

Big Heterogeneous Cluster (Big HC):
Small HC plus the following machines
Node CPUInfo #CPU cores GPU details
titan01/02/05 IX E5-2620 2.00GHz 4/4/12+12 -
titan03/04 IX E5645 2.40GHz 8+8/8+8 -
atc05/06 IX E5630 2.53GHz 8+8/4 -
atc07 IX X-5675 3.07GHz 12+12 -
atc08 IX E5-2620 2.00GHz 12+12 -

Table 6.2: Description of the nodes that compound the Heterogeneous Clusters (HCs).

6.6 Experimental Evaluation of TuCCompi Prototype

This section presents the methodology used to test the TuCCompi prototype, the charac-
teristics of the input sets used, and a discussion of the experimental results.

6.6.1 Methodology

We have conducted two experiments with different purposes. The main objective of the
first experiment is to test the correct functionality of TuCCompi’s ideas, by checking that
the joint use of the different layers leads to benefits in terms of performance using our
implemented prototype. A sequence of scenarios where each one involves more layers
than the previous one is used to prove the scalability of the model in terms of adding more
parallelism and coordination levels. The objective of the second experiment is to evaluate
the performance gain offered by the two innovative layers introduced by TuCCompi’s
model not present in other state-of-the-art works, the concurrent-kernel execution and
tuning layers.

A description of the platforms and devices used, and the experiments carried out is
presented below.

132 Chapter 6. TuCCompi Programming Model

Target architectures

The heterogeneous environment where we have carried out the experiments described in
the following sections is compound by several different computing nodes. A description
of these cluster components is presented in Table 6.2, where is indicated the number of
CPU cores and GPUs that each one has. In the cluster we can find CPUs ranging from
1.6 GHz to 3.2 GHz, in different kinds of processors, such as Intel Xeon, Intel QuadCore,
and AMD. Even the number of computational CPUs that belong to each shared-memory
system significantly varies between them. Finally, we can also find computing nodes that
are virtual machines running in a virtualization centralized server with several blades,
such as the Titan01-05, and the Atc05-08. All these nodes, normal and virtualized, run an
Ubuntu Desktop 10.04 operating system.

Three of these machines contains also GPUs. These hardware accelerators have dif-
ferent architectures (pre-Fermi, Fermi, and Kepler). The first node, pegaso, handles
the NVIDIA GPUs GeForce GTX 480 (Fermi GF100) and GeForce GTX680 (Kepler
GK104). The nodes atc01 and atc03, handle pre-Fermi boards, GeForce 9600GT and
GeForce 8500GT, respectively. All these host machines run the CUDA Toolkit 4.2 and
driver 295.41.

The complete heterogeneous cluster contains a total of 180 CPU cores and 4 GPUs.
However, each different GPU device is governed by a single CPU core, that is only ded-
icated to this handling task, not to compute. Thus, they are not counted as CPU compu-
tational units. Therefore, the total number of real computational units is 180 (176 CPU
cores plus 4 GPUs).

Experiment I - Checking TuCCompi’s Layers

In order to evaluate the functionality of the different layers of TuCCompi’s model in het-
erogeneous environments, we have tested the complete APSP problem in different scenar-
ios. The workload scheduling used for the scenarios, described below, is the customized
master-slave policy presented in Sect. 6.5. Note that the behavior of the equitable poli-
cies, for our heterogeneous scenarios would result in a bottleneck generated at the slowest
node, whereas the rest would become idle much earlier.

The experiment was designed with the aim to check the use of the layers involved
in an incremental fashion, where each scenario has a different configuration of available
computational units (see Table 6.2 for architecture details of the machines and devices
involved). These are the evaluated scenarios:

1. [1 GPU] A single GPU scenario, that involves the 3rd, 4th, and the tuning layer. The
GPU selected is the GeForce GTX 480 (Fermi architecture). The parameter value
for the concurrent kernel execution is set to four, CK=4. This is the only scenario
that does not use a scheduling policy because there is only one computational unit.

2. [2 GPUs] A multi-GPU scenario, that involves the 2nd layer in addition to the
previous ones (3rd, 4th and tuning layers). We use as slaves the two GPUs present
in the shared-memory machine called pegaso (GeForce GTX 480 and GTX 680),
and a CPU core doing the master work.

6.6. Experimental Evaluation of TuCCompi Prototype 133

3. [Pegaso] A heterogeneous single-node system, with two GPUs and eight CPU cores,
in order to test the 2nd layer by mixing two different kinds of computational units.
Note that two of the eight CPU cores are responsible of handling the two GPUs, so
this scenario handles the execution of 2 GPUs and 6 computing CPU cores.

4. [Small HC] A small Heterogeneous Cluster, that involves all layers of TuCCompi,
using 10 distributed nodes with a total of 48 computational units, 44 computing
CPU cores, and 4 GPUs.

5. [Big HC] A big Heterogeneous Cluster, that also involves all layers of TuCCompi,
but with a significant increment of computational resources (180 comprising 176
CPU cores plus 4 GPUs), in order to evaluate the scalability of the model when
adding more distributed nodes.

Experiment II - Checking the Innovative 4th and Tunning Layers

This experiment tests the performance gain delivered by the joint use of the proposed 4th
and Tuning layers. We have compared the execution times of a single GPU connecting
or disconnecting the optimizations introduced by these layers. For the non-automatically
optimized versions (without 4th and Tuning layers), we have chosen the default values
offered by TuCCompi. The default values selected have proven to be competitive for our
case study in several situations of the exhaustive evaluation carried out in the experiment
described in Sect. 4.6. This default configuration involves the use of 256 threads per
block, a increased L1 cache memory size, and no concurrent kernel execution.

The experiments have been carried out just computing enough task sets (1 024, 2 048,
4 096, 8 102, 16 204, and 32 408) to produce sufficient computational load to keep scala-
bility.

6.6.2 Input Set Characteristics
The used input set is composed by the collection of Martín’s synthetic graphs, described in
Sect. 3.3.2. The graph generation method used to create these input sets leads to irregular
loads when applying individual SSSP searches. We have used this kind of graph instead
of others with a irregular, but known, distribution because we will also check in this way
the versatility of the specific master-slave policy implemented for the study case. For
the first experiment, we have used four different graph-sizes, whose number of vertices
are 1 049 088, 1 509 888, 2 001 408 and 2 539 008. For the second experiment, the used
graphs were the ones with 2 539 008 nodes.

6.6.3 Experimental Results I - Checking TuCCompi’s Layers
Figure 6.14 shows the execution times obtained for the single GPU, the multi-GPU sys-
tem, the heterogeneous shared-memory host, and the two heterogeneous cluster scenarios.
Although the GPUs are the most powerful devices, and their combined use has returned a
very competitive ratio speedup/computational unit difficult to beat (1.98× speedup), the
advantage of using many less-powerful computational units has enhanced even more the

134 Chapter 6. TuCCompi Programming Model

 20

 40

 60

 80

 100

 120

 140

1000K 1500K 2000K 2500K

T
im

e
 (

s
e

c
 x

 1
0

^3
)

Number of Graph nodes

Execution time of the different computing environments

1 GPU
2 GPUs
Pegaso

Small HC
Big HC

Figure 6.14: Execution times of the tested scenarios for different graph-sizes. The description of
the tested scenarios can be found in the definition of the Experiment I in Sect. 6.6.1.

 0

 35000

 70000

 105000

 140000

 175000

 210000

 245000

 280000

 315000

 350000

EQ1 EQ2 MS

N
u

m
b

e
r

o
f

e
x
e

c
u

te
d

 t
a

s
k
s

Workload Distribution

atc03
atc02
Patan

Nodoyuna
atc01

Trasgo
Apolo
atc09
atc06

titan01
titan02

Geopar
atc05

titan03
titan04
titan05
atc07
atc08

pegaso

Figure 6.15: Number of executed tasks per node of the Big HC with the three scheduling policies.

total performance gain (a speedup up to 3.7× in the Small HC, and a up to 9.4× in the
Big HC), compared with the single GPU scenario.

Therefore, the addition of more computing resources has always reduced the global
execution time needed to compute the complete APSP. This is possible because the com-
munication overhead across nodes of TuCCompi prototype was lower than 1% of the total
execution time. In particular, the overhead in the Small-HC platform, has never surpassed
0.589% of the total execution time.

Figure 6.15 shows the experimental distribution of tasks per cluster node using the
MS scheduling policy, compared with the theoretical values that EQ1 and EQ2 static poli-
cies would obtain. We can observe how the MS dynamic scheduling policy favors a pro-
portioned distribution of the task according to the processing capabilities of the devices,
for the used study case.

6.7. Summary 135

 0

 200

 400

 600

 800

 1000

 1200

1K 2K 4K 8K 16K 32K

T
im

e
 (

s
e

c
)

Number of SSSP executions

The performance improvement of the 4th+Tuning layers

default values
4th+Tun values

Figure 6.16: Performance improvements obtained by the automatic 4th and Tuning layers, with
respect to the competitive default configuration values.

6.6.4 Experimental Results II - The Innovative 4th + Tuning Layers
Figure 6.16 shows the comparison of the concurrent kernel execution, with CK=4, com-
bined with the values proposed in Chapter. 4, with respect to the competitive default con-
figuration on the GPU GeForce GTX 480. The use of the concurrent kernel layer and the
optimization tuning reduces the execution time for our test case up to 12%.

6.7 Summary
TuCCompi is a multilayer abstract model that helps the programmer to easily obtain flex-
ible and portable programs, that automatically detects at run-time the available compu-
tational resources and exploits hybrid clusters with heterogeneous devices. This model
offers to the programmer a transparent and useful mechanism to select the optimal values
of GPU configuration parameters just characterizing the nature of the kernels. Any par-
allel application that can be devised as a collection of non-dependent tasks working on
shared data-structures can be exploited with the TuCCompi model.

Compared with previous works, TuCCompi adds a novel parallel layer to the tradi-
tional parallel ones, with the automatic execution of concurrent kernels in a single GPU.
Additionally, it squeezes even more the computational power of the GPUs by applying
optimal values for runtime configuration parameters, such as the threadblock size, and the
management of the L1 cache memory state. For our test case, the use of these both new
layers leads to performance improvements of up to 12%. Thus, these new layers turn out
to be very convenient for exploiting heterogeneous clusters with GPUs.

