
A New GPU-based Approach to
the Shortest Path Problem

Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos, and Arturo Gonzalez-Escribano
Dept. Informática, Universidad de Valladolid, Spain.
{hector|yuri.torres|diego|arturo}@infor.uva.es

Abstract—The Single-Source Shortest Path (SSSP) problem
arises in many different fields. In this paper we present a GPU-
based version of the Crauser et al. SSSP algorithm. Our work
significantly speeds up the computation of the SSSP, not only
with respect to the CPU-based version, but also to other state-of-
the-art GPU implementation based on Dijkstra, due to Martı́n et
al. Both GPU implementations have been evaluated using the last
Nvidia architecture (Kepler). Our experimental results show that
the new GPU-Crauser algorithm leads to speed-ups from 13× to
220× with respect to the CPU version and a performance gain
of up to 17% with respect the GPU-Martı́n algorithm.

Keywords—Dijkstra; GPU; Kepler; NSSP; Parallel Algo-
rithms; SSSP

I. INTRODUCTION

Many problems that arise in real-world networks imply
the computation of the shortest path and its distances from
a source to one or more destination points. Some examples
include car navigation systems [1], traffic simulations [2],
spatial databases [3], Internet route planners [4], and web
searching [5]. Algorithms to solve the shortest-path problem
are computationally costly, and in many cases commercial
products implement heuristic approaches to generate approxi-
mate solutions instead. Although heuristics are usually faster
and do not need much amount of data storage or precompu-
tation, they do not guarantee the optimal path.

The Single-Source Shortest Path (SSSP) problem is a clas-
sical problem of optimization. Given a graph G = (V,E), a
function w(e) : e ∈ E that associates a weight to the edges of
the graph, and a source node s, it consists on computing the
shortest paths from s to every node v ∈ V . If the weights of
the graph range only in positive values, w(e) ≥ 0 : e ∈ E, we
are facing the so-called Non-negative Single-source Shortest-
Path (NSSP) problem.

The classical algorithm that solves the NSSP problem is
Dijkstra’s algorithm [6]. Being n = |V | and m = |E|,
the complexity time of this algorithm is O(n2). Dijkstra’s
algorithm is a greedy algorithm whose efficiency is based
in the ordering of previously computed results. This feature
makes its parallelization a difficult task. However, there are
certain situations where parts of this ordering can be permuted
without leading to wrong results neither performance losses.
Other algorithms for this problem, such as the Bellman-Ford
algorithm, are more easily parallelizable. However, with an

asymptotical complexity of O(m · n), this algorithm is not as
efficient as Dijkstra’s algorithm solving this problem.

An emerging way of parallel computation includes the use
of hardware accelerators, such as graphic processing units
(GPUs). Their powerful capability have triggered their massive
use to speed up high-level parallel computations. The applica-
tion of GPGPU computing to accelerate computational prob-
lems related with shortest-path problems have increased during
the last years. Some GPU-solutions to the NSSP problem have
been previously implemented using different algorithms as the
Dijkstra’s algorithm in [7], [8], Contraction Hierarchies based
approach in [9], and Bellman-Ford algorithm in [10] among
others.

In this paper we present an adapted version of the Crauser’s
algorithm [11] to the GPU architectures and an experimental
comparison with both CPU and GPU implementations of
Martı́n et al. [7]. We have measured these GPU implemen-
tations with the last CUDA architecture, named Kepler.

The experimental results show a speed-up from 13× to
220× with respect to the CPU times and a performance
improvement up to 17% with respect to the GPU-Martı́n
algorithms.

The rest of this paper is organized as follows. Section II
introduces some basic concepts and notations related to graph
theory, and briefly describes both the sequential Dijkstra’s
algorithm and some proposed parallel implementations. Sec-
tion III introduces some Kepler architecture details. Section
IV explains in depth our GPU-implementation of Crauser et
al. algorithm and the Martı́n et al. CUDA solution for the
SSSP problem. Section V poses the experimental methodology
and used platform, and the input sets considered. Section VI
discusses the results obtained. Finally, Sect. VII summarizes
the conclusions we have obtained and describes some future
works.

