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Abstract

The threadblock size and shape choice is one of the most important user decisions
when a parallel problem is coded to run in GPU architectures. In fact, threadblock
configuration has a significant impact on the global performance of the program. Un-
fortunately, the programmer has not enough information about the subtle interactions
between this choice of parameters and the underlying hardware.

This paper presents uBench, a suite of micro-benchmarks, in order to explore the
impact on performance derived from the combination of (1) the threadblock size and
shape choice criteria, and (2) the GPU hardware resources and configurations. Each
micro-benchmark has been designed as simple as possible to focus on a single effect
derived from the hardware or threadblock parameter choice.

As an example of the capabilities of this benchmark suite, this paper shows an
experimental evaluation of the Fermi architecture, in terms of configuration parameters.
This study confirms some previous experimental results and gives new insights on the
influence of these parameters on the performance delivered by this GPU architecture.
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1 Introduction

Many-core Graphics Processing Units (GPUs) have evolved from graphics-specific accelera-
tors to general-purpose computing devices. The use of high-level parallel languages such as
CUDA [1] and OpenCL [2] reduces the programmer’s burden in writing parallel applications
for GPUs.

The GPGPU [1, 3] community provides general and intuitive guidelines for optimizing
application using CUDA model. However, the understanding of important hardware effects
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and their associated performance in the applications still remains homework for program-
mers. This is a significant problem in order to maximize the performance of any parallel
problem implementation, due to the in-depth knowledge needed about GPU underlying
architecture details.

In CUDA, it is always necessary to define the grid of threadblocks. The threadblock
shape is a very important decision to develop a high-performance code implementation
for Nvidia GPUs. A correct choice of threadblock size and shape can significantly affect the
use of GPU resources. Therefore, the global implementation performance is closely related
to the threadblock configuration. Currently, many programmers select the threadblock size
and shape (that is, the threadblock configuration) by trial-and-error, spending a significant
amount of time.

In our previous work [4, 5] we have stated the importance of a correct threadblock
configuration. In this paper we present a suite of micro-benchmarks (uBenchs), in order to
explore the impact on performance derived from the combination of (1) the threadblock size
and shape choice criteria, and (2) the GPU hardware resources and configurations. Each
uBench has been designed as simple as possible to focus on a single effect derived from the
hardware or threadblock parameter choice. While the uBench suite has originally designed
for Fermi architecture, this suite could also be used with minimal adjustments for the study
of any other NVDIA’s CUDA architecture such as the recently Kepler [6] release.

uBench’s design focuses on the following hardware resource features: The number of
streaming-processor and cores, the number of GPU global-memory banks, L1 cache memory
configuration and memory-transaction segment size. The benchmarks can be used to study
performance effects, such as bottlenecks in access to GPU global-memory or L1/L2 caches,
global-memory bank conflicts, or thrashing on L1 cache memory. All of these effects are
related with the threadblock configuration.

Our experimental results using uBench with the Fermi architecture show that underly-
ing hardware details can be used to isolate the performance behavior of different threadblock
configurations, in terms of the global memory access pattern of the application.

The rest of this paper is organized as follows. Section 2 describes the Nvidia Fermi
architecture, in order to understand how uBench was designed. Section 3 shows some
related work. Section 4 introduces a subset of the uBench benchmark suite. Section 5 uses
uBench to show some interesting effects derived from the choice of threadblock different
configurations and their relationship with the underlying hardware. Finally, Sect. 6 shows
our conclusions.

2 Nvidia Fermi architecture

Fermi [7, 8, 9] is one of the Nvidia’s latest generation of CUDA architecture, released
in early 2010. The main features introduced by this architecture include double precision
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Figure 1: FERMI memory hierarchy (NVidia GTX-480).

performance, error correction code support, transparent L1/L2 cache hierarchy, configurable
L1 and shared memory, faster Context Switching, and faster atomic operations. This section
shows some hardware details of the Fermi architecture to better understand the hardware
effects depending on the threadblock configuration.

Transparent L1/L2 cache memory Fermi introduces an L1/L2 transparent cache
memory hierarchy (see Fig. 1). The programmer can choose between two configurations: 48
KB of shared memory and 16 KB of L1 cache (default option), or 16 KB of shared memory
and 48 KB of L1 cache. Besides this, the L1 cache memory can be deactivated by the user
at compilation time.

Threadblocks, Warps and SMs The number of registers per multiprocessor in Fermi
is 32KB, and the number of SP (Streaming Processor) per SM (Streaming Multiprocessor)
is 32. The maximum number of threads per threadblock is doubled, from 512 to 1 024,
while the maximum number of threads per SM is 1 536. Note that these changes force the
programmer to re-calculate block parameters used in implementations for previous archi-
tectures, in order to maximize the use of SM resources. The threadblocks are dispatched to
the SMs in row-major order [10].