The model is designed to provide a mechanism of plug-ins, in order to easily change:
(1) The algorithms to be deployed; (2) the scheduling policies of the tasks; and (3) the pa-
rameter values for optimal configurations on different GPU architectures, without making
any change in the model. The use of this model takes advantage of even the less powerful

136 Chapter 6. TuCCompi Programming Model

devices of a heterogeneous cluster, and it correctly scales if more computational units are
added to the environment, with a communication overhead less than one percent of the
total execution time.

The work and conclusions described in this chapter have been published in the follow-
ing articles:

• “TuCCompi: A Multi-Layer Model for Distributed Heterogeneous Computing with
Tuning Capabilities,” H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D.
R. Llanos, International Journal of Parallel Programming, 43(5) pp. 939–960,
2015.
Online, DOI: 10.1007/s10766-015-0349-6

• “TuCCompi: A Multi-Layer Programing Model for Heterogeneous Systems with
Auto-Tuning Capabilities,” H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-
Escribano, in Proceedings of Workshop on High-level Programming for Hetero-
geneous and Hierarchical Parallel Systems, ser.(HLPGPU’14), Vienna, Austria:
HiPEAC 2014, pp. 18-25.
Online: HLPGPU Proceedings

http://dx.doi.org/10.1007/s10766-015-0349-6
http://chrisb.host.cs.st-andrews.ac.uk/hlpgpu.pdf#page=18

Chapter 7
Conclusions

The development of solutions for computing shortest path distances has always been an
interesting issue for the scientific community, due to its wide applicability to numerous
real-world fields. During the course of the history, significant improvements have been
made to these solutions by using data structures designed for graphs with particular fea-
tures, and thus, creating efficient algorithms for specific applications.

The incorporation of new parallel programming models together with modern power-
ful hardware accelerators to path-finding solutions has open the possibility of creating new
and more efficient parallel approaches. In some cases, a GPU parallel version of a naïve
algorithm, without using complex data-structures, outperforms the optimized sequential
ones.

Furthermore, the emerging heterogeneous parallel computing combining the power-
ful hardware accelerators with the classical and increasingly powerful CPUs, provides a
perfect environment to face the most costly shortest-path problems in the context of High
Performance Computing (HPC). However, the programming of hardware accelerators,
the optimization of their running times, and also, the coordination of these devices with
other computational units of different nature, are still very complex tasks for non-expert
programmers.

This Ph.D. thesis has addressed both, the algorithmic GPU programming and the
heterogeneous parallel coordination in the context of: Developing new GPU-based ap-
proaches to the shortest path problem; the study of the tuning of the GPU configuration
parameters; and also, designing solutions where both sequential and parallel algorithms
are deployed concurrently in heterogeneous environments.

7.1 Answer to the Research Question

Is it possible to develop techniques and tools to derive more efficient parallel
implementations to solve Shortest Path problems using: (1) The new modern
Graphics Processor Units (GPUs) and their corresponding optimization tun-
ing techniques, (2) heterogeneous environments composed by these hardware
accelerators together with the use of traditional CPUs?

137

138 Chapter 7. Conclusions

The work presented in this Ph.D. thesis allows us to conclude that both research ques-
tions have an affirmative response.

(1) We were able to develop a new parallel solution for GPUs that takes advantage of
their powerful capabilities, following some ideas proposed by Crauser et al. [24].
Our implementation improves the performance of the previous state-of-the-art due
to Martín et al. [23]. Following the guidelines proposed in [28], we have proposed
a refined method to systematically obtain good GPU configuration parameters in
terms of GPU code characteristics. The application of this methodology has led to
performance improvements of our shortest paths program solutions when compared
with the use of configuration parameter values suggested by CUDA programming
guidelines [21].

(2) Combining different parallel programming models and languages, we were able to
develop novel implementations following the parallel productivity-based ideas to
solve the All-Pair Shortest-Path problem. Additionally, these implementation have
been executed on heterogeneous systems, consisting of GPUs and CPUs, where dif-
ferent load-balancing techniques have been tested. Finally, we have proposed a mul-
tilayer programming model, developing a prototype, where we have integrated the
use of the concurrent-kernel execution and the systematical selection of GPU con-
figuration parameters together with the use of several technologies such as CUDA,
OpenMP, and MPI, in order to transparently coordinate the use of heterogeneous
clusters. All the experiments carried out for these novel parallel heterogeneous for-
mulations showed that the new combined approach leads to significant speedups
when compared to parallel homogeneous baseline versions.

7.2 Summary of Contributions
This section summarizes the contributions of this Ph.D. thesis and the related articles that
have been published. The contributions include both surveys related to our study of the
state of the art, and results obtained during the development of the subgoals proposed in
Sect 1.2.2 (see Fig. 7.1).

7.2.1 Surveys and classification studies for the algorithms involved in
Shortest Path problems

We have reviewed both sequential and parallel approaches that solve two different shortest-
path problems: the Single-Source Shortest-Path problem, and the All-Pair Shortest-Path
problem. The Single-Source Shortest-Path problem addresses the computation of shortest
paths between a source node of the graph and the remaining vertices of the graph. The
All-Pair Shortest-Path problem addresses the computation of shortest paths between all
possible pairs of nodes in the graph.

We have presented new classifications for the parallel approaches according to their
features, and we have discover some unexplored approaches that have been addressed in
this Ph.D. thesis. Additionally, we have also studied a particular real-world application

7.2. Summary of Contributions 139

Single-Source Shortest-Path
 (SSSP)

All-Pair Shortest-Path
 (APSP)

Sequential ParallelSequential Parallel

Implementations of sequential
and GPU parallel algorithms

GPU optimizations
 using KC model

KC model
extension
adding CK

Heterogeneous
 APSP

 TuCCompi
Programming
 framework

The Shortest Path Problem

Figure 7.1: Subgoals accomplished in this Ph.D. thesis.

where the use of parallel computing is required to maintain valuable precomputed data up
to date.

These contributions have been published in the following articles:

1. “Parallel Approaches to the Shortest Path Problem - A Survey,” H. Ortega-Arranz,
Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, To be submitted to ACM Com-
puting Surveys

2. “The Shortest Path Problem: Analysis and Comparison of Methods,” H. Ortega-
Arranz, D. R. Llanos, A. Gonzalez-Escribano, Book, 1st edition, ser.(Synthesis Lec-
tures on Theoretical Computer Science series), Morgan & Claypool.
Online, DOI: 0.2200/S00618ED1V01Y201412TCS001 [20]

7.2.2 Development of a new GPU-based algorithm outperforming a
previous state-of-the-art GPU SSSP solution

We have developed a new parallel approach for GPUs to solve the SSSP problem. A
previous state-of-the-art solution, due to Martín et al. [23], has been outperformed in all
graph families tested, including their graph suite used in their own experimentation, a wide
variety of synthetic random graphs, and real-world application networks. Comparing our
implementation with Martín’s one, we obtained speedups of up to 45×, and even 130×

http://dx.doi.org/0.2200/S00618ED1V01Y201412TCS001

140 Chapter 7. Conclusions

for a particular graph. The values used for the runtime execution parameters were exactly
the same as the ones used by Martín et al. for a fair comparison.

We have tuned our GPU implementation using values for the runtime parameters
which are specifically appropriate for NVIDIA devices, obtaining up to 22.43% perfor-
mance gain when compared to the non-tuned version. This non-tuned version uses the
same values for GPU configuration parameters chosen by Martín et al. in their study.

We have compared our tuned implementation with the optimized sequential imple-
mentation of the Boost library [25], obtaining significant speedups of up to 19× for some
of the tested graph families, and also consuming up to 11.25 times less memory.

We have made an architectural study of different modern GPU architectures of NVIDIA
devices. The results suggest that the use of a particular NVIDIA architecture for graphs
with specific features leads to better execution times compared with other architectures.
Fermi GF100 architecture, with a lower number of computing cores but with higher clock
frequencies, obtains better execution times with a difference of up to 39.4% with both
Kepler’s architectures tested, when computing graphs with low number of nodes and low
mean fan-out degree. On the other hand, as the values of these two features increase, Ke-
pler GK110B architecture obtains better execution times than Fermi’s GF100 with a total
difference of up to 40.5%.

The work described has been published in the following articles:

3. “Comprehensive Evaluation of a New GPU-based Approach to the Shortest Path
Problem,” H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos,
International Journal of Parallel Programming, Springer, 43(5) pp. 918–938, 2015.
Online, DOI: 10.1007/s10766-015-0351-z [26]

4. “A New GPU-based Approach to the Shortest Path Problem,” H. Ortega-Arranz, Y.
Torres, D. R. Llanos, and A. Gonzalez-Escribano, in Proceedings of the 11th Inter-
national Conference on High Performance Computing and Simulation, ser.(HPCS’13),
Helsinky, Finland: IEEE, 2013, pp. 505–511.
Online, DOI: 10.1109/HPCSim.2013.6641461 [27].

7.2.3 Extension of the kernel characterization model

We have extended an existing model, that predicts proper values for NVIDIA GPU run-
time parameters only using information related to the characterization of the GPU kernels.
The extensions include considering information related to application-dependent parame-
ters of input graphs, such as the number of nodes, or the mean fan-out degree. Depending
on these values the behavior of the GPU kernels, and their characterization, can change
leading to different proper values for an optimal performance.

We have checked the validity of the model by performing an exhaustive search in the
solution space evaluating the most relevant values for the CUDA configuration parame-
ters, and graph features, with a positive result.

We have also measured the usefulness of the values predicted by the model. We have
calculated the maximum gap between an optimized configuration, applying the knowl-
edge behind the kernel characterization model, and a naïve configuration obtained by

http://dx.doi.org/10.1007/s10766-015-0351-z
http://dx.doi.org/10.1109/HPCSim.2013.6641461

7.2. Summary of Contributions 141

following the recommendations of CUDA guidelines. There is a total performance gain
of up to 58% (2.4× faster) for our case study.

We have also studied the influence of using different numbers of concurrent kernels
on the rest of studied parameters. The results suggest that the use of these techniques does
not affect the current predictions of the model.

In order to conduct the complete study, we have adapted our GPU solution to the
n×SSSP approach in order to solve the APSP problem, using the new concurrent-kernel
feature of the modern NVIDIA GPUs.

