
For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 1

An extensible system for multilevel automatic
data partition and mapping

Arturo Gonzalez-Escribano, Yuri Torres, Javier Fresno, and Diego R. Llanos, Senior Member, IEEE

Abstract—Automatic data distribution is a key feature to obtain efficient implementations from abstract and portable parallel codes. We
present a highly efficient and extensible runtime library that integrates techniques for automatic data partition and mapping. It uses a
novel approach to define an abstract interface and a plug-in system to encapsulate different types of regular and irregular techniques,
helping to generate codes which are independent of the exact mapping functions selected. Currently, it supports hierarchical tiling
of arrays with dense and stride domains, that allows the implementation of both data and task parallelism using a SPMD model. It
automatically computes appropriate domain partitions for a selected virtual topology, mapping them to available processors with static
or dynamic load-balancing techniques. Our library also allows the construction of reusable communication patterns that efficiently
exploit MPI communication capabilities. The use of our library greatly reduces the complexity of data distribution and communication,
hiding the details of the underlying architecture. The library can be used as an abstract layer for building generic tiling operations as
well. Our experimental results show that the use of this library allows to achieve similar performance as carefully-implemented manual
versions for several, well-known parallel kernels and benchmarks in distributed and multicore systems, and substantially reduces
programming effort.

Index Terms—Data partition, mapping techniques, tiling, parallel libraries, MPI.

F

1 INTRODUCTION

Tiling is a well-known technique used to distribute data
and tasks in parallel programs [1] and to improve the
locality of loop nests in parallel and sequential code [2].
Although originally presented as a loop transformation
technique, the use of data structures to support tiles
for generic arrays allows to better exploit the memory
hierarchy, since data is often reused within a tile. Tiling
can be applied to multiple levels, to distribute work
among processors at the outermost level, while locality
are enhanced at the innermost level. In the context of
distributed-memory, tiles can also make communication
explicit, since computations involving elements from
different tiles result in data movement [3], [4].

During the last decade, different programming models
have been proposed to handle the complexity of multi-
level data partition and mapping. These programming
models roughly falls into two categories: Those that
hidden the underlying communications (e.g. Chapel [5],
UPC [6]), and those where the explicit communication
is driven by the partition made by the user (e.g. MPI).
These parallel programming models do not help the
programmer to explicitly express the communication
pattern needed by the algorithm regardless of the data
partition chosen. Parallel programming tools and frame-
works presented in the last years do not establish clear
boundaries between virtual topologies, layouts as do-
main partitions, and tile management (such as HTA [7]

• Departamento de Informática, ETS de Ing. Informática, Universidad de
Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain. E-mail:
{arturo,yuri.torres,jfresno,diego}@infor.uva.es.

or UPC), or clear boundaries between data management
and communications (such as Chapel, UPC or HTA).
Such a division of duties would allow the programmer
to decouple the communication structures, that depend
on the algorithm characteristics, from the data partition
mechanisms.

In this context we have developed Hitmap, a library
designed to decouple the communication pattern from
data partitioning, thanks to the use of abstract ex-
pressions of the communications that are automatically
adapted at runtime depending on the partition finally
used. Hitmap presents an unique combination of fea-
tures, including: (1) An extensible plug-in system, based
on two different types of modules, to automatically com-
pute data-partition and distributions of tiles as a function
of the topology of the underlying architecture, hiding the
details to the programmer; (2) a common framework to
program new plug-ins with regular, irregular, static, or
dynamic partitioning and load balancing techniques; (3)
a flexible toolset for data- and task-parallelism mapping
with a common interface; (4) an API to create complex
and scalable communication patterns in terms of an
abstract partition and layout. All these features allow
to embed complex mapping decisions, some of them
associated to compiler technology, in a library. These
features make Hitmap an excellent choice to develop
higher-level programming models [8].