Warp schedulers Regarding the dual warp scheduler present in Fermi, each scheduler
has its own instruction dispatch unit (IDU). The SM executes simultaneously two halves
of different warps. It is important to notice that this may influence the span of data that
is requested to the cache hierarchy at the same time. Although the SMs have only 16
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load/store units, each half warp issues its memory requests on a different flank, allowing
them to issue up to 32 memory requests on the same cycle, 16 from each half-warp.

Shared memory conflicts and global memory access Fermi has 32 shared memory
banks. Currently, the global memory is also distributed on five or six banks in Fermi,
with a bank width (called “word size” in CUDA terminology) of 256 bytes. The memory
addresses are scattered across the banks. A frequent problem in pre-Fermi architectures is
the partition camping problem [10]. This problem arises when concurrent threads request
at the same time memory locations belonging to different transaction segments in the same
data bank. In Fermi, the problem is alleviated (although not completely solved [5]) by the
existence L2 cache.

3 Related work

The use of benchmarks to evaluate hardware configurations has a long tradition. In this
paper we focus on benchmarking of GPU devices.

In [11], a set of micro-benchmarks is presented in order to obtain architectural features
and basic program characteristics. These features and characteristics include vectoriza-
tion, burst write latency, texture fetch latency, global read and write latency, ALU/Fetch
operation. However the studied focuses on AMD GPU architecture.

The authors in [12] introduce a suite of micro-benchmarks to measure the performance
of the GPU as well as the performance change when a specific optimization strategy is
used. The authors measure the execution time and obtain the different latencies for the
same threadblock configuration. The study focuses on pre-Fermi architectures.

In [13], a suite of micro-benchmarks are presented in order to find, for a given Nvidia pre-
Fermi architecture, the lower and upper bounds of the partition camping problem [10]. They
present the global memory read and write operation with and without partition camping.
As a result, the authors provide a spreadsheet that calculates an estimation of the partition
camping problem for a given kernel. It takes into account the number of active warps and
how many data are read by a single thread. They say that this problem does not exists
in Fermi architecture and do not consider the full range of threadblock size and shape
choices.

In [14], the authors introduce a performance model for pre-Fermi GPUs. This model is
based on the results of a set of uBenchs in order to measure the time of each kind of instruc-
tion, and the global/shared memory accesses. The authors always use the same threadblock
shapes (square) and show the different memory data transfer bandwidth extrapolated from
the uBenchs.

In [15], performance analytic model for pre-Fermi architectures is introduced. The
authors identify two main parameters: The time that a warp is waiting for data, and the
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number of operations that could be done during these delays. The authors estimate the
values by a set of micro-benchmarks. Different threadblock shapes have not been considered.
The paper studies the occurrence of memory bottlenecks under two main situations: (1)
when the computational cost is greater than the cost of memory requests, and (2) the
opposite situation.

In summary, these works do not systematically explore all the threadblock configura-
tion space. More over, several of these tests have been conducted using pre-Fermi GPU
architectures and do not relate the threadblock configuration with the underlying hardware
effects.

4 The uBench suite

This section shows the design principles of the different uBenchs implemented for this study.
The benchmarks implemented are not constrained to a specific threadblock configuration.
Thus, we can explore the different effects of the uBenchs across the whole threadblock
configuration space.

4.1 uBench design principles

Each uBench performs a matrix operation. Some benchmarks uses the same matrix as
input/output parameter, while others receives a matrix as input and returns a different
matrix as output.

Data sizes and storage order The sizes of the matrices have been chosen taking into
account the number and word-size of global-memory banks in Fermi, to produce perfect
data alignments in memory banks, and allow the benchmarks to better control the align-
ment choices in read operations. The matrix size is chosen to obtain at least one block per
SM, and to comply with the several thread number requirements in Fermi, for any possible
threadblock shape configuration. Matrices are stored in row-major order. The number of
the threads in the whole computation is equal to the number of matrix elements. All bench-
marks work with integer elements for not considering multiply-add (FMA) double precision
instruction and intra-SP dependences. Therefore, each thread writes in a different output
matrix element. Finally, we chose sizes with different ratios of total number of threads in
the kernel grid vs. the maximum number of concurrent threads that can be scheduled across
the whole GPU at the same time: 1536 by the number of SMs in a Fermi chip-set (between
14 and 16). The exact matrix sizes chosen are N = M = 96, 192, 6 144 and 18 432. Thus, in
a Fermi board with 15 SMs per chip-set, the ratios are r = 0.4, 1.6, 1638.4, 14745.6 (below
0.5, more than 1.5, near the maximum number of threads per SM, and near the maximum
size of input matrix that fits in the global-memory of a Fermi board). The matrix sizes
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should be adjusted to the global-memory bank properties, number of SMs, etc. in other
GPU hardware releases.