The work described has been published in the following articles:

5. “Optimizing an APSP Implementation for NVIDIA GPUs Using Kernel Character-
ization Criteria”, H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R.
Llanos, The Journal of Supercomputing, Springer, vol. 70, no. 2, pp. 786-798,
2014.
Online, DOI: 10.1007/s11227-014-1212-z [28]

6. “A Tuned, Concurrent-Kernel Approach to Speed Up the APSP Problem,” H. Ortega-
Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, in Proceedings of
the 13th International Conference on Computational and Mathematical Methods
in Science and Engineering, ser.(CMMSE’13), Almería, Spain: eds. I.P. Hamilton
and J. Vigo-Aguilar, 2013, vol. 4, pp. 1114-1125.
Online: CMMSE Proceedings [29]

7.2.4 Studies of novel heterogeneous approaches for the APSP prob-
lem

We have implemented a heterogeneous n × SSSP approach to solve the APSP prob-
lem, combining traditional CPU cores with modern GPUs in the same system, and using
two different load-balancing techniques, equitable scheduling and work-queue retrieving
scheduling.

We have studied the relevance of this approach, when computing the APSP problem
in two different situations with irregular graphs. We have compared the execution times
of several instances of our heterogeneous implementation against the execution times of
using just a single GPU. Performance gains of up to 65% are obtained when computing
the complete APSP problem, and up to 47% when computing random APSP subproblems.

We have also concluded that a previous study of the nature of the input problem is
very important, because it allows to the programmer to better map the most costly tasks
to the most powerful devices. The equitable scheduling can be tuned up using informa-
tion of input graph characteristics to achieve better performances. The results are very
sensible to changes in the input graph. The work-queue retrieving implementations have
a more stable performance behavior than the equitable scheduling because they are more
independent from the graph nature.

The work done has been published in the following article:

7. “The All-Pair Shortest-Path Problem in Shared-Memory Heterogeneous Systems,”
H. Ortega-Arranz, Y. Torres, D. R. Llanos and A. Gonzalez-Escribano, in book

http://dx.doi.org/10.1007/s11227-014-1212-z
http://cmmse.usal.es/cmmse2015/images/stories/congreso/volume4-cmmse-20013.pdf

142 Chapter 7. Conclusions

High-Performance Computing on Complex Environments, ser. Series on Parallel
and Distributed Computing. John Wiley & Sons, Inc., 2014, ch. 15, pp. 283-299.
Online, DOI: 10.1002/9781118711897.ch15 [30]

7.2.5 Development of a multilayer programming model: TuCCompi
We have developed TuCCompi, a multilayer abstract model that helps the programmer
to easily obtain flexible and portable programs that automatically detect at run-time the
available computational resources and exploit hybrid clusters with heterogeneous devices.
This model offers to the programmer a transparent and useful mechanism to select the op-
timal values of GPU configuration parameters just characterizing the nature of the kernels.

We have included in the design of TuCCompi’s model: (1) A novel parallel layer that
exploits the automatic execution of concurrent kernels in a single GPU; and (2) auto-
matic tuning techniques, with the application of proper values for runtime configuration
parameters depending on the kernel characterization provided by the programmer.

We have implemented a prototype of the model, and we have adapted our APSP solu-
tion in order to check the functionality of the programming framework.

We have also evaluated the usefulness of the novel layers. The performance obtained
by executing the program using the novel layers and tuning techniques are compared
with the performance of the same program using the competitive values delivered by
TuCCompi’s default configuration.

These new layers turn out to be very convenient for heterogeneous clusters with GPUs
offering a performance gain of up to 12%.

The work done has been published in the following articles:

8. “TuCCompi: A Multi-Layer Model for Distributed Heterogeneous Computing with
Tuning Capabilities,” H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and
D. R. Llanos, International Journal of Parallel Programming, Springer, 43(5) pp.
939–960, 2015.
Online, DOI: 10.1007/s10766-015-0349-6 [31]

9. “TuCCompi: A Multi-Layer Programing Model for Heterogeneous Systems with
Auto-Tuning Capabilities,” H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-
Escribano, in Proceedings of Workshop on High-level Programming for Hetero-
geneous and Hierarchical Parallel Systems, ser.(HLPGPU’14), Vienna, Austria:
HiPEAC 2014, pp. 18-25.
Online: HLPGPU Proceedings [32]

7.3 Future Directions
The complete picture of the Shortest Path context is an enormous world with still some
corners unexplored, that with the advent of new parallel approaches and new modern de-
vices, becomes even bigger and unexpected. New domains of application arise presenting
specific features for which the optimal approach is not yet studied. Finally, the devel-
opment of new features in modern hardware accelerators, with new parallel computing

http://dx.doi.org/10.1002/9781118711897.ch15
http://dx.doi.org/10.1007/s10766-015-0349-6
http://chrisb.host.cs.st-andrews.ac.uk/hlpgpu.pdf#page=18

7.3. Future Directions 143

capabilities, also opens a new dimension in the search for optimality. The current best-
performance algorithms may be modified for a particular computational device in order
to take advantage of its optimized internal mechanisms.

Therefore, this work opens the following new directions of research:

Shortest Path context

• Algorithm modifications to take advantage of the new parallel capabilities of the
GPUs, or for the emerging XeonPhi devices.

• A comparison with other parallel solutions implemented with other parallel pro-
gramming models, such as OpenMP or MPI, in order to see which approach suits
better for each kind of graph.

GPU Tuning context

• An extension of the value-predicting model for other more complex characteristics
of the input graphs, such as the diameter.

• The adaptation of existing code analyzers in order to automatically obtain the kernel
characterizations needed to apply our prediction values.

TuCCompi context

• The addition of an optional auto-tuning behavior that allows the model to find the
optimal number of concurrent kernels to be deployed during the execution.

• The implementation and testing of new scheduling plug-ins for new kinds of appli-
cations, also including problems with data-dependencies, and for specific data par-
tition and data distribution schemes, needed in problems with larger input data sets.

• The comparison against other libraries or frameworks that are specifically designed
for particular problems or input sets. This is the case of the libraries like Totem [200]
or Medusa [201], that are frameworks that provides mechanisms to compute oper-
ations related to graph processing. Although TuCCompi is presented as a general
model for any kind of embarrassingly parallel problem, we should find out if its
performance is also significant when compared with these specific and already op-
timized libraries for the particular case of graph processing.

• The addition of other functionalities provided by tools developed inside our research
group. One interesting functionality to be added is the partition of the data [202].
It will make available the possibility of computing bigger input sets that do not
completely fit in the memory of the hardware accelerators.

144 Chapter 7. Conclusions

Appendix A
Graphical Results from the Exhaustive
Search for GPU Optimal Parameters
Values

The exhaustive search for proper/optimal values of the GPU tuning parameters, carried
out in the experimentation shown in Sect. 4.6, delivered many results that we analyzed.
The high amount of data is due to in the experimentation was taken into account not
only the corresponding GPU tuning techniques and features, such as the use of different
Threadblock Sizes (TS), the management of the L1 cache memory (L1), or the number
of Concurrent Kernels that were executed (CK), but also some characteristics of the input
set graphs, such as the number of vertices, or the mean of the fan-out degree of these
vertices. All the obtained results represent running times for the different kernels that
belong to our used SSSP solution, presented in Sect. 3.2. Therefore, the proper values for
the GPU optimal configurations are the ones that represent the minimum (MIN) running
time between all tested layouts.

This appendix shows the raw data resulted from this experimentation. It is formatted
following a compressed graphical fashion that allows us to compare different dimensions
at once. Table A.1 shows the links to the different eighteen figures created representing
the nine graph scenarios considered for both GPU architectures, Fermi and Kepler. Note
that a graph scenario is composed by a set of graphs with the same characteristics: number
of nodes of the graph, and fan-out degree mean.

FERMI KEPLER
24k 49k 98k 24k 49k 98k

d2 A.1 A.4 A.7 A.10 A.13 A.16
d20 A.2 A.5 A.8 A.11 A.14 A.17
d200 A.3 A.6 A.9 A.12 A.15 A.18

Table A.1: Figure links for all graph scenarios considered.

145

146 Appendix A. Graphical Results from the Exhaustive Search

These graphics are organized as follows:

• A graphic is depicted for each kernel executed using a particular graph set (with a
specific number of nodes and fan-out degree). Inside this graphic:

– (L1) The results are grouped in three coupled frames depending on the con-
figuration of the L1 cache memory (Increased L1, Normal configuration, or
Deactivated).

– (CK) For a particular threadblock size used, a curve is depicted depending
on the number of concurrent kernels executed, from 1 kernel to 32 kernels
following a exponential fashion power of 2.

– (TS) As eight different threadblock sizes were tested (96, 128, 192, 256, 384,
512, 768, and 1024), eight lines with different colors are depicted in each
different L1-configuration frame.

– (MIN) A line is depicted for the minimum running time inside each frame,
with the same color that the threadblock size used. Each line crosses all three
frames in order to ease the comparison of the minimums, being the lowest
line of the complete graphic the one that represents the configuration with the
fastest running times, for the kernel in a particular graph set.

• The three different kernels (relax, minimum, and update), using the same graph
input set, are grouped in the same page.

• Each different key depicted for each state of the L1 cache memory is the same for
the remaining frames with equal L1 state configuration. The key is removed from
these frames in order to show a clean graphic.

• Finally, all the graphics are sorted following the criterion of the size of the graph
sets (24k, 49k, and 98k), and inside each of them, following the fan-out degree
mean (d2, d20, and d200), resulting in a total of nine different pages of results for
each board evaluated.

• The first set of graphics belongs to the results of the Fermi GF100 architecture,
whereas the last set belongs to the Kepler GK104 architecture.

147

 5

 6

 7

 8

 9

 10

 11

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 6

 7

 8

 9

 10

 11

 12

 13

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.1: Exhaustive search for optimal values in the graph 24k-d2 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

148 Appendix A. Graphical Results from the Exhaustive Search

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d20-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d20-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d20-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.2: Exhaustive search for optimal values in the graph 24k-d20 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

149

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 3.5

 4

 4.5

 5

 5.5

 6

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.3: Exhaustive search for optimal values in the graph 24k-d200 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

150 Appendix A. Graphical Results from the Exhaustive Search

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (49k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 7

 8

 9

 10

 11

 12

 13

 14

 15

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.4: Exhaustive search for optimal values in the graph 49k-d2 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

151

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (49k-d20-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d20-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d20-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.5: Exhaustive search for optimal values in the graph 49k-d20 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

152 Appendix A. Graphical Results from the Exhaustive Search

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (49k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.6: Exhaustive search for optimal values in the graph 49k-d200 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

153

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 30

 35

 40

 45

 50

 55

 60

 65

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.7: Exhaustive search for optimal values in the graph 98k-d2 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

154 Appendix A. Graphical Results from the Exhaustive Search

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d20-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d20-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 10

 11

 12

 13

 14

 15

 16

 17

 18

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d20-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.8: Exhaustive search for optimal values in the graph 98k-d20 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

155

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 12

 14

 16

 18

 20

 22

 24

 26

 28

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.9: Exhaustive search for optimal values in the graph 98k-d200 scenario for the
Fermi GF100 architecture. Different threadblock sizes, managements of the L1-cache, and num-
ber of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle),
and update kernel (bottom).