Hitmap can be used to support complex data struc-
tures, such as sparse matrices and graphs for irregu-
lar applications [9], using the same hierarchical tiling
methodology, or to program heterogeneous system [10].
The result is a good balance between performance and
efficient memory usage, also reducing the programming

Page 1 of 24 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 2

effort compared with other options.
Hitmap is designed with an object-oriented approach,

internally exploiting several efficient MPI techniques for
communication, focusing on performance and on further
native compiler optimizations. Thus, the implementation
is highly efficient, as we show with experimental results
for well-known parallel benchmarks.

The rest of the paper is organized as follows. Sec-
tion 2 describes the Hitmap library and how to use
it to implement applications and kernels. Section 3
describes Hitmap architecture details, including tiling
management, data partition plug-ins, and communica-
tions. Section 4 shows experimental results. Section 5
discusses other approaches for automatic data partition
and mapping. Finally, Section 6 concludes this paper.

2 THE HITMAP LIBRARY

In this section we describe the library, starting with
several key concepts and notations about arrays and
tiles.
Signatures: We define a Signature S as a tuple of three
integer elements representing a subspace of array in-
dexes in a one-dimensional domain. It resembles the
classical Fortran90 or MATLAB notation for array-index
selections. The cardinality of the signature is the number
of different indexes in the domain.

S ∈ Signature = (begin : end : stride)
Card(s ∈ Signature) = b(s.end− s.begin)/s.stridec

Shapes: We define a Shape h as a n-tuple of signatures.
It represents a selection of a subspace of array indexes
in a multidimensional domain (multidimensional paral-
lelotope). The cardinality of the shape is the number of
different index combinations in the domain.

h ∈ Shape = (S0, S1, S2, ..., Sn−1)
Card(h ∈ Shape) =

∏n−1
i=0 Card(Si)

Tiles: We define a Tile as an n−dimensional array. Its
domain is defined by a shape, and it has a number of
elements of a given type, depending on the program-
ming language chosen.

Tile h∈Shape : (S0 × S1 × S2 × . . .× Sn−1)→ < type >

Our shapes expand KeLP regions [4] with stride do-
mains, and unifies Chapel dense and stride domains [5]
in a single type.

2.1 Library overview
The Hitmap library implements functions to efficiently
create, manipulate, map, and communicate hierarchical
tiling arrays for parallel computations. The library sup-
ports three sets of functionalities:
Tiling functions: Definition and manipulation of arrays
and tiles, in a tile-by-tile basis. These functions can be
used independently of the others, to improve locality in
sequential code as well as to generate data distributions
manually for parallel execution.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������������
������
������
������������

������
������
������

������
������
������
������������

������
������
�������������

�������
�������
�������

�������
�������
�������
�������������
������
������
������������

������
������
������

������
������
������

������
������
������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
������
������
������
������

���
���
���

���
���
���

����
����
����

����
����
����
����
����
����
����

����
����
����

����
����
����
���
���
���

���
���
���
���
���
���
���

���
���
���
���

����
����
����

����
����
����
���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���������

������
������

������
������
������

�������
�������
�������

�������
�������
�������
������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������
������
������
������

������
������
������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

3 4 5 6 721

0

1
2

3
4

0 1 2

10

2

0

1
0

A [0:4][1:7]

C = B[0:1][1:2]

B = A[1:3][1:3]
0 1

0

2
1

D = A[0:4:2][5:7:2]

1

Fig. 1. Tiling creation from an original array.

Mapping functions: Data distribution and layout func-
tions to automatically partition array domains into tiles,
depending on the virtual topology selected. These func-
tions are oriented to data- and task-distribution on paral-
lel environments. The input needed at this point are the
virtual topology and layout functions to be used, and the
data structure to be distributed. These functions return
(i) the ranges of the tiles that needs to be created (using
the Tiling functions), (ii) the mapping between tiles and
virtual processors, and (iii) the neighbor information,
encapsulated in a single structure.
Communication functions: Creation of reusable com-
munication patterns for distributed hierarchical tiles.
These functions are an abstraction of a message-passing
model to communicate tiles among virtual proces-
sors, and may be used with the mapping information
(mapped tiles, neighborhood information, and virtual
topology), to create mapping-dependent communication
patterns. They return a handler that can be used to
repeatedly communicate tiles among processors.