II. ALGORITHMIC OVERVIEW

A. Graph Theory Notation

We will first present some graph theory concepts and nota-
tions related to the shortest-path problem. A graph G = (V,E)
is composed by a set of vertices V , also called nodes, and a set
of edges E, also called arcs. Every vertex v is usually depicted
as a point in the graph. Every edge e is usually depicted as

a line that connects two and only two vertices. An edge is a
tuple (u, v) that represents a link between vertices u and v.
The number of edges connected to a vertex v is called the
degree of v. In an undirected graph all edges can be traversed
in both directions, whereas an edge (u, v) of a directed graph
only can be traversed from u to v. There is a weight function
w(u, v) associated to each edge, that represents the cost of
traversing the edge.

A path P = 〈s, ..., u, ..., v, ..., t〉 is a sequence of vertices
connected by edges, from a source vertex s to a target one t.
The weight of a path, w(P), is the sum of all the weights
associated to the edges involved in the path. The shortest path
between two vertices s and t is the path with the minimum
weight among all possible paths between s and t. Finally, the
minimum distance between s and t, d(s, t) or simply d(t),
is the weight of the shortest path between them. We denote
δ(s, t), or simply δ(t), to a temporal tentative distance between
s and t during the computation of d(t).

B. Dijkstra’s Algorithm

The basic solution for the Non-negative, Single-source,
Shortest-Path problem (NSSP) is Dijkstra’s algorithm [6]. This
algorithm constructs minimal paths from a source node s to
the remaining nodes, exploring adjacent nodes following a
proximity criterion.

The exploring process is known as edge relaxation. When
an edge (u, v) is relaxed from a node u, it is said that node
v has been reached. Therefore, there is a path from source
through u to reach v with a tentative shortest distance. Node
v will be considered settled when the algorithm has found the
shortest path from source node s to v. The algorithm finishes
when all nodes are settled.

The algorithm uses an array, D, that stores all tentative
distances found from source node s to the rest of nodes. At
the beginning of the algorithm, every node is unreached and
no distances are known, so D[i] = ∞ for all nodes i, except
current source node D[s] = 0. Note that both reached and
unreached nodes are considered unsettled nodes.

The algorithm proceeds as follows:

1) (Initialization) The algorithm starts on the source node s,
initializing distance array D[i] = ∞ for all nodes i and
D[s] = 0. Node s is considered as the frontier node f
(f ← s) and it is settled.

2) (Edge relaxation) For every node v adjacent to f that
has not been settled, a new distance from source is found
using the path through f , with value D[f] + w(f, v).
If this distance is lower than previous value D[v], then
D[v]← D[f] + w(f, v).

3) (Settlement) The node u with the lowest value in D is
taken as the new frontier node (f ← u). After this, current
frontier node f is now considered as settled.

4) (Termination criteria) If all nodes have been settled the
algorithm finishes. Otherwise, it proceeds to step 2.

In order to recover the path, every node reached stores its
predecessor, so at the end of the query phase the algorithm
just runs back from target through stored predecessors till the
source node is reached. The shortest path tree of a graph from
source node s is the composition of every shortest path from
s to the remaining nodes.

C. Parallel Versions of Dijkstra’s Algorithm

We can distinguish two parallelization alternatives that can
be applied to Dijkstra’s approach. The first one parallelizes the
internal operations of the sequential Dijkstra algorithm, while
the second one performs several Dijkstra algorithms through
disjoint subgraphs in parallel [12]. This paper is focused in
the first solution.

The key of the parallelization of a single sequential Dijkstra
algorithm resides in the inherent parallelism of its loops. For
each iteration of Dijkstra’s algorithm, the outer loop selects
a node to compute new distance labels. Inside this loop, the
algorithm relaxes its outgoing edges in order to update the old
distance labels, that is the inner loop.