156 Appendix A. Graphical Results from the Exhaustive Search

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc

96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 6

 7

 8

 9

 10

 11

 12

 13

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.10: Exhaustive search for optimal values in the graph 24k-d2 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

157

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d20-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d20-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 3.5

 4

 4.5

 5

 5.5

 6

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d20-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.11: Exhaustive search for optimal values in the graph 24k-d20 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

158 Appendix A. Graphical Results from the Exhaustive Search

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (24k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 3.5

 4

 4.5

 5

 5.5

 6

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (24k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.12: Exhaustive search for optimal values in the graph 24k-d200 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

159

 10

 11

 12

 13

 14

 15

 16

 17

 18

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (49k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 8

 9

 10

 11

 12

 13

 14

 15

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.13: Exhaustive search for optimal values in the graph 49k-d2 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

160 Appendix A. Graphical Results from the Exhaustive Search

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (49k-d20-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d20-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d20-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.14: Exhaustive search for optimal values in the graph 49k-d20 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

161

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (49k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 6

 7

 8

 9

 10

 11

 12

 13

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 4.5

 5

 5.5

 6

 6.5

 7

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (49k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.15: Exhaustive search for optimal values in the graph 49k-d200 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

162 Appendix A. Graphical Results from the Exhaustive Search

 18

 20

 22

 24

 26

 28

 30

 32

 34

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d2-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 30

 35

 40

 45

 50

 55

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d2-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d2-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.16: Exhaustive search for optimal values in the graph 98k-d2 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

163

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d20-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d20-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 11

 12

 13

 14

 15

 16

 17

 18

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d20-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.17: Exhaustive search for optimal values in the graph 98k-d20 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

164 Appendix A. Graphical Results from the Exhaustive Search

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o

n
d
s
)

Number of concurrent kernels (98k-d200-relax)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

1024-Inc
768-Inc
512-Inc
384-Inc

256-Inc
192-Inc
128-Inc
96-Inc

1024-Nor
768-Nor
512-Nor
384-Nor

256-Nor
192-Nor
128-Nor
96-Nor

1024-W/o
768-W/o
512-W/o
384-W/o

256-W/o
192-W/o
128-W/o
96-W/o

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d200-min)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

T
im

e
 (

S
e
c
o
n
d
s
)

Number of concurrent kernels (98k-d200-update)

 Increased L1-cache | Normal L1-cache | Without L1-cache memory

Figure A.18: Exhaustive search for optimal values in the graph 98k-d200 scenario for the Ke-
pler GK104 architecture. Different threadblock sizes, managements of the L1-cache, and number
of concurrent kernels have been evaluated for the relax kernel (top), minimum kernel (middle), and
update kernel (bottom).

Bibliography

[1] P. Sanders, D. Schultes, and C. Vetter, “Mobile route planning,” in Proceedings of the 16th
Annual European Conference on Algorithms, ser. ESA’08. Berlin, Germany: Springer
Berlin Heidelberg, 2008, pp. 732–743.

[2] J. Barceló, E. Codina, J. Casas, J. L. Ferrer, and D. García, “Microscopic traffic simulation:
A tool for the design, analysis and evaluation of intelligent transport systems,” Journal of
Intelligent & Robotic Systems, vol. 41, no. 2-3, pp. 173–203, 2005.

[3] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev, and F. Viger,
“Fast routing in very large public transportation networks using transfer patterns,” in Pro-
ceedings of the 18th Annual European Conference on Algorithms: Part I, ser. ESA’10.
Berlin, Germany: Springer Berlin Heidelberg, 2010, pp. 290–301.

[4] C. Chen and M. Lee, “Global path planning in mobile robot using omnidirectional camera,”
in Proceedings of the International Conference on Consumer Electronics, Communications
and Networks, ser. CECNet’11. Washington, D.C., USA: IEEE, Apr 2011, pp. 4986–4989.

[5] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in spatial network
databases,” in Proceedings of the 29th International Conference on Very Large Data Bases
- Volume 29, ser. VLDB ’03. Berlin, Germany: VLDB Endowment, 2003, pp. 802–813.

[6] S. Shekhar, A. Fetterer, and B. Goyal, “Materialization Trade-Offs in Hierarchical Short-
est Path Algorithms,” in Proceedings of the 5th International Symposium on Advances in
Spatial Databases, ser. SSD ’97. London, UK: Springer-Verlag, 1997, pp. 94–111.

[7] G. Rétvári, J. J. Bíró, and T. Cinkler, “On shortest path representation,” IEEE/ACM Trans.
Netw., vol. 15, pp. 1293–1306, December 2007.

[8] C. Böhm, E. Kny, B. Emde, Z. Abedjan, and F. Naumann, “SPRINT: ranking search results
by paths,” in Proceedings of the 14th International Conference on Extending Database
Technology, ser. EDBT/ICDT ’11. New York, NY, USA: ACM, 2011, pp. 546–549.

[9] C. Barrett, R. Jacob, and M. Marathe, “Formal-Language-Constrained Path Problems,”
SIAM Journal of Computing, vol. 30, no. 3, pp. 809–837, May 2000.

[10] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hierarchical Hub Labelings
for Shortest Paths,” in Proceedings of the 20th Annual European Conference on Algorithms,
ser. ESA’12. Berlin, Germany: Springer Berlin Heidelberg, 2012, pp. 24–35.

165

166 BIBLIOGRAPHY

[11] D. Delling, A. Goldberg, and R. Werneck, “Hub Label Compression,” in Experimental
Algorithms, ser. Lecture Notes in Computer Science, V. Bonifaci, C. Demetrescu, and
A. Marchetti-Spaccamela, Eds. Berlin, Germany: Springer Berlin Heidelberg, 2013, vol.
7933, p. 18–29.

[12] A. Vajda, “Multi-core and Many-core Processor Architectures,” in Programming Many-
Core Chips. New York, NY, USA: Springer US, 2011, p. 9–43.

[13] NVIDIA, “NVIDIA CUDA C Programming Guide 6.5,” 2014, Last visit: June 29th, 2015.
[Online]. Available: http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[14] C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu, “A survey on parallel computing and its
applications in data-parallel problems using gpu architectures,” Communications in Com-
putational Physics, vol. 15, no. 2, pp. 285–329, 2014.

[15] Y. Torres, A. Gonzalez-Escribano, and D. Llanos, “Using Fermi Architecture Knowledge
to Speed up CUDA and OpenCL Programs,” in Proceedings of the 10th IEEE Interna-
tional Symposium on Parallel and Distributed Processing with Applications, ser. ISPA ’12.
Washington, D.C., USA: IEEE, July 2012, pp. 617–624.

[16] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “uBench: Exposing the impact of
CUDA block geometry in terms of performance,” Journal of Supercomputing, vol. 65, no. 3,
pp. 1150–1163, 2013.

[17] I. Ekmecic, I. Tartalja, and V. Milutinovic, “A survey of heterogeneous computing: concepts
and systems,” Proceedings of the IEEE, vol. 84, no. 8, pp. 1127–1144, Aug 1996.

[18] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, “State-of-
the-art in Heterogeneous Computing,” Sci. Program., vol. 18, no. 1, pp. 1–33, Jan 2010.

[19] W. R. Adrion, “Research Methodology in Software Engineering. Summary of the Dagstuhl
Workshop on Future Directions in Software Engineering,” SIGSOFT Software Engineering
Notes, vol. 18, no. 1, p. 36–37, 1993.

[20] H. Ortega-Arranz, D. R. Llanos, and A. Gonzalez-Escribano, The Shortest-Path Problem:
Analysis and Comparison of Methods, 1st ed., ser. Synthesis Lectures on Theoretical Com-
puter Science. San Rafael, CA, USA: Morgan and Claypool Publishers, 2014.

[21] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2010.

[22] P. Harish, V. Vineet, and P. J. Narayanan, “Large Graph Algorithms for Massively Multi-
threaded Architectures,” Centre for Visual Information Technology, International Institute
of IT, Hyderabad, India, Tech. Rep. IIIT/TR/2009/74, Feb 2009.

[23] P. Martín, R. Torres, and A. Gavilanes, “CUDA Solutions for the SSSP Problem,” in Com-
putational Science – ICCS 2009, ser. LNCS, G. Allen, J. Nabrzyski, E. Seidel, G. van
Albada, J. Dongarra, and P. Sloot, Eds. Berlin, Germany: Springer Berlin Heidelberg,
2009, vol. 5544, pp. 904–913.

[24] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization of Dijkstra’s shortest
path algorithm,” in Mathematical Foundations of Compt. Science 1998, ser. LNCS, L. Brim,
J. Gruska, and J. Zlatuška, Eds. Berlin, Germany: Springer Berlin Heidelberg, 1998, vol.
1450, pp. 722–731.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY 167

[25] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Ref-
erence Manual, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
2002.

[26] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Comprehensive
Evaluation of a New GPU-based Approach to the Shortest Path Problem,” International
Journal of Parallel Programming, vol. 43, no. 5, p. 918–938, 2015.

[27] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, “A New GPU-
based Approach to the Shortest Path Problem,” in Proceedings of the 11th International
Conference on High Performance Computing and Simulation, ser. HPCS ’2013. Helsinki,
Finland: IEEE, 2013, pp. 505–511.

[28] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Optimizing an
APSP implementation for NVIDIA GPUs using kernel characterization criteria,” The Jour-
nal of Supercomputing, vol. 70, no. 2, p. 786–798, 2014.

[29] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, “A Tuned,
Concurrent-Kernel Approach to Speed Up the APSP Problem,” in Proceedings of the 13th
International Conference on Computational and Mathematical Methods in Science and En-
gineering, ser. CMMSE ’13, I. Hamilton and J. Vigo-Aguilar, Eds., vol. 4, Almería, Spain,
2013, pp. 1114–1125.

[30] ——, The All-Pair Shortest-Path Problem in Shared-Memory Heterogeneous Systems, ser.
Series on Parallel and Distributed Computing. John Wiley & Sons, Inc., 2014, ch. 15, p.
283–299.