2.2 Tiling functions

Arrays and tiles are implemented with an abstract data
type: HitTile. To use a new array, it should be declared
first as a HitTile variable, providing its dimensions and
index ranges, as in A[0:4][1:7]. This information consti-
tute the domain of the array. See array A in Fig. 1, where
we use a notation to specify dimensions and ranges that
resembles Fortran90 and MATLAB conventions.

A new tile can be derived from another tile, specifying
a subdomain, which is a subset of the index ranges of
the parent tile. A subtile is indeed a tile with the same
properties. At this point, the user can access the elements
of the original array using two different coordinates
systems, either the original coordinates of the array or
new, tile coordinates, starting at zero in all dimensions.
See arrays B and C in Fig. 1, that are surrounded by local
coordinates. We provide different functions to access
elements and/or specify new subtiles using any of both
coordinates system. Tiles may also select subdomains
with stride, transforming regular jumps in the original
array indexes to a compact representation in tile coordi-
nates. See array D in Fig. 1.

Page 2 of 24Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 3

Tiling allocation. Tiles are not automatically allocated.
Instead, we provide a function that allocates memory
for a tile on demand. Accesses to a tile which has been
already allocated are solved referencing its own memory,
no matter if the coordinates system being used is the
one belonging to the tile or to its ancestor. Accesses
to tiles without their own memory are mapped to the
nearest ancestor with allocated memory. The correspond-
ing indexes are mapped transparently to the ancestor
coordinates. This tile allocation system greatly simplifies
data-partition and parallel algorithm implementation.
For example, the programmer may define a global array
without allocated memory, and create derived tilings
directly or even recursively based on it. Only the subtiles
which are needed locally should be allocated, while
all the tiles generated keep their own tiles and array
coordinates. Tiles with allocated memory never lose the
reference to the parent tile or array. Thus, the library
provides functions to update data elements of tiles with
allocated memory with elements from their ancestor, or
vice-versa. This is useful to create buffers or shadow
copies for temporal use.

Tiling overlapping and range extension. Given an
initial tile, it is possible to define two children tiles
whose indexes overlap. Allocating overlapping tiles is a
natural and easy way to generate local buffers for par-
allel stencil-based algorithms, where each cell should be
updated taking into account its neighbors [11]. Hitmap
also allows to define tiles that extend out of the range of
the original array. Those elements outside of the original
range can not be accessed unless memory is allocated
for the whole tile. Combining overlapping and extended
tiles it is easy to implement boundary conditions and
stencil operations in finite-element methods.

Multilevel tiling. The mechanisms shown above allow
to create hierarchies of tiles with contiguous or regular-
stride subselections. The access time to elements at any
level of the tile hierarchy is uniform. For more generic,
irregular tile hierarchies, or other more complex data
structures, it is possible to define tiles with elements that
are also HitTile. These “supertiles” store arrays of point-
ers to other tiles. We have used them to store matrices
by blocks, a solution useful for several linear algebra
programs [12]. The access time to elements of such a tile
may be non-homogeneous, as adjacent indexed elements
may be allocated at different referenced tiles, belonging
to different levels on their respective hierarchies.

2.3 Mapping functions

Hitmap encapsulates all partition and mapping logic
into separated and reusable modules, avoiding the need
to reason in terms of the number and identification of
physical processors from the application code. One of
the key characteristics of Hitmap is that clearly splits
the mapping process in two independent parts, which
have been observed to be related to different paral-
lel algorithm features. Topology functions create virtual

topologies using internal data, thus hiding the physical
topology details. Data partition is done by a Layout func-
tion, that distributes domain indexes on a given virtual
topology. The combination of a topology and a layout
function automatically organizes the physical processors
in a virtual topology, and automatically assigns an index
domain part to the local virtual processor.