Parallelizing the outer loop implies to compute in each
iteration i a frontier set Fi of nodes that can be settled in
parallel without affecting the algorithm correctness. The main
problem here is to identify this set of nodes v which tentative
distances δ(v) from source s must be the minimum shortest-
distance d(v). Some algorithms that are based on this idea
are [11], [13]. Parallelizing the inner loop implies to traverse
simultaneously the outgoing edges of the frontier node. One
of the algorithm presented in [14] is an example of this kind
of parallelization.

III. CUDA OVERVIEW

Graphics processing units started as image processing
devices. Over the years, GPUs have increased in perfor-
mance, architectural complexity, and programmability. Cur-
rently, these devices are widely used for general purpose
computing (GPGPU) due to application performance improve-
ments achieved on parallel code regions.

CUDA (Compute Unified Device Architecture) [15] is the
parallel computing architecture developed by Nvidia Company
for global purpose applications. CUDA simplifies the GPGPU
programming by means of high level API.

Kepler [16] is the latest Nvidia generation of CUDA archi-
tecture, released in early 2012. The main feature introduced by
this architecture is the next generation of Streaming Multipro-
cessor (SMX). Each SMX unit has 192 single-precision CUDA
cores, each one with floating-point and integer arithmetic-logic
units. Every SMX includes four different warp schedulers with
two dispatch units (eight per each SMX).

CUDA Branch divergence (divergent branch) has a signif-
icant impact on the performance of GPU programs. In the
presence of a data dependent branch that causes different
threads in the same warp to follow different paths, the warp

serially executes each branch path taken, disabling threads
that are not on that path. Thus, divergent branch can hurt
performance due to lower utilization of the execution units,
which cannot be compensated for through increased levels of
parallelism.

IV. PARALLEL DIJKSTRA WITH CUDA

This section describes how our implementation parallelizes
the Dijkstra algorithm through the outer loop following the
ideas of Crauser et al. [11]. As we have explained before, the
main problem of these kind of parallelization is to identify as
many nodes as possible that can be inserted in the following
frontier set.

A. Defining the Frontier Set

Dijkstra’s algorithm, in each iteration i, calculates the
minimum tentative distance of the nodes belonging to the
unsettled set, Ui. The node whose tentative distance is equal
to this minimum value can be settled and becomes the frontier
node. Its outgoing edges are traversed to relax the distances
of the adjacent nodes.

In order to parallelize the Dijkstra algorithm, it is needed to
identify which nodes can be settled and used as frontier nodes
at the same time. Martı́n et al. [7] inserts into the frontier
set, Fi+1, all nodes with this minimum tentative distance with
the aim to process them simultaneously. Crauser et al. [11]
introduces a more aggressive enhancement, augmenting the
frontier set with nodes with bigger tentative distance. The
algorithm computes in each iteration i, for each node of the
unsettled set, u ∈ Ui, the sum of: (1) its tentative distance,
and (2) the cost of its outgoing edges. Afterwards, it calculates
the minimum of these computed values. Finally, those nodes
whose tentative distance are lower or equal than this minimum
value can be settled becoming the frontier set.

We define the concept of ∆i as the limit value computed
in each iteration i that holds that any unsettled node u with
δ(u) ≤ ∆i can be safely settled. The bigger the ∆i value,
the more parallelism is exploited. However, depending on the
particular graph being processed, the use of a very ambitious
∆i may induce overheads that destroys any performance gain
with respect to sequential execution.

Our implementation of Dijkstra’s algorithm follows the idea
proposed by Crauser et al. [11] of incrementing each ∆i. For
every node v ∈ V , the minimum weight of its outgoing edges,
that is, ∆node v = min{w(v, z) : (v, z) ∈ E}, is calculated in
a precomputation phase. For each iteration i of the external
loop, having all tentative distances of the nodes in the unsettled
set, we define

∆i = min{(δ(u) + ∆node u) : u ∈ Ui} (1)

Thus, it is possible to put into the frontier set Fi+1 every
node v whose δ(v) ≤ ∆i.