[31] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “TuCCompi: A
Multi-layer Model for Distributed Heterogeneous Computing with Tuning Capabilities,”
International Journal of Parallel Programming, vol. 43, no. 5, p. 939–960, 2015.

[32] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano, “TuCCompi: A
Multi-Layer Programing Model for Heterogeneous Systems with Auto-Tuning Capabili-
ties,” in Proceedings of Workshop on High-level Programming for Heterogeneous and Hi-
erarchical Parallel Systems, ser. HLPGPU ’13, H. 2014, Ed., Vienna, Austria, 2014, pp.
18–25.

[33] J. Fresno, “Supporting general data structures and execution models in runtime environ-
ments,” Ph.D. dissertation, Universidad de Valladolid, 2015.

[34] IEEE, “IEEE Xplore XML Gateway API,” Last visit: June 30th, 2015. [Online]. Available:
http://ieeexplore.ieee.org/gateway/

[35] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,
“Brook for GPUs: Stream computing on graphics hardware,” ACM Trans. Graph., vol. 23,
no. 3, pp. 777–786, 2004.

[36] Khronos, “Open Computing Language (OpenCL),” 2010, Last visit: June 27th, 2015.
[Online]. Available: http://www.khronos.org/opencl/

[37] J. A. Bondy and U. S. R. Murty, Graph theory with applications, 6th ed. London, England:
Macmillan, 1976.

http://ieeexplore.ieee.org/gateway/
http://www.khronos.org/opencl/

168 BIBLIOGRAPHY

[38] D. B. West et al., Introduction to graph theory, 2nd ed. Upper Saddle River, NJ, USA:
Prentice Hall, 2001.

[39] R. Raman, “Recent results on the single-source shortest paths problem,” SIGACT News,
vol. 28, no. 2, pp. 81–87, Jun 1997.

[40] M. Thorup, “Undirected single-source shortest paths with positive integer weights in linear
time,” Journal of the ACM, vol. 46, no. 3, pp. 362–394, May 1999.

[41] U. Zwick, “Exact and Approximate Distances in Graphs — A Survey,” in Algorithms —
ESA 2001, ser. LNCS, F. M. auf der Heide, Ed. Berlin, Germany: Springer Berlin Heidel-
berg, 2001, vol. 2161, pp. 33–48.

[42] Meyer, U. and Sanders, P., “∆-Stepping: a parallelizable shortest path algorithm,” Journal
of Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[43] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third
Edition, 3rd ed. Cambridge, MA, USA: The MIT Press, 2009.

[44] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-
matik, vol. 1, no. 1, pp. 269–271, 1959.

[45] A. V. Goldberg, “A simple shortest path algorithm with linear average time,” in Algorithms
— ESA 2001, ser. LNCS, F. M. auf der Heide, Ed. Berlin, Germany: Springer Berlin
Heidelberg, 2001, vol. 2161, pp. 230–241.

[46] Seth Pettie and Vijaya Ramachandran, “Computing shortest paths with comparisons and ad-
ditions,” in Proceedings of the 13th annual ACM-SIAM symposium on Discrete algorithms,
ser. SODA ’02. Philadelphia, PA, USA: SIAM, 2002, pp. 267–276.

[47] R. E. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, no. 1,
pp. 87–90, 1958.

[48] L. R. Ford and D. R. Fulkerson, Flows in Networks, 1st ed. Princeton, NJ, USA: Princeton
University Press, 1963.

[49] M. Thorup, “Floats, Integers, and Single Source Shortest Paths,” Journal of Algorithms,
vol. 35, no. 2, pp. 189–201, 2000.

[50] ——, “Integer priority queues with decrease key in constant time and the single source
shortest paths problem,” Journal of Computer and System Sciences, vol. 69, no. 3, pp. 330–
353, 2004.

[51] A. V. Goldberg, “Scaling Algorithms for the Shortest Paths Problem,” SIAM Journal of
Computing, vol. 24, no. 3, pp. 494–504, Jun 1995.

[52] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms,” Journal of the ACM, vol. 34, no. 3, p. 596–615, July 1987.

[53] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan, “Faster Algorithms for the Shortest
Path Problem,” Journal of the ACM, vol. 37, no. 2, pp. 213–223, Apr 1990.

[54] R. K. Ahuja and T. L. Magnanti and J. B. Orlin, Network flows: Theory, Algorithms, and
Applications, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall, 1993.

BIBLIOGRAPHY 169

[55] J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the ACM, vol. 7, no. 6,
p. 347–348, 1964.

[56] J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan, “Relaxed Heaps: An Alter-
native to Fibonacci Heaps with Applications to Parallel Computation,” Communications of
the ACM, vol. 31, no. 11, pp. 1343–1354, Nov 1988.

[57] M. Thorup, “Undirected single-source shortest paths with positive integer weights in linear
time,” Journal of the ACM, vol. 46, no. 3, p. 362–394, 1999.

[58] Meyer, Ulrich, “Single-source Shortest-paths on Arbitrary Directed Graphs in Linear
Average-case Time,” in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, ser. SODA ’01. Philadelphia, PA, USA: Society for Industrial and Ap-
plied Mathematics (SIAM), 2001, pp. 797––806.

[59] M. Papaefthymiou and J. Rodrigue, “Implementing Parallel Shortest-Paths Algorithms,”
in Parallel Algorithms: Third DIMACS Implemenation Challenge, ser. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, S. N. Bhatt, Ed. Providence,
RI, USA: AMS/DIMACS, 1997, vol. 30, pp. 59–68.

[60] U. Meyer and P. Sanders, “Delta-Stepping: A Parallel Single Source Shortest Path Algo-
rithm,” in Proceedings of the 6th Annual European Symposium on Algorithms, ser. ESA
’98. London, UK: Springer-Verlag, 1998, pp. 393–404.

[61] P. Harish and P. Narayanan, “Accelerating Large Graph Algorithms on the GPU Using
CUDA,” in High Performance Computing – HiPC 2007, ser. LNCS, S. Aluru, M. Parashar,
R. Badrinath, and V. Prasanna, Eds. Berlin, Germany: Springer Berlin Heidelberg, 2007,
vol. 4873, p. 197–208.

[62] S. Kumar, A. Misra, and R. Tomar, “A modified parallel approach to Single Source Shortest
Path Problem for massively dense graphs using CUDA,” in 2nd International Conference
on Computer and Communication Technology, ser. ICCCT ’11. Washington, D.C., USA:
IEEE, Sept 2011, pp. 635–639.

[63] Y. Tang, Y. Zhang, and H. Chen, “A Parallel Shortest Path Algorithm Based on Graph-
Partitioning and Iterative Correcting,” in 10th IEEE International Conference on High Per-
formance Computing and Communications, ser. HPCC ’08. Washington, D.C., USA:
IEEE, Sept 2008, pp. 155–161.

[64] U. Zwick, “All pairs shortest paths in weighted directed graphs-exact and almost exact al-
gorithms,” in Proceedings of 39th Annual Symposium on Foundations of Computer Science,
ser. FoCS ’98. Washington, D.C., USA: IEEE, Nov 1998, pp. 310–319.

[65] ——, “All pairs shortest paths using bridging sets and rectangular matrix multiplication,”
Journal of the ACM, vol. 49, no. 3, pp. 289–317, May 2002.

[66] R. Seidel, “On the all-pairs-shortest-path problem in unweighted undirected graphs,” Jour-
nal of Computer and System Sciences, vol. 51, no. 3, pp. 400–403, 1995.

[67] Z. Galil and O. Margalit, “All Pairs Shortest Distances for Graphs with Small Integer Length
Edges,” Information and Computation, vol. 134, no. 2, pp. 103–139, 1997.

170 BIBLIOGRAPHY

[68] ——, “All Pairs Shortest Paths for Graphs with Small Integer Length Edges,” Journal of
Computer and System Sciences, vol. 54, no. 2, pp. 243–254, 1997.

[69] T. Chan, “All-pairs shortest paths for unweighted undirected graphs in O(mn) time,” in
Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithm, ser. SODA
’06. New York, NY, USA: ACM, 2006, pp. 514–523.

[70] D. Karger, D. Koller, and S. Phillips, “Finding the hidden path: Time bounds for all-pairs
shortest paths,” in Proceedings of 32nd Annual Symposium on Foundations of Computer
Science, ser. FoCS ’91. Washington, D.C., USA: IEEE, 1991, pp. 560–568.

[71] C. McGeoch, “All-pairs shortest paths and the essential subgraph,” Algorithmica, vol. 13,
no. 5, pp. 426–441, 1995.

[72] S. Pettie, “A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs,”
in Automata, Languages and Programming, ser. LNCS, P. Widmayer, S. Eidenbenz,
F. Triguero, R. Morales, R. Conejo, and M. Hennessy, Eds. Berlin, Germany: Springer
Berlin Heidelberg, 2002, vol. 2380, pp. 85–97.

[73] ——, “A new approach to all-pairs shortest paths on real-weighted graphs,” Theoretical
Computer Science, vol. 312, no. 1, pp. 47–74, 2004.

[74] D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,” Journal of the
ACM, vol. 24, no. 1, pp. 1–13, Jan 1977.

[75] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the ACM, vol. 5, no. 6, pp.
345–, Jun 1962.

[76] S. Warshall, “A Theorem on Boolean Matrices,” Journal of the ACM, vol. 9, no. 1, pp.
11–12, Jan 1962.

[77] Y. Han and T. Takaoka, “An O(n3 log log n/ log2 n) Time Algorithm for All Pairs Shortest
Paths,” in Algorithm Theory – SWAT 2012, ser. LNCS, F. V. Fomin and P. Kaski, Eds.
Berlin, Germany: Springer Berlin Heidelberg, 2012, vol. 7357, pp. 131–141.

[78] T. Hagerup, “Improved Shortest Paths on the Word RAM,” in Automata, Languages and
Programming, ser. LNCS, U. Montanari, J. D. Rolim, and E. Welzl, Eds. Berlin, Germany:
Springer Berlin Heidelberg, 2000, vol. 1853, pp. 61–72.

[79] A. Shoshan and U. Zwick, “All pairs shortest paths in undirected graphs with integer
weights,” in Proceedings of 40th Annual Symposium on Foundations of Computer Science,
ser. FoCS ’99. Washington, D.C., USA: IEEE, 1999, pp. 605–614.

