CUDA tuning and
configuration
parameters on Fermi
architecture

Yuri Torres*,
Arturo Gonzalez Escribano*!,
Diego R.Llanos Ferraris',

* Dpto. Informdtica, Univ. Valladolid, Spain

ABSTRACT

Writing a NVIDIA CUDA parallel program is easy. However, efficiently exploiting the underlying
GPU hardware resources and capabilities is a task for CUDA experienced programmers. The pro-
grammer has to know the CUDA tuning techniques and choose the optimal global configuration
parameters, such as the sizes of the L1-cache and the threadblock to reach a good performance. In
this paper we present an insight of CUDA global configuration parameters, common code tunning
techniques on Fermi architecture, and their impact on performance.

KEYWORDS: CUDA, GPU, Fermi, tuning, configuration parameters

1 Introduction

Nowadays, the different GPU devices provide easy programing interfaces initially designed
for graphic-applications environment. CUDA architecture and its associated parallel pro-
gramming model [KmWHI10] is developed by NVIDIA, and was proposed in order to sim-
plify the encoding of parallel general-purpose applications.

At the beginning of 2010 NVIDIA launched the current architecture named Fermi [NVI10].
This architectures presents significant changes compared with the earlier versions, such as
transparent L1/L2 cache hierarchy, configurable shared memory and faster atomic opera-
tions.

On the other hand, there are several common tuning optimization strategies [KmWHT10]
oriented to exploit efficiently the underlying hardware resources. They include Coalescing,
loop-unrolling, data-prefetching and Occupancy maximization among others. However, the
different effects of these strategies on performance change with each new architecture re-
lease.

'E-mail: {yuri.torres|arturo|diego}@infor.uva.es

In CUDA programing model it is necessary to divide the threads space into blocks,
named threadblocks with a specific size. This configuration parameter, and the global mem-
ory access pattern of the threads, affect significantly the SM Occupancy and the accesses
Coalescing. These are important factors to exploit the GPUs capabilities.

In this paper we introduce a new insight into the relationships among global parameters,
Occupancy, and global-memory access patterns.

2 Related work

The common code tuning strategies such as Coalescing, loop-unrolling and Occupancy max-
imization are used to exploit, as far as possible, the underlying hardware resources and capa-
bilities, and they are well explained in [KmWHI10]. Kerr et.al. [KDY10] discuss the different
tunning strategies and also show several metrics related to hardware resource usage. Schaa,
in [Sch09], introduces a model to predict the execution time in multi-GPU systems. How-
ever, all these works do not consider the Fermi architecture, and do not take into account
the global configuration parameters as the main influential factors for performance.

3 Fermi architecture

Fermi was introduced at early 2010, as the current NVIDIA’s CUDA architecture [NVI10].
The main changes in this new architecture which are relevant for our study are:

e Threadblocks and warps: The number of single processors(SP) are multiplied by 4
reaching 32 SPs per SM. The current number of threads per threadblock has increased
from 512 to 1024. Each SM supports at most 1536 concurrent threads. Finally, two dif-
tferent half-warps are executed at the same time in the same SM, requesting two mem-
ory transaction in the same cycle if the accesses are perfectly coalesced.

e Transparent L1/L2 cache memories: This new architecture introduces two cache mem-
ories. Each SM has 64KB on-chip memory, divided into shared memory and L1 cache.
However, the programmer may choose between two different possibilities: 48KB of
shared memory and 16KB of L1 cache (default option), or 16KB of shared memory and
48KB of L1 cache memory. Besides, the L1 cache memory can be deactivated by the
programmer with the appropriate compiling flag.

e Bank conflicts and device global memory access: Both pre-Fermi and Fermi architec-
ture organize the device global memory in different banks, each one with an indepen-
dent memory controller. Thus, simultaneous memory accesses to the same bank are
serialized. When many threads access to the same memory bank, this bottleneck pro-
duces a problem named Partition Camping [GR10]. This problem may be alleviated in
Fermi exploiting adequately the cache hierarchy.

4 Experiments and results

In this section we show an experimental study to deduce appropriated choices for a good
L1-cache and threadblock sizes, in order to improve performance by a better GPU resources

usage. We discuss results for some or our benchmarks [TGEL11]:

e Matrix addition: This is a bi-dimensional problem where the threads present a simple
and coalesced memory access pattern. Each matrix element is accessed only once, and
the elements are not reused. Figure|1|(a) shows the execution times obtained using dif-
ferent threadblock shapes. The best results are closely related with threadblocks that
maximizes the SMs Occupancy (256 and 512 threads). Threadblocks with less than 32
threads do not fill a single warp. Therefore, some SPs are idle. Threadblocks with 32 or
more threads, but a shape with less than 32 columns, have full warps without a coa-
lesced access pattern. Both cases lead to very bad performance. The rest of Threadblock
shapes produce a reasonable performance. However, the best results are obtained for
block with maximum Occupancy, marked in the table with bold-face.