Algorithm 1 GPU implementation of Dijkstra’s algorithm.
CUDA kernels are delimited by <<< ... >>> .

1: <<<initialize>>> (U,F, δ); //Initialization
2: while (∆ 6=∞) do
3: <<<relax>>> (U,F, δ); //Edge relaxation
4: ∆ =<<<minimum>>> (U, δ); //Settlement step 1
5: <<<update>>> (U,F, δ,∆); //Settlement step 2
6: end while

Algorithm 2 Pseudo-code of a CUDA thread in relax kernel.

1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all j successor of tid do
4: if (U[j] == TRUE) then
5: BEGIN ATOMIC REGION
6: δ[j] = min{δ[j], δ[tid] + w(tid, j)};
7: END ATOMIC REGION
8: end if
9: end for

10: end if

B. Our GPU Implementation: The General Variant

The four Dijkstra’s algorithm steps described in Sect. II-B)
can be easily transformed into a GPU general algorithm (see
Alg. 1). It is composed of three kernels that executes the
internal operations of the Dijkstra vertex outer loop.

The relax kernel (Alg. 2, invoked in line 3 of Alg. 1)
decreases the tentative distances for the remaining unsettled
nodes of the current iteration i through the outgoing edges of
the frontier nodes f ∈ Fi. A GPU thread is associated for each
node in the graph. Those threads assigned to frontier nodes,
f ∈ Fi, traverse their outgoing edges, relaxing the distances
of their unsettled adjacent nodes.

The minimum kernel (invoked in line 4 of Alg. 1) computes
the minimum tentative distance of the nodes that belongs
to the Ui set. To do so, the advanced reduce3 method of
the CUDA SDK [17] has been modified to accomplish this
task. Our minimum kernel is adapted in order to: (1) add the
corresponding ∆node v value to δ(v), and (2) compare its new
assigned values to obtain the minimum one. The resulting
value of the minimum kernel is the ∆i.

The update kernel (Alg. 3, invoked in line 5 of Alg. 1)
settles those nodes from Ui whose tentative distances are lower
or equal to ∆i. This task is carried out extracting them from
the following-iteration unsettled set, Ui+1, and putting them
to the following-iteration frontier set Fi+1. Each single GPU
thread checks, for its corresponding node v, whether U(v) ∧
δ(v) ≤ ∆i. If so, the thread assigns v to Fi+1 and deletes v
from Ui+1.

Our implementation supports two types of graph repre-

Algorithm 3 Pseudo-code of a CUDA thread in update kernel.

1: tid = thread.Id;
2: F[tid]= FALSE;
3: if (U[tid]==TRUE and δ[tid] <= ∆) then
4: U[tid]= FALSE;
5: F[tid]= TRUE;
6: end if

sentations, both adjacency lists and matrices. The nodes are
numbered from 0 . . . n−1. Besides the basic structures to hold
nodes, vertices, and their weights, three vectors are defined:

• Vector U , that stores in U [v] whether node v is an
unsettled node.

• Vector F , that stores in F [v] whether node v is a frontier
node.

• Vector δ, that stores in δ[v] the tentative distance from
source to node v.

C. An Economic Variant

We have developed an additional version that needs less
memory space at the cost of being less powerful than the
previous variant described, that we have called the general
variant.

Our general variant uses a vector of size n to store the
∆node v value of each node v. Instead, the economic variant
uses a single value, ∆base, that is a lower bound for every
∆node v . This value is the the minimum weight associated to
any edge e of the graph, ∆base = min{w(e) : e ∈ E}. Then,
for each iteration i of the external loop having the tentative
distance of the following node to be settled, we define

∆i = min{δ(u) : u ∈ Ui}+ ∆base (2)

For the development of this approach we need to calculate
∆base in a precomputation phase. Note that the computation
of the minimum value in the minimum kernel is simplified
because every thread does not need to add ∆node v to the
tentative distance. Now, the ∆base is added to the value
returned by the minimum kernel.

