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Introduction
• Many real-world problems compute shortest paths from any source to any destination.

• The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph theory whose
objective is to find the shortest paths between any pair of nodes.

• The application of GPGPU computing to accelerate problems related with shortest-path
problems have increased during the last years.

• The use of advanced optimizations as the correct choice of the threadBlock size and the

use of concurrent kernels can improve even more the GPU performance.

• Our goal: To squeeze the performance of the GPU solution [1] for a real-life problem
(APSP), following the recommendations of CUDA [2] and the guidelines described in [3].

Fermi architecture

Parameter Fermi GF110

Number of SPs (per-SM) 32
Max. number of blocks (per-SM) 8
Max. number of threads (per-SM) 1 536
Max. number of threads (per-block) 1 024
Max. concurrent kernel supported 16
Max. Occupancy block sizes 192, 256, 384,

recommended by CUDA [2] 512, 768
Block sizes for scatter access patterns 64, 96

recommended by [3] 128

GPU Dijkstra and the relax kernel
1: <<<initialize>>>(U,F, δ);
2: while (∆ 6=∞) do
3: <<<relax>>>(U,F, δ);
4: ∆ =<<<minimum>>>(U, δ);
5: <<<update>>>(U,F, δ,∆);
6: end while

U : Set of unsettled nodes
F : Set of frontier nodes
δ: Vector of tentative distances
∆: Iteration threshold

1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all suc successor of tid do
4: if (U[suc] == TRUE) then
5: BEGIN ATOMIC REGION
6: δ[suc] = min{δ[suc], δ[tid] + w(tid,suc)};
7: END ATOMIC REGION
8: end if
9: end for

10: end if

Optimization 1: ThreadBlock size
• Not always Maximum Occupancy (MO): A common

optimization to hide the memory latencies is the use of MO
block sizes but not always achieves the best performance.

• Kernel characterization: ↑ #low coalesced accesses

#instruc per thread

- Best performance obtained with medium-occup. block sizes.
- Medium-occup. block sizes alleviate the memory bottleneck
and these blocks are evicted quicker than MO blocks.

• Hypothesis: Relax kernel performance would be improved

using threadBlock sizes that lead to SM medium-occupancy.

Optimization 2: Concurrent kernels

• Feature released since the 2nd CUDA architecture generation.

• Introduces a new level of parallelism automatically managed
by the CUDA driver.

• Good performance for small size kernels.
- Hardware resources are shared between concurrent kernels.

• Kernels with bigger sizes than available resources are
queued, but they are already launched.

• Hypothesis: Queued kernels could take profit from the

L1/L2 data-cache reutilization and the better block/warp dis-
patcher exploitation.

Experimental Setup
• Exhaustive simultaneous evaluation of threadBlock size and concurrent kernel

optimization techniques on the GPU implementation described in [1].

• ThreadBlock sizes tested: 192, 256, 384, 512 and 768 recommended by CUDA

and 64, 96 and 128 recomended by [3] .

• We use sparse graphs with 1 049 088 nodes (multiple of recommended values).

• Due to the amount of computational load, we have reduced the APSP problem to
1 024, 4 096 and 8 192-source-node to all.

• Number of concurrent kernels tested: 1, 2, 4, 8 and 16 (maximum number sup-

ported by Fermi) and 32, 64 to observe an stressed concurrent environment.

• The worst and best configurations are tested with 16 384, 32 768-source-node to all.

Results
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The best and the worst tuning/multi-kernel configurations

256 threads, 1 conc. kernels
96 threads, 4 conc. kernels

• Always, the best configuration for relax kernel is
reached with 96 threads and 4 concurrent kernels.

• There are performance improvements from using 1
kernel until 4 - 8 kernels.

• Concurrent kernels better exploit the data-cache and
block warp dispatchers.

• The use of more than 4 - 8 concurrent kernels leads
to more memory bottlenecks and cache thrashing.

• The performance gain between the worst configu-

ration and the best one is 11.5% .

Conclusions and future work
• We have squeezed the performance of GPU architecture for the relax kernel in a 11.5%.

• The CUDA recommended configurations do not always reach the best results.

• The results corroborate the conclusion described in [3]:

– Smaller block sizes than the smallest MO size present better performance.

– Smaller blocks can be evicted from the SM quicker alleviating the memory bottleneck.

• We will test all L1 cache configurations to better exploit the memory hierarchy.

• Additionally, we want to extend the used techniques to optimize the rest of APSP kernels.
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