[80] H. Yanagisawa, “A multi-source label-correcting algorithm for the all-pairs shortest paths
problem,” in IEEE 24th International Symposium on Parallel Distributed Processing, ser.
IPDPS ’10. Washington, D.C., USA: IEEE, Apr 2010, pp. 1–10.

[81] M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling, “Fast Point-to-Point Shortest Path
Computations with Arc-Flags,” in The Shortest Path Problem: Ninth DIMACS Implemen-
tation Challenge, ser. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, C. Demetrescu, A. V. Goldberg, and D. S. Johnson, Eds. Providence, RI, USA:
American Mathematical Society, 2009, vol. 74, pp. 41–72.

BIBLIOGRAPHY 171

[82] C. Demetrescu and G. F. Italiano, “Engineering Shortest Path Algorithms,” in Experimen-
tal and Efficient Algorithms, ser. LNCS, C. C. Ribeiro and S. L. Martins, Eds. Berlin,
Germany: Springer Berlin Heidelberg, 2004, vol. 3059, pp. 191–198.

[83] W. Peng, X. Hu, F. Zhao, and J. Su, “A Fast Algorithm to Find All-Pairs Shortest Paths in
Complex Networks,” Procedia Computer Science, vol. 9, no. 0, pp. 557–566, 2012.

[84] M. L. Fredman, “New bounds on the complexity of the shortest path problem,” SIAM Jour-
nal of Computing, vol. 5, no. 1, pp. 49–60, 1976.

[85] T. Takaoka, “A new upper bound on the complexity of the all pairs shortest path problem,”
Information Processing Letters, vol. 43, no. 4, pp. 195–199, 1992.

[86] W. Dobosiewicz, “A more efficient algorithm for the min-plus multiplication,” International
Journal of Computer Mathematics, vol. 32, no. 1-2, pp. 49–60, 1990.

[87] Y. Han, “Improved algorithm for all pairs shortest paths,” Information Processing Letters,
vol. 91, no. 5, pp. 245–250, 2004.

[88] T. Takaoka, “A Faster Algorithm for the All-Pairs Shortest Path Problem and Its Appli-
cation,” in Computing and Combinatorics, ser. LNCS, K.-Y. Chwa and J. I. Munro, Eds.
Berlin, Germany: Springer Berlin Heidelberg, 2004, vol. 3106, pp. 278–289.

[89] ——, “An o(n3 log logn/ log n) time algorithm for the all-pairs shortest path problem,”
Information Processing Letters, vol. 96, no. 5, pp. 155–161, 2005.

[90] U. Zwick, “A Slightly Improved Sub-cubic Algorithm for the All Pairs Shortest Paths Prob-
lem with Real Edge Lengths,” in Algorithms and Computation, ser. LNCS, R. Fleischer and
G. Trippen, Eds. Berlin, Germany: Springer Berlin Heidelberg, 2004, vol. 3341, pp.
921–932.

[91] ——, “A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem
with Real Edge Lengths,” Algorithmica, vol. 46, no. 2, pp. 181–192, 2006.

[92] T. Chan, “All-Pairs Shortest Paths with Real Weights in O(n3/ log n) Time,” in Algorithms
and Data Structures, ser. LNCS, F. Dehne, A. López-Ortiz, and J.-R. Sack, Eds. Berlin,
Germany: Springer Berlin Heidelberg, 2005, vol. 3608, pp. 318–324.

[93] ——, “All-Pairs Shortest Paths with Real Weights in O(n3/ log n) time,” Algorithmica,
vol. 50, no. 2, pp. 236–243, 2008.

[94] Y. Han, “An O(n3(log log n/ log n)5/4) Time Algorithm for All Pairs Shortest Paths,” in
Algorithms – ESA 2006, ser. LNCS, Y. Azar and T. Erlebach, Eds. Berlin, Germany:
Springer Berlin Heidelberg, 2006, vol. 4168, pp. 411–417.

[95] ——, “An O(n3(log log n/ log n)5/4) Time Algorithm for All Pairs Shortest Path,” Algo-
rithmica, vol. 51, no. 4, pp. 428–434, 2008.

[96] T. Chan, “More algorithms for all-pairs shortest paths in weighted graphs,” in Proceedings
of the 39th Annual ACM Symposium on Theory of Computing, ser. STOC ’07. New York,
NY, USA: ACM, 2007, pp. 590–598.

[97] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A blocked all-pairs shortest-paths
algorithm,” Journal of Experimental Algorithmics, vol. 8, no. 2.2, pp. 1–19, Dec 2003.

172 BIBLIOGRAPHY

[98] G. J. Katz and J. T. Kider, Jr, “All-pairs shortest-paths for large graphs on the gpu,” in Pro-
ceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware, ser. GH ’08. Aire-la-Ville, Switzerland: Eurographics Association, 2008, pp. 47–55.

[99] J.-S. Park, M. Penner, and V. Prasanna, “Optimizing graph algorithms for improved cache
performance,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 9, pp.
769–782, Sep 2004.

[100] M. Penner and V. K. Prasanna, “Cache-friendly implementations of transitive closure,”
Journal of Experimental Algorithmics, vol. 11, no. 1.3, pp. 1–25, Feb 2007.

[101] C. Duin, “A Branch-Checking Algorithm for All-Pairs Shortest Paths,” Algorithmica,
vol. 41, no. 2, pp. 131–145, 2005.

[102] S.-C. Han, F. Franchetti, and M. Püschel, “Program generation for the all-pairs shortest path
problem,” in Proceedings of the 15th International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’06. New York, NY, USA: ACM, 2006, pp. 222–
232.

[103] V. V. Williams, “Multiplying matrices faster than coppersmith-winograd,” in Proceedings
of the 44th symposium on Theory of Computing, ser. STOC ’12. New York, NY, USA:
ACM, 2012, pp. 887–898.

[104] B. Diament and A. Ferencz, “Comparison of Parallel APSP Algorithms,” 1999, Last visit:
July 6th, 2015. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.37.4556

[105] P. Micikevicius, “General Parallel Computation on Commodity Graphics Hardware: Case
Study with the All-Pairs Shortest Paths Problem,” in Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applications - Volume 3,
ser. PDPTA ’04. Las Vegas, NV, USA: CSREA Press, 2004, pp. 1359–1365.

[106] A. Buluç, J. R. Gilbert, and C. Budak, “Solving Path Problems on the GPU,” Parallel Com-
puting, vol. 36, no. 5-6, pp. 241–253, Jun 2010.

[107] Wu, Junkai, “Accelerating all-pairs shortest path search on GPUs,” Master’s thesis, Depart-
ment of Science and Engineering, Hong Kong University of Science and Technology, Hong
Kong, Aug 2013.

[108] H. Djidjev, S. Thulasidasan, G. Chapuis, R. Andonov, and D. Lavenier, “Efficient Multi-
GPU Computation of All-Pairs Shortest Paths,” in IEEE 28th International Symposium on
Parallel Distributed Processing, ser. IPDPS ’14. Washington, D.C., USA: IEEE, May
2014, pp. 360–369.

[109] B. K. Sen, “Study of Parallel Graph Algorithms for Minimum Spanning Tree and All-Pairs
Shortest-Paths Using a Large Scale Cluster,” Master’s thesis, School of Engineering and
Computer Science, Independent University of Bangladesh, Bangladesh, Jun 2006.

[110] T. Okuyama, F. Ino, and K. Hagihara, “A Task Parallel Algorithm for Computing the Costs
of All-Pairs Shortest Paths on the CUDA-Compatible GPU,” in Proceedings of the 6th IEEE
International Symposium on Parallel and Distributed Processing with Applications, ser.
ISPA ’08. Washington, D.C., USA: IEEE, Dec 2008, pp. 284–291.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4556
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4556

BIBLIOGRAPHY 173

[111] ——, “A Task Parallel Algorithm for Finding All-pairs Shortest Paths Using the GPU,”
International Journal of High Performance Computing and Networking, vol. 7, no. 2, pp.
87–98, Apr 2012.

[112] G. Hajela and M. Pandey, “Parallel Implementations for Solving Shortest Path Problem
using Bellman-Ford,” International Journal of Computer Applications, vol. 95, no. 15, pp.
1–6, June 2014.

[113] ——, “A Fine Tuned Hybrid Implementation for Solving Shortest Path Problems using
Bellman Ford,” International Journal of Computer Applications, vol. 99, no. 2, pp. 29–33,
Aug 2014.

[114] V. Volkov and J. Demmel, “LU, QR and Cholesky Factorizations using Vector Capabilities
of GPUs,” EECS Department, University of California, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2008-49, 2008.

[115] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, 2nd ed.
New York, NY, USA: Pearson Education, 2003.

[116] R. Bauer, D. Delling, and D. Wagner, “Experimental study of speed up techniques for
timetable information systems,” Networks, vol. 57, no. 1, p. 38–52, 2011.

[117] G. Dantzig, Linear Programming And Extensions, 1st ed. Princeton, NJ, USA: Princeton
University Press, 1963.

[118] T. A. J. Nicholson, “Finding the Shortest Route Between Two Points in a Network,” The
Computer Journal, vol. 9, no. 3, pp. 275–280, 1966.

[119] D. Dreyfus, “An Appraisal of Some Shortest Path Algorithms,” Rand Corporation, Santa
Monica, CA, USA, Tech. Rep. RM-5433, 1967.

[120] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search meets graph
theory,” Microsoft Research, Vancouver, Canada, Tech. Rep. MSR-TR-2004-24, 2004.

[121] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[122] R. J. Gutman, “Reach-Based Routing: A New Approach to Shortest Path Algorithms Op-
timized for Road Networks,” in Proceedings 6th Workshop on Algorithm Engineering and
Experiments, ser. ALENEX’04. Philadelphia, PA, USA: SIAM, 2004, pp. 100–111.

[123] I. S. Pohl, “Bi-directional and heuristic search in path problems,” Ph.D. dissertation, Stan-
ford University, 1969.

[124] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search meets graph
theory,” in Proceedings of the 16th annual ACM-SIAM Symposium On Discrete Algorithms,
ser. SODA’05. Philadelphia, PA, USA: SIAM, 2005, pp. 156–165.

[125] C. Sommer, “Shortest-path Queries in Static Networks,” ACM Computing Surveys, vol. 46,
no. 4, pp. 45:1–45:31, Mar 2014.

174 BIBLIOGRAPHY

[126] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wag-
ner, and R. Werneck, “Route Planning in Transportation Networks,” Microsoft Research,
Vancouver, Canada, Tech. Rep. MSR-TR-2014-4, January 2014.