Regarding the exploited parallelism degree, this economic
variant cannot include as many nodes into frontier set as the
general variant, leading to more iterations of the external
loop. Thus, in spite of consuming less space, the exploited
parallelism degree is lower than the general variant.

D. Martı́n et al. Successor Variant

In this subsection we will describe the GPU approach of
Dijkstra’s algorithm developed by Martı́n et al. [7]. They
have presented some parallel implementations of Dijkstra’s
algorithm executed on the first CUDA architecture (now called
pre-Fermi).

In order to parallelizes the Dijkstra algorithm, they have
introduced a conservative enhancement to increase the frontier
set, inserting all nodes with the same minimum tentative
distance. According to our notation presented above, their
frontier set of any iteration i, Fi+1, is composed by every
node x ∈ Ui with equal tentative distance δ(x) than ∆i being

∆i = min{δ(u) : u ∈ Ui} (3)

Their update kernel also differs from ours in the frontier-set
check condition, U(v) ∧ δ(v) = ∆i.

E. Martı́n et al. Predecessor Variant

The authors have presented a different variant of Dijkstra’s
algorithm, called the predecessor variant. They have imple-
mented both a sequential version for CPU, and a parallel one
for GPU devices.

This variant differs from the original one, called successors,
in the way of relaxing the tentative distances of the unsettled
nodes. That is, for every unsettled node, the algorithm checks
if any of its predecessors nodes belongs to the current frontier
set. In that case, the tentative distance is relaxed if the new
distance through this frontier node is lower than the previous
one.

The GPU predecessor implementation assigns a single
thread for each node in the graph. The relax kernel only com-
putes those threads assigned to unsettled nodes u ∈ Ui. Every
thread traverses back the incoming edges of its associated node
looking for frontier nodes.

V. EXPERIMENTAL SETUP

We will first describe the methodology used for our experi-
ments, as well as the input set problem used for each variants
and the code versions evaluated.

A. Methodology

We have compared our GPU algorithm implementation, the
general approach, with: (a) the CPU successor variant, and (b)
the GPU successor variant of Martı́n et al.. We have adapted
our algorithm to also support the predecessor variant in order
to compare with (c) the CPU predecessor variant, and (d) the
GPU predecessor variant of Martı́n et al.. To fairly compare
the performance improvement of our algorithms, we also use
the same run-time configuration of the Grid, and theadBlock
size and geometry as Martı́n et al..

Moreover, in order to check the performance degradation
by reducing the memory space, both general and economic
variant are also compared. This experiment is also carried out
with the same kernel configuration described before.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^20)

Adjacency lists

Pred-CPU, Martin
Succ-CPU, Martin

Pred-GPU, Crauser-based
Succ-GPU, Crauser-based

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^10)

Adjacency matrices

Pred-CPU, Martin
Succ-CPU, Martin

Pred-GPU, Craused-based
Succ-GPU, Craused-based

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^20)

Adjacency lists

Pred-GPU, Martin
Succ-GPU, Martin

Pred-GPU, Crauser-based
Succ-GPU, Crauser-based

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^10)

Adjacency matrices

Pred-GPU, Martin
Succ-GPU, Martin

Pred-GPU, Crauser-based
Succ-GPU, Crauser-based

Figure 1. CPU-Martı́n vs. our Crauser-based GPU implementation (top) and GPU-Martı́n vs. our Crauser-based GPU implementation (bottom) execution
times for both input sets considered.

B. Target Architectures

The performance results described by Martı́n et al. were
obtained using a pre-Fermi architecture. We started by repli-
cating these results in the same architecture, in our case using a
GeForce GT 9600. After checking that results were consistent,
we repeat the experiments using a GeForce GTX 680 (Kepler)
Nvidia GPU device.