Use of L1 cache Different uBenchs are designed to use differently the L1 cache. Thus,
we can test the performance behaviors related to the configuration of the L1 cache (enabled,
disabled and increased).

Data alignment Out-of-bound accesses should not be allowed. To avoid this, we can
(a) add data padding, (b) add divergent branches and (c) adjust the threadblock shape to
the sizes chosen for the matrices being processed. We have chosen the last option, because
the former two may show performance irregularities depending on the particular blocks.
Since each thread writes in a different output matrix position, the number of threads per
block chosen to launch a uBench should be related to the constraints forced in the matrix
sizes. Due to this restrictions and due to the maximum number of thread per threadblock
supported by Fermi architecture (1024 threads) the threadblock shapes should fulfill with
the following criteria: (1) (#rows and #columns) ≥ 1 and ≤ 1024; (2) (#rows × #columns)
≤ 1024; and (3) (#rows and #columns) should be multiple of two and three, because these
are the only combinations that are exact divisors of the matrices sizes chosen. Recall that
these sizes were also chosen to be aligned with the memory banks.

Access patterns Each uBench uses its own memory access pattern for the input matrix.
Regarding writes to the output array, uBenchs uses one out of three different correlations
types between the thread identification and the items of the output array that the thread
should write.

• In the first one, that we call A mode, the global coordinates (one for each dimension)
of each thread of the Grid are used directly to determine the item to be accessed by
the thread. The indexes of Matrix[row][column] are calculated as follows:

row ← blockIdx.y × blockDim.y + threadIdx.y

column ← blockIdx.x× blockDim.x + threadIdx.x

• The second one, that we call B mode, each thread is assigned to a single uni-dimensional
coordinate. Thus, the threadblock shape does not influence the accessed positions
(all threadblocks with the same size access to the same data positions. The indexes
of V ector[resultPos] are calculated as follows:

blockGlobalId ← blockIdx.y × gridDim.x + blockIdx.x

resultPos ← (blockGlobalId× blockSize)

+(threadIdx.y × blockDim.x + threadIdx.x)
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• A third model is used (C mode), where all threads that verifies the condition threadIdx.x =
threadIdx.y = 0 access the output matrix as in A mode. The remaining threads do
not perform any access.

• Finally, a fourth model (D mode) considers the case in which the GPU global memory
is not accessed by any thread as input or output.

4.2 uBench classification criteria

The different uBenchs can be classified according to the following criteria:

1. The type of global memory access pattern (A, B, C or D)

2. High/low ratio of arithmetic instruction per thread compared to the number of global
memory access (high, low or none).

3. High/low ratio of L1 cache memory lines evictions compared to the size of this memory
(thrashing effects).

4. High/low ratio of global memory data reutilization compared to the number of arith-
metic instruction per thread (L1 cache memory).

4.3 uBench suite description

The combination of all the criteria described above leads to 48 different benchmark classes.
We have used all of them to explore the configuration space of a Fermi architecture. Due
to space constraints, in this paper we will show the effects in terms of performance related
to a specific subset of the uBench suite. The benchmarks used are the following:

uBench-1 Input : A flattened matrix. Output : The same flattened matrix. Description:
Each thread copies the same constant value in its position. The accesses are perfectly
coalesced. No data reutilization.

uBench-3 Input : A vector. Output : The same vector. Description: Each thread copies
the same constant value in its position. The accesses are perfectly coalesced. No data
reutilization.

uBench-5 Input : A vector. Output : The same vector. Description: Each thread copies
the same constant value in its position. Each thread adds the values of its block on
the input matrix. The accesses are perfectly coalesced with data reutilization.
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Benchmark (1) Global memory (2) Load (3) L1 eviction (4) Data reutilization
access pattern ratio ratio ratio

uBench-1 A mode Low Low Low

uBench-3 B mode Low Low Low

uBench-5 B mode Low High High

uBench-6 D mode None Low Low

uBench-7 A mode Low Low High

uBench-9 C mode Low Low Low

uBench-10 A mode High Low Low

uBench-11 B mode High Low Low

Table 1: uBench classification according to the criteria proposed.

uBench-6 Input : A flattened matrix. Output : The same flattened matrix. Description:
Without any kernel instruction. Without features.

uBench-7 Input : A flattened matrix. Output : The same a flattened matrix. Description:
Each thread copies the sum of its threadblock row values in its position. The accesses
are coalesced with data reutilization.

uBench-9 Input : A flattened matrix. Output : The same a flattened matrix. Description:
Only the thread with theadId.x = 0 and theadId.y = 0 stores in its global matrix
position the same constant value. There is not coalescence. No data reutilization.

uBench-10 Input : A flattened matrix. Output : The same flattened matrix. Description:
Each thread copies the same constant value in its position. We have introduced a
overloaded loop to add some instructions before performing the write access. In this
benchmark, the loop is executed one thousand times. The accesses are perfectly
coalesced. No data reutilization.

uBench-11 Input : A vector. Output : The same vector. Description: Each thread copies
the same constant value in its position. We have introduced a overloaded loop to
add some instructions before performing the write access. In this benchmark, the
loop is executed one thousand times. The accesses are perfectly coalesced. No data
reutilization.