[127] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest path queries,” in
Proceedings of the 13th Annual European Conference on Algorithms, ser. ESA’05. Berlin,
Germany: Springer Berlin Heidelberg, 2005, pp. 568–579.

[128] ——, “Engineering highway hierarchies,” Journal of Experimental Algorithmics, vol. 17,
no. 1, pp. 1.6:1.1–1.6:1.40, Sep 2012.

[129] ——, “Engineering highway hierarchies,” in Proceedings of the 14th Annual European
Conference on Algorithms, ser. ESA’06. Berlin, Germany: Springer Berlin Heidelberg,
2006, pp. 804–816.

[130] D. Schultes and P. Sanders, “Dynamic Highway-node Routing,” in Proceedings of the 6th
International Conference on Experimental Algorithms, ser. WEA’07. Berlin, Germany:
Springer Berlin Heidelberg, 2007, pp. 66–79.

[131] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In transit to constant time
shortest-path queries in road networks,” in Proceedings of the 9th Workshop on Algorithm
Engineering and Experiments, ser. ALENEX’07. Philadelphia, PA, USA: SIAM, 2007,
pp. 46–59.

[132] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction hierarchies: faster
and simpler hierarchical routing in road networks,” in Proceedings of the 7th International
Conference on Experimental Algorithms, ser. WEA’08. Berlin, Germany: Springer Berlin
Heidelberg, 2008, pp. 319–333.

[133] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact Routing in Large Road Net-
works Using Contraction Hierarchies,” Transportation Science, vol. 46, no. 3, pp. 388–404,
Aug 2012.

[134] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A Hub-based Labeling Al-
gorithm for Shortest Paths in Road Networks,” in Proceedings of the 10th International
Conference on Experimental Algorithms, ser. SEA’11. Berlin, Germany: Springer Berlin
Heidelberg, 2011, pp. 230–241.

[135] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Better landmarks within reach,” in Pro-
ceedings of the 6th International Conference on Experimental Algorithms, ser. WEA’07.
Berlin, Germany: Springer Berlin Heidelberg, 2007, pp. 38–51.

[136] D. Wagner, T. Willhalm, and C. Zaroliagis, “Geometric containers for efficient shortest-path
computation,” Journal of Experimental Algorithmics, vol. 10, no. 1.3, pp. 1–30, Dec 2005.

[137] U. Lauther, “An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background,” Geoinformation und Mobilität – von der Forschung zur
praktischen Anwendung, vol. 22, no. 1, pp. 219–230, 2004.

[138] J. Maue, P. Sanders, and D. Matijevic, “Goal Directed Shortest Path Queries Using Pre-
computed Cluster Distances,” in Proceedings of the 5th International Conference on Exper-
imental Algorithms, ser. WEA’06. Berlin, Germany: Springer Berlin Heidelberg, 2006,
pp. 316–327.

BIBLIOGRAPHY 175

[139] ——, “Goal-directed shortest-path queries using precomputed cluster distances,” Journal
of Experimental Algorithmics, vol. 14, no. 2, pp. 2:3.2–2:3.27, Jan 2010.

[140] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner, “Combin-
ing hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm,” Journal of
Experimental Algorithmics, vol. 15, no. 2.3, pp. 2.3:2.1–2.3:2.31, Mar 2010.

[141] D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner, “High-performance multi-level
graphs,” C. Demetrescu, A. V. Goldberg, and D. S. Johnson, Eds. Providence, RI, USA:
American Mathematical Society, 2006.

[142] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable route planning,” in
Proceedings of the 10th International Conference on Experimental Algorithms, ser. SEA’11.
Berlin, Germany: Springer Berlin Heidelberg, 2011, pp. 376–387.

[143] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Highway hierarchies star,” C. Deme-
trescu, A. V. Goldberg, and D. S. Johnson, Eds. Providence, RI, USA: American Mathe-
matical Society, 2006.

[144] R. Bauer and D. Delling, “SHARC: Fast and robust unidirectional routing,” in Proceed-
ings of the 10th Workshop on Algorithm Engineering and Experiments, ser. ALENEX’08.
Philadelphia, PA, USA: SIAM, 2008, pp. 13–26.

[145] ——, “Sharc: Fast and robust unidirectional routing,” Journal of Experimental Algorith-
mics, vol. 14, no. 4, pp. 4:2.4–4:2.29, Jan 2010.

[146] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner, “Com-
bining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm,” in Pro-
ceedings of the 7th International Conference on Experimental Algorithms, ser. WEA’08.
Berlin, Germany: Springer Berlin Heidelberg, 2008, pp. 303–318.

[147] M. Harris, Optimizing Parallel Reduction in CUDA, devel-
oper.download.nvidia.com/assets/cuda/files/reduction.pdf, nVidia, 2008.

[148] S. Nobari, X. Lu, P. Karras, and S. Bressan, “Fast random graph generation,” in Proceedings
of the 14th International Conference on Extending Database Technology, ser. EDBT/ICDT
’11. New York, NY, USA: ACM, 2011, pp. 331–342.

[149] “DIMACS implementation challenge,” 2012, Last visit: June 29th, 2015. [Online].
Available: http://www.cc.gatech.edu/dimacs10/downloads.shtml

[150] D. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner, “Benchmark-
ing for Graph Clustering and Partitioning,” in Encyclopedia of Social Network Analysis and
Mining, R. Alhajj and J. Rokne, Eds. New York, NY, USA: Springer New York, 2014, p.
73–82.

[151] David F Gleich, “Graph of Flickr Photo-Sharing Social Network Crawled in
May 2006,” Feb 2012, Last visit: June 29th, 2015. [Online]. Available: https:
//purr.purdue.edu/publications/1002

[152] E. Wynters, “Parallel Processing on NVIDIA Graphics Processing Units Using CUDA,”
Journal of Computing Sciences in Colleges, vol. 26, no. 3, pp. 58–66, Jan 2011.

http://www.cc.gatech.edu/dimacs10/downloads.shtml
https://purr.purdue.edu/publications/1002
https://purr.purdue.edu/publications/1002

176 BIBLIOGRAPHY

[153] V. Challis, A. Roberts, and J. Grotowski, “High resolution topology optimization using
graphics processing units (GPUs),” Structural and Multidisciplinary Optimization, vol. 49,
no. 2, p. 315–325, 2014.

[154] Y. Torres, A. Gonzalez-Escribano, and D. Llanos, “Understanding the impact of CUDA
tuning techniques for Fermi,” in Proceedings of the 9th International Conference on High
Performance Computing and Simulation, ser. HPCS ’2011. Washington, D.C., USA: IEEE,
July 2011, pp. 631–639.

[155] X. Cui, Y. Chen, C. Zhang, and H. Mei, “Auto-tuning Dense Matrix Multiplication for
GPGPU with Cache,” in IEEE 16th International Conference on Parallel and Distributed
Systems, ser. ICPADS ’10. Washington, D.C., USA: IEEE, Dec 2010, pp. 237–242.

[156] A. Shahzad, M. O’Halloran, M. Glavin, and E. Jones, “A novel optimized parallelization
strategy to accelerate microwave tomography for breast cancer screening,” in 36th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, ser.
EMBC ’14. Washington, D.C., USA: IEEE, Aug 2014, pp. 2456–2459.

[157] T. Aila and S. Laine, “Understanding the Efficiency of Ray Traversal on GPUs,” in Pro-
ceedings of the Conference on High Performance Graphics, ser. HPG ’09. New York, NY,
USA: ACM, 2009, pp. 145–149.

[158] C. Wu, S. Agarwal, B. Curless, and S. Seitz, “Multicore bundle adjustment,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, ser. CVPR ’11. Washington, D.C.,
USA: IEEE, June 2011, pp. 3057–3064.

[159] N. Maruyama and T. Aoki, “Optimizing stencil computations for NVIDIA Kepler
GPUs,” in Proceedings of the 1st International Workshop on High-Performance Stencil
Computations, A. Größlinger and H. Köstler, Eds., Vienna, Austria, Jan. 2014, pp. 89–95.
[Online]. Available: http://www.exastencils.org/histencils/2014/

[160] G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and R. A. van de Geijn, “Solving Dense
Linear Systems on Platforms with Multiple Hardware Accelerators,” in Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’09. New York, NY, USA: ACM, 2009, pp. 121–130.

[161] J. Stratton, S. Stone, and W.-m. Hwu, “MCUDA: An Efficient Implementation of CUDA
Kernels for Multi-core CPUs,” in Languages and Compilers for Parallel Computing, ser.
LNCS, J. Amaral, Ed. Berlin, Germany: Springer Berlin Heidelberg, 2008, vol. 5335, p.
16–30.

[162] Y. Torres, A. González-Escribano, and D. R. Llanos, “uBench: Performance Impact of
CUDA Block Geometry,” Universidad de Valladolid, Valladolid, Spain, Tech. Rep. IT-DI-
2012-0001, 2012.

[163] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful Visual Performance
Model for Multicore Architectures,” Communications of the ACM, vol. 52, no. 4, pp. 65–76,
Apr 2009.

[164] NVIDIA, “Tuning CUDA Applications for Kepler,” 2015, Last visit: June 29th, 2015.
[Online]. Available: http://docs.nvidia.com/cuda/kepler-tuning-guide/#l1-cache

http://www.exastencils.org/histencils/2014/
http://docs.nvidia.com/cuda/kepler-tuning-guide/#l1-cache

BIBLIOGRAPHY 177

[165] ——, “Tuning CUDA Applications for Maxwell,” 2015, Last visit: June 29th, 2015.
[Online]. Available: http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache

[166] W. Shen, Z. Luo, D. Wei, W. Xu, and X. Zhu, “Load-prediction scheduling algorithm for
computer simulation of electrocardiogram in hybrid environments,” Journal of Systems and
Software, vol. 102, no. 0, pp. 182––191, 2015.

[167] A. Heinecke, W. Eckhardt, M. Horsch, and H.-J. Bungartz, “Parallelization of MD Algo-
rithms and Load Balancing,” in Supercomputing for Molecular Dynamics Simulations, ser.
SpringerBriefs in Computer Science. Gewerbestrasse, Switzerland: Springer International
Publishing, 2015, pp. 31—-44.

[168] V. V. Kindratenko, R. J. Brunner, and A. D. Myers, “Dynamic load-balancing on multi-
FPGA systems: a case study,” ArXiv e-prints, Nov. 2007.