Regarding the host machine, we used an Intel(R) Core(TM)
i7 CPU 960 3.20GHz, 64-bits compatible, with a global mem-
ory of 6 GB DDR3. It runs an UBUNTU Desktop 10.10 (64
bits) operative system. The experiments have been launched
using CUDA 4.2 toolkit and the 295.41 64-bit driver.

C. Input Set Characteristics

In order to compare the results of our implementation with
the implementation of Martı́n et al., we have replicated the
experimental examples using their graph creation tools. The
input sets are composed by a collection of graphs generated
randomly for each kind of problem, adjacency lists and adja-
cency matrices, with different number of nodes.

1) Adjacency Lists: The graphs stored in adjacency list
have sizes that range from 1 ·220 to 11 ·220 vertices. There are
25 different graph instances for each size. We kept the degree
chosen by Martı́n et al. (degree seven), so the generator tool
created seven adjacent predecessors for each vertex. They had
also inverted the generated graphs in order to study approaches
based on the successor version. Note that the degree seven
cannot be kept for these inverted graphs. The edge weights
are integers that randomly range from 1 to 10.

2) Adjacency Matrices: The graphs stored as adjacency
matrices have sizes that range from 1 · 210 to 15 · 210 vertices.
There are also 25 different graphs instances for each size. In
order to evaluate the approaches with similar features graphs,
the adjacency matrices of our experiments have been designed
to have also degree seven. The edge weights are integers that
randomly range from 1 to 10.

D. Code Versions Evaluated

From the suite of different implementations described in [7],
we have taken the fastest ones that use a full CPU and a full
GPU computation. That means we have left out the hybrid
approaches that mix the execution of some phases in the

CPU and others in the GPU. We denominated these relevant
implementations as: (1) “Pred-CPU and Pred-GPU” for the
predecessor variants for CPU and GPU, and (2) “Succ-CPU
and Succ-GPU” for the successor variants for CPU and GPU.

E. Divergent Branch and Dummy Computation

The threads of the relax kernel for both, predecessor and
successor variants, have a divergent branch. Two different
kinds of threads are identified due to this divergent branch:
(1) dummy threads, that do not make any computation for its
assigned node, and (2) working threads, that carry out the relax
operation from the assigned node.

Usually, the effect of the divergent branch is negative for
the performance application due to the serialization of the
work-flow. Thus, in order to discuss if its presence causes
a significant performance degradation, we have carried out an
experiment to measure the efficiency ratio of divergent branch,
by means of CUDA VisualProfiler.

Moreover, the presence of so many dummy threads in the
kernel relax implies to spend too much futile computation.
With the aim of knowing if it is possible to compute this kernel
more efficiently, we have measured both the total number of
executed threads and the number of working threads.

VI. EXPERIMENTAL RESULTS

This section describes the performance comparison between
the GPU-Crauser (general) implementation against the CPU
and GPU-Martı́n approaches, the economic and general vari-
ants of the GPU-Crauser implementation, and the performance
degradation of the divergent branch and dummy computations.

TABLE I
MARTÍN et al. CPU VERSIONS VS. OUR GPU IMPLEMENTATION

SPEED-UPS.

Data structure successors predecessors
Adjacency Lists CPU vs. GPU 20.65× 13.17×
Adjacency Matrices CPU vs. GPU 17.43× 219.79×

TABLE II
PERFORMANCE IMPROVEMENT BETWEEN MARTÍN et al. GPU VERSIONS

VS. OUR GPU IMPLEMENTATION.

Data structure successors predecessors
Adjacency Lists GPU vs. GPU 1.07% 8.14%
Adjacency Matrices GPU vs. GPU 7.51% 16.97%

A. Performance Improvement

Figure 1 (top) shows the execution time of predecessor
and successor variants for CPU Martı́n et al. and our GPU
implementation in Kepler’s architecture for adjacency lists
(left) and for adjacency matrices (right). We can observe in
Table I a performance speed-up from 13× to 220× with
respect to the CPU times.