Finally, Table 1 shows how each benchmark fulfills the criteria described in Sect. 4.2.

5 Experimental evaluation

We have explored all the combinations of sizes for each threadblock dimension (1, 2, 3, 4, 6,
8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1 024), L1 configurations (enabled,
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disabled, increased), and input data sizes (96, 192, 6 144, 18 432) for all the benchmarks
described, in terms of execution time.

The experiments have been run on an Nvidia GeForce GTX 480 device. The host
machine is an Intel(R) Core(TM) i7 CPU 960 3.20GHz, 64 bits compatible, with a global
memory of 6 GB DDR3. It runs an UBUNTU desktop 10.10 (64 bits) operative system.
The uBenchs have been developed using CUDA 4.0 toolkit and the 270.41.19 64-bit driver.

The resulting 108 tables can not be reproduced here in any format. Instead, we will
briefly discuss some interesting effects observed.

Near-to-optimum threadblock size In [5] we showed that, for some specific appli-
cations (with perfectly coalesced access patterns, no data reutilization, and low ratio of
operation per thread), using a threadblock size of 192 delivered near-to-optimum perfor-
mance. uBench benchmarks 1, 3, and 7 confirm this effect for any application with these
characteristics, leading to a performance loss lower than 5 percent in all cases. It is worth-
while to note that uBench 3 has been specifically designed to isolate this specific effect.

In B-mode there is no correlation between threadblock shape and performance
The use of B-mode makes that the access pattern for a given threadblock total size does
not change when using any possible shape configuration. uBenchs 3, 5, and 6 show that,
given a threadblock size, the best performance is obtained with any possible shape.

Each block should access to a single memory bank, and contiguous blocks to
different banks The authors of [10] show that, for coalesced access patterns, performance
increases when all global-memory accesses from the same threadblock are directed to the
same global memory bank, and contiguous blocks direct their accesses to different banks.
It is known that the scheduler tends to schedule contiguous blocks in different SMs. Thus,
during the life of the kernel, all banks are used in a balanced way from different SMs, thus
improving the data bandwidth. The uBenchs 1 and 2 confirm this effect.

It is better to disconnect L1 when input data is scarce Deactivating the L1 cache
memory (forcing the hardware to reduce the transactional segment size to 32 Bytes) im-
proves the execution time in certain kind of kernels. When the global memory accesses are
not coalesced (uBench 9) reducing the size of the data transaction segment, also reduces
the total memory requested, alleviating the memory bottlenecks. On the other hand, our
uBenchs show that performance increases, even for coalesced access patterns (all uBenchs
with mode A and mode B), if there is a low ratio between the number of threads in the
grid and the maximum concurrent threads supported by the target GPU device (r = 0.4
and r = 1.5).
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Shapes, sizes and instruction overload We said in [5] that, in kernels with a high
ratio of arithmetic operations per thread, for a given threadblock size, any block shape
leads to practically the same performance. The latencies of the global memory accesses
can be hidden inserting enough arithmetic operations between memory accesses. Thus, the
execution time is not dominated by memory access latencies, and access patterns derived
from the threadblock shape (uBench 1).

Data reutilization and L1 cache size When there is data reutilization by different
threads in the same threadblock, better performance is obtained increasing the L1 cache
memory. Increasing the cache memory more cache lines (global memory transaction seg-
ments) can be stored in the cache reducing thrashing effects. This effect is confirmed by
uBenchs 5 and 7. Nevertheless, uBenchs 1 and 6 show that for kernels without any data
reutilization, increasing the L1 cache size degrades the performance.

6 Conclusions

We have designed and implemented a suite of micro-benchmarks, called uBench, in order
to identify the GPU hardware effects on performance for GPU architecture, depending
on threadblock size and shape. With minimal adjustments, the uBench suite can be used
to evaluate newer Nvidia architectures, such as Kepler. After examining the results, we can
conclude that the knowledge of the underlying hardware details can sometimes be used to
predict the performance behavior, depending on threadblock configuration. In the future,
we will use uBench to study the influence of hardware effects and threadblock configuration
parameters in other Nvidia architectures. The uBench benchmark suite is available under
request.
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