[169] S. Singh, “Computing without processors,” Communications of the ACM, vol. 54, pp. 46–
54, August 2011.

[170] D. Houzet, S. Huet, and A. Rahman, “SysCellC: a data-flow programming model on multi-
GPU,” Procedia Computer Science, vol. 1, no. 1, p. 1035–1044, 2010.

[171] S. Tzeng, A. Patney, and J. D. Owens, “Task Management for Irregular-Parallel Workloads
on the GPU,” in Proceedings of the Conference on High Performance Graphics, ser. HPG
’10. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2010, pp. 29–37.

[172] C. de la Lama, P. Toharia, J. Bosque, and O. Robles, “Static Multi-device Load Balancing
for OpenCL,” in Proceedings of the 10th IEEE International Symposium on Parallel and
Distributed Processing with Applications, ser. ISPA ’12. Washington, D.C., USA: IEEE,
July 2012, pp. 675–682.

[173] A. Binotto, C. Pereira, and D. Fellner, “Towards dynamic reconfigurable load-balancing
for hybrid desktop platforms,” in IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum, ser. IPDPSW ’10. Washington, D.C., USA: IEEE,
april 2010, pp. 1–4.

[174] A. Leung, O. Lhoták, and G. Lashari, “Automatic Parallelization for Graphics Processing
Units,” in Proceedings of the 7th International Conference on Principles and Practice of
Programming in Java, ser. PPPJ ’09. New York, NY, USA: ACM, 2009, pp. 91–100.

[175] N. R. Satish, “Compile Time Task and Resource Allocation of Concurrent Applications to
Multiprocessor Systems,” Ph.D. dissertation, EECS Department, University of California,
Berkeley, Jan 2009.

[176] E. Burrows and M. Haveraaen, “A Hardware Independent Parallel Programming Model,”
Journal of Logic and Algebraic Programming, vol. 78, pp. 519–538, 2009.

[177] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard, “Multi-GPU and multi-CPU
parallelization for interactive physics simulations,” in Proceedings of the 16th international
Euro-Par conference on Parallel processing: Part II, ser. Euro-Par ’10. London, UK:
Springer-Verlag, 2010, pp. 235–246.

[178] D. Cederman and P. Tsigas, “On Sorting and Load Balancing on GPUs,” SIGARCH Comput.
Archit. News, vol. 36, no. 5, pp. 11–18, Jun 2009.

http://docs.nvidia.com/cuda/maxwell-tuning-guide/#l1-cache

178 BIBLIOGRAPHY

[179] P. Yao, H. An, M. Xu, G. Liu, X. Li, Y. Wang, and W. Han, “CuHMMer: A load-balanced
CPU-GPU cooperative bioinformatics application,” in Proceedings of the 8th International
Conference on High Performance Computing and Simulation, ser. HPCS ’2010. Washing-
ton, D.C., USA: IEEE, July 2010, pp. 24–30.

[180] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
1995.

[181] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, 1st ed. San Rafael, CA, USA: Morgan and Claypool
Publishers, 2009.

[182] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve, F. A. B. Silva,
C. Barros, and C. Silveira, “Running Bag-of-Tasks applications on computational grids:
The MyGrid approach,” in Proceedings of the 2003 International Conference on Parallel
Processing, ser. ICPP 2003. Washington, D.C., USA: IEEE, 2003, pp. 407–416.

[183] R. Mangharam and A. A. Saba, “Anytime Algorithms for GPU Architectures,” in Proceed-
ings of the 2011 IEEE 32Nd Real-Time Systems Symposium, ser. RTSS ’11. Washington,
D.C., USA: IEEE Computer Society, 2011, pp. 47–56.

[184] M. B. Taylor, “Bitcoin and the Age of Bespoke Silicon,” in Proceedings of the 2013 Inter-
national Conference on Compilers, Architectures and Synthesis for Embedded Systems, ser.
CASES ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 16:1–16:10.

[185] M. Ogata, S. Muraki, X. Liu, and K.-L. Ma, “The Design and Evaluation of a Pipelined
Image Compositing Device for Massively Parallel Volume Rendering,” in Proceedings of
the 2003 Eurographics/IEEE TVCG Workshop on Volume Graphics, ser. VG ’03. New
York, NY, USA: ACM, 2003, pp. 61–68.

[186] Z. Chen, X. Chen, Z. Shao, Z. Yao, and L. T. Biegler, “Parallel calculation methods for
molecular weight distribution of batch free radical polymerization,” Computers & Chemical
Engineering, vol. 48, no. 0, pp. 175–186, 2013.

[187] S. Kazmi, M. Kane, and M. Krauthammer, “Benchmarking technology infrastructures
for embarrassingly and non-embarrassingly parallel problems in biomedical domain,” in
Biomedical Sciences and Engineering Conference, ser. BSEC ’13. Washington, D.C.,
USA: IEEE, 2013, pp. 1–4.

[188] A. Khlopotine, V. Jandhyala, and D. Kirkpatrick, “A Variant of Parallel Plane Sweep Algo-
rithm for Multicore Systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 6, pp. 966–970, 2013.

[189] R. Reyes and F. de Sande, “Optimization strategies in different CUDA architectures using
llCoMP,” Microprocess. Microsyst., vol. 36, no. 2, pp. 78–87, Mar 2012.

[190] T. Liang, H. Li, and J. Chiu, “Enabling Mixed OpenMP/MPI Programming on Hybrid
CPU/GPU Computing Architecture,” in IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, ser. IPDPSW ’12. Washington, D.C.,
USA: IEEE, 2012, pp. 2369–2377.

BIBLIOGRAPHY 179

[191] K. Hamidouche, J. Falcou, and D. Etiemble, “A Framework for an Automatic Hybrid
MPI+OpenMP Code Generation,” in Proceedings of the 19th High Performance Comput-
ing Symposia, ser. HPC ’11. San Diego, CA, USA: Society for Computer Simulation
International, 2011, pp. 48–55.

[192] M. Steuwer and S. Gorlatch, “SkelCL: Enhancing OpenCL for High-Level Programming of
Multi-GPU Systems,” in Parallel Computing Technologies, ser. LNCS, V. Malyshkin, Ed.
Berlin, Germany: Springer Berlin Heidelberg, 2013, vol. 7979, pp. 258–272.

[193] C. Yang, C. Huang, and C. Lin, “Hybrid CUDA, OpenMP, and MPI parallel program-
ming on multicore GPU clusters,” Computer Physics Communications, vol. 182, no. 1, p.
266–269, 2011.

[194] M. Howison, E. Bethel, and H. Childs, “Hybrid Parallelism for Volume Rendering on
Large-, Multi-, and Many-Core Systems,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 18, no. 1, pp. 17–29, 2012.

[195] A.-E. Hugo, A. Guermouche, P.-A. Wacrenier, and R. Namyst, “Composing Multiple
StarPU Applications over Heterogeneous Machines: A Supervised Approach,” in IEEE
27th International Parallel and Distributed Processing Symposium Workshops PhD Forum,
ser. IPDPSW ’13. Washington, D.C., USA: IEEE, 2013, pp. 1050–1059.

[196] U. Dastgeer, J. Enmyren, and C. W. Kessler, “Auto-tuning SkePU: A Multi-backend Skele-
ton Programming Framework for multi-GPU Systems,” in Proceedings of the 4th Interna-
tional Workshop on Multicore Software Engineering, ser. IWMSE ’11. New York, NY,
USA: ACM, 2011, pp. 25–32.

[197] R. Reyes, I. López-Rodríguez, J. Fumero, and F. de Sande, “accULL: an OpenACC im-
plementation with CUDA and OpenCL support,” in Proceedings of the 18th international
Euro-Par conference on Parallel Processing, ser. Euro-Par ’12. Berlin, Germany: Springer
Berlin Heidelberg, 2012, pp. 871–882.

[198] N. Farooqui, A. Kerr, G. F. Diamos, S. Yalamanchili, and K. Schwan, “A framework for
dynamically instrumenting GPU compute applications within GPU Ocelot,” in Proceedings
of the Fourth Workshop on General Purpose Processing on Graphics Processing Units, ser.
GPGPU-4. New York, NY, USA: ACM, 2011, pp. 9:1–9:9.

[199] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving GPGPU Concurrency with
Elastic Kernels,” SIGPLAN Not., vol. 48, no. 4, pp. 407–418, Mar 2013.

[200] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu, “A yoke of oxen and a
thousand chickens for heavy lifting graph processing,” in Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques, ser. PACT ’12.
New York, NY, USA: ACM, 2012, pp. 345–354.

[201] J. Zhong and B. He, “Medusa: Simplified Graph Processing on GPUs,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 25, no. 6, pp. 1543–1552, June 2014.

[202] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. R. Llanos, “An Extensible System for
Multilevel Automatic Data Partition and Mapping,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, no. 5, pp. 1145–1154, May 2014.

180 BIBLIOGRAPHY

[203] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, Eds., 9th DIMACS Implementation
Challenge - Shortest Paths. Providence, RI, USA: American Mathematical Society, 2006.

Héctor Ortega Arranz received his M.Sc. in Computer Science and his
M.Sc. in Research in Information and Communication Technologies
from the University of Valladolid, Spain, in 2010 and 2011,
respectively. He has been part of the Trasgo research group where he
has developed the work for his Ph.D. Thesis. His research interests
include algorithms, shortest-path problem approaches, parallel and
distributed computing and GPGPU computing.

Many graph algorithms have given solution to problems of finding shortest paths between
nodes of a network. These problems are considered among the fundamental combinatorial
optimization problems. During the last years, the interest of the scientific community to this
kind of problems has significantly increased not only due to its wide-applicability, but also
thanks to the currently popular and efficient parallel computing. Additionally, the advent of new
parallel programming models together with modern powerful hardware accelerators, such as
the Graphics Processing Units, opens the possibility to study new and more efficient parallel
approaches to exploit these specific architectures. Furthermore, the emerging of heterogeneous
parallel computing combining these powerful hardware accelerators with the classical and
increasingly powerful CPUs, provides a perfect environment to face the most costly shortest-
path problems in the context of High Performance Computing.

The main goals of this Ph.D. Thesis are to develop new GPU-based approaches to the shortest
path problem, and design solutions where both sequential and parallel algorithms are deployed
concurrently in heterogeneous environments. Moreover, we introduce a multilayer abstract
model that helps the programmer to easily obtain flexible and portable programs that
automatically detect at run-time the available computational resources and exploit hybrid
clusters with heterogeneous devices.