Figure 1 (bottom) shows the execution time of predecessor
and successor variants in Kepler’s architecture for both GPU

implementations, Martı́n et al. and ours, for adjacency lists
(left) and for adjacency matrices (right). The Table II shows a
performance gain up to 17% with respect to the GPU-Martı́n
algorithm.

B. Economic vs. General

For the input set used in the experiments, the economic
variant has a similar performance compared with the general
variant. These graphs have seven outgoing adjacent nodes on
average, with integer weights that range from 1..10. Therefore,
there is a high probability that for every node v the values
∆node v = ∆base, leading to an analogous behaviour. With
graphs with less outgoing adjacent nodes and a bigger range
of weights, this probability is decreased. In such cases, the
general variant will take more advantage of its precomputed
data with respect to the economic variant.

C. Divergent Branch and Dummy Computations

Figure 2 shows the total number of executed threads in relax
kernel and the number of working threads. In both cases, the
number of working threads is significantly lower than the total
number of launched threads. The percentage of dummy threads
vs. total threads goes from 42%, for the predecessor variant
with adjacency matrices, to 96%, for the successor variant
with adjacency lists.

The results of the CUDA VisualProfiler have shown that
the efficiency ratio of the divergent branch in the relax kernel
is good, from 94.3% to 99.5%. Thus, the serialized work-
flows, due to the divergent branch, hardly have affected the
performance of this kernel.

The execution of dummy warps, that are warps of 32
dummy threads, do not lead to serialize different work-flows,
because all threads of these warps processes the same dummy
instruction. Therefore, the fact of having much more dummy
warps than mixed warps, warps filled with both dummy and
working threads, is the reason because the performance is
hardly affected by the divergent branch.

VII. CONCLUSIONS AND FUTURE WORK

We have developed the adaptation of Crauser et al. SSSP
algorithm to exploit the GPU architectures. We have com-
pared our GPU approach with the most relevant CPU and
GPU implementations presented in [7], obtaining up to 220×
speed-up with respect to the CPU version and a performance
improvement up to 17% with respect to the GPU versions.

We have also shown that, although the relax kernel con-
tains divergent branches, they do not affect significantly the
performance. In spite of the good performance improvements
obtained, we have detected that there is a high amount of
dummy instructions executed in relax kernel, up to 96%. Thus,
we believe that the partially or totally reduction of the dummy
computational load could lead to better performance times.

 1e+06

 1e+07

 1e+08

 1e+09

 0 1 2 3 4 5 6 7 8 9 10 11 12

#
T

h
re

a
d

s
 (

lo
g

s
c
a

le
)

Number of nodes (multiples of 2^20)

Adjacency lists dummy computations

Total threads
Working threads, Pred
Working threads, Suc

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
T

h
re

a
d

s
 (

lo
g

s
c
a

le
)

Number of nodes (multiples of 2^10)

Adjacency matrices dummy computation

Total threads
Working threads, Pred
Working threads, Suc

Figure 2. Total vs. Working Threads Number in the relax kernel for Adjacency List (left) and Matrices (right).

Our future work includes the study of performance improve-
ments by the use of CUDA optimization techniques, and how
a dynamic adjustment of the Grid and threadBlock size and
geometry to the frontier-set cardinality can eliminate the global
dummy workload in the relax kernel.

ACKNOWLEDGMENT

The authors would like to thank P. Martı́n, R. Torres, and
A. Gavilanes, for letting them to use the source code and
input sets of the algorithms described in [7]. This research
is partly supported by the Spanish Government (TIN2007-
62302, TIN2011-25639, CENIT OCEANLIDER, CAPAP-H
networks TIN2010-12011-E and TIN2011-15734-E), Junta de
Castilla y León, Spain (VA094A08, VA172A12-2), the HPC-
EUROPA2 project (project number: 228398) with the support
of the European Commission - Capacities Area - Research
Infrastructures Initiative, and the ComplexHPC COST Action.