e Naive matrix multiplication: This is also a bi-dimensional problem (C' = A x B) with
a different global memory access pattern for each matrix. Each thread is associated
with a single C position and computes the dot product of a row of A matrix and a
column of B matrix. There is reutilization of data between the threads of the same
threadblock. Thus, the cache memories play a significant role. Figure (1| (b) shows the
execution times. As expected, the best results are obtained with threadblocks that max-
imize the Occupancy (256 and 512 threads), with 32 columns or more. However, there
are performance differences for the same threadblock size. They are directly related
to the usage of cache and global memory banks. More horizontal shapes lead to less
Partition Camping effects and less cache misses; except for blocks with one row due to
the algorithm. Increasing the L1 cache memory size improves performance [TGEL11].

5 Conclusion and Future work

Writing an efficient CUDA code, choosing a good global configuration, is a complicate task.
The programmer has to know the underlying hardware architecture to maximize Occupancy
or determine the minimum columns in the threadblock shape that allows to properly exploit
Coalescing.

Moreover, the requested cache lines and Partition Camping effects play an important
role in the threadblock shape decision. Also, it is important to detect the application features
that indicate to the programmer that increasing the L1 cache size is appropriated. The mod-
eling of Fermi cache memories is a very important issue to understand the global memory
accesses effects.

We are currently developing more sophisticated benchmarks to better understand the
performance effects related to the underlying architecture details. The same experiments are
also being implemented in OpenCL parallel model.

References
[GR10] Paulius Micikevicius Greg Ruetsch. Nvidia optimizing matrix transpose
in cuda. http://developer.download.nvidia.com/compute/

cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/
MatrixTranspose.pdf, June 2010. Last visit: Dec 2, 2010.

http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf

Columns 1 2 4 8 16 32 64 128 | 256 | 512 | 1024
Rows

1 78 783 | 449 | 298 | 3.02 | 4.03

2 863 | 464 | 317 | 3.01 | 3.04 | 404 -

z 9.69 504 | 319 | 298 | 313 | 453 - -

8 .23 614 352 | 3.05 | 3.04 | 444 - - -

16 17.30 957 514 313 | 312 | 422 . - - -

32 || 2781 1559 864 194 345 | 450 - - - - -

64 |[3102 | 1644 9.06 5.57 584 - - . - - -

128 || 4032 | 2005 | 1164 913 - - - . - - -

256 || 45.08 | 2445 | 1561 - - - - . - - -

512 || 5223 | 2898 - - - - . . - - -

1024 || 7261 - - - - - - - - - -

a) Matrix addition execution time
Columns 1 2 4 8 16 32 64 128 | 256 | 512 | 1024
Rows

1 27015 | 13766 | 7780 | 6237 | 6502 | 7935

2 27016 | 13592 | 7154 | 5856 | 5874 | 7212 | -

Z 27076 | 13609 | 7269 | 6155 | 6337 | 7352 | - -

8 27277 | 13669 | 7328 | 6163 | 6431 | 7990 | - - -

16 38522 | 18448 | 12316 | 7313 | 6348 | 8638 . - - -

32 || 112494 | 56336 | 28248 | 14267 | 6550 | 8355 - - - - -

64 || 126553 | 63547 | 30550 | 14730 | 8123 - - . - - -

128 || 166618 | 73826 | 31344 | 11856 - - - - - - -

256 || 184812 | 80330 | 28562 - - - - - - - -

512 || 190406 | 69624 - - - - - . - - -

1024 || 194297 - - - - - . . - - -

b) Naive matrix multiplication execution time

Table 1: Matrix sum and Naive matrix multiplication execution times both in milliseconds

[KDY10]

[KmWH10]

[NVI10]

[Sch09]

[TGEL11]

Andrew Kerr, Gregory Diamos, and Sudakhar Yalamanchili. Modeling gpu-
cpu workloads and systems. In Third Workshop on General-Purpose Computation
on Graphics Processing Units, Pittsburg, Pennsylvania, USA, 4 2010.

David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann, February 2010.

NVIDIA. Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi, 2010.

Dana Schaa. Modeling execution and predicting performance in multi-gpu en-
vironments. In Electrical and Computer Engineering Master Theses, Boston, Mass,
2009. Department of Electrical and Computer Engineering, Northeastern Uni-
versity.

Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Simplyfing cuda
tuning techniques for fermi. In To appear in Proceedings of the Workshop on Ex-
ploitation of Hardware Accelerators (WEHA 2011). IEEE, 2011.

	Introduction
	Related work
	Fermi architecture
	Experiments and results
	Conclusion and Future work