REFERENCES

[1] P. Sanders, D. Schultes, and C. Vetter, “Mobile route planning,” in
ESA’08. Berlin: Springer, 2008, pp. 732–743. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87744-8 61

[2] J. Barceló, E. Codina, J. Casas, J. L. Ferrer, and D. Garcı́a,
“Microscopic traffic simulation: A tool for the design, analysis
and evaluation of intelligent transport systems,” J. Intell. Robot.
Syst., vol. 41, pp. 173–203, 2005. [Online]. Available: http:
//dx.doi.org/10.1007/s10846-005-3808-2

[3] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in
spatial network databases,” in VLDB’03. Berlin: VLDB Endowment,
2003, pp. 802–813. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1315451.1315520

[4] G. Rétvári, J. J. Bı́ró, and T. Cinkler, “On shortest path representation,”
IEEE/ACM Trans. Netw., vol. 15, pp. 1293–1306, December 2007.

[5] C. Barrett, R. Jacob, and M. Marathe, “Formal-language-constrained
path problems,” vol. 30, pp. 809–837, 2000.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959. [Online]. Available:
http://dx.doi.org/10.1007/BF01386390

[7] P. Martı́n, R. Torres, and A. Gavilanes, “CUDA solutions for the SSSP
problem,” in Computational Science – ICCS 2009, ser. LNCS, G. Allen,
J. Nabrzyski, E. Seidel, G. van Albada, J. Dongarra, and P. Sloot,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5544, pp. 904–913,
10.1007/978-3-642-01970-8 91.

[8] P. Harishm, V. Vineet and P.J. Narayanan, “Large graph algorithms for
massively multithreaded architectures,” Centre for Visual Information
Technology, International Institute of Information Technology, Hyder-
abad, India, Tech. Rep. IIIT/TR/2009/74, Feb. 2009.

[9] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck,
“Phast: Hardware-accelerated shortest path trees,” Journal of Parallel
and Distributed Computing, 2012. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S074373151200041X

[10] S. Kumar, A. Misra, and R. Tomar, “A modified parallel approach to
single source shortest path problem for massively dense graphs using
cuda,” in Computer and Communication Technology (ICCCT), 2011 2nd
International Conference on, sept. 2011, pp. 635–639.

[11] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization
of dijkstra’s shortest path algorithm,” in Mathematical Foundations
of Computer Science 1998, ser. LNCS, L. Brim, J. Gruska,
and J. Zlatuška, Eds. Springer Berlin / Heidelberg, 1998, vol.
1450, pp. 722–731, 10.1007/BFb0055823. [Online]. Available: http:
//dx.doi.org/10.1007/BFb0055823

[12] D. P. Singh and N. Khare, “A study of different parallel implementations
of single source shortest path algorithms,” International Journal of
Computer Applications, vol. 54, no. 10, pp. 26–30, September 2012,
published by Foundation of Computer Science, New York, USA.

[13] J. R. Crobak, J. W. Berry, K. Madduri, and D. A. Bader, “Advanced
shortest paths algorithms on a massively-multithreaded architecture,”
in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International. IEEE, march 2007, pp. 1–8.

[14] M. Papaefthymiou and J. Rodrigue, “Implementing parallel shortest-
paths algorithms,” in DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 1994, pp. 59–68.

[15] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann, Feb. 2010.

[16] NVIDIA, “Nvidia geforce gtx 680,” 2012, http://www.nvidia.pl/content/
PDF/product-specifications/GeForce GTX 680 Whitepaper FINAL.
pdf, Last visit: April 2013.

[17] M. Harris, Optimizing Parallel Reduction in CUDA, nVidia, 2008.