Hitmap provides a plug-in mechanism to select virtual
topologies just by name. The plug-in functions use the
information about the physical architecture and proces-
sor topology available internally. The purpose is to move
the reasoning in terms of physical processors from the
programmer to the library. Functions already available in
Hitmap implement different topologies, such as grids of
processors in several dimensions, or processor clustering
depending on the processor capabilities for heteroge-
neous architectures. This include, for example, the use of
a single, powerful processor to simulate several virtual
processors. All virtual topologies in Hitmap define a
group of active processors, that may be hierarchical or
even recursively split.

Data partition is done by Layout functions that auto-
matically compute tiling information for a given index-
domain and virtual topology. An example can be found
in the Sect. 7 of the supplementary material. The layout
building process also creates a more sophisticated neigh-
borhood concept, taking into account that not all virtual
processors may have been assigned data to compute.
This solution allows neighbor communications to skip
unassigned virtual processors transparently. This hap-
pens, for example, in V-cycle iterative PDE solvers, such
as MG program in the NAS Parallel Benchmarks [13],
[14].

2.4 Communication functions
The Hitmap library supplies an abstraction to com-
municate selected pieces of hierarchical structures of
tiles among virtual processors. We provide a full range
of communication abstractions, including point-to-point
communications, paired exchanges for neighbors, shifts
along a virtual topology axis, collective communications,
etc. Hitmap approach encourages the use of neighbor-
hood and tile information automatically computed by
Layouts to create communications which are automati-
cally adapted to topology or data-partition changes.

The information needed to issue the real communica-
tion among physical processors is stored in a single data
type named Comm. Abstract communication objects may
be grouped in another data type named Pattern, generat-
ing reusable combinations of communication structures.

2.5 Combinations of topology and layout functions
The correctness of some parallel algorithms depends
on constraints on the topology or layout functions. For
example, Cannon’s algorithm for matrix multiplication
is designed to work with a perfect-square mesh of tasks,
since the topology must have N ×N virtual processors.

Page 3 of 24 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 4

(n,S0,S1,...,Sn)

Shape

Signature
b : e : s

Hierarchical
Tiles

HitTile

HitTile_doubleHitTile_int

Layout Layout
List

Layout Topology

Comm Pattern

Signature

Fig. 2. UML diagram of the architecture of the Hitmap
library.

But the data-pieces produced by the partition of the
matrices may have any kind of block shape. For this
algorithm, the chosen layout function will surely have
an impact on the performance, but not on correctness. A
complete implementation of Cannon’s algorithm can be
found in Sect. 12 of the supplementary material. On the
other hand, the algorithm of the NAS MG benchmark
computes a 3-dimensional stencil convolution, leading
to a 3D partition and communication pattern. However,
this partition and pattern may be mapped on different
1D, 2D, or 3D arrangements of processors. In general,
when an algorithm is tied either to a specific topology or
to a specific layout function, the other one can be freely
changed. Hitmap allows to test new topology/layout
combinations with little effort, by changing only the
name of a plug-in function in the whole code.

Regarding robustness issues, expressing communica-
tions in terms of layouts greatly helps the programmer to
build deadlock-free communication patterns. Moreover,
the automatic marshalling for tile communications helps
to avoid programming errors.

3 HITMAP DESIGN AND IMPLEMENTATION

In this section we will dive into the design and im-
plementation details of the Hitmap library. Although
Hitmap has been designed with an object-oriented ap-
proach, the current implementation has been written in
C, to better exploit the original author’s expertise in
classical C compiler optimizations. The development of a
C++ object-oriented interface is a straightforward effort.

Figure 2 shows the UML classes diagram. Recall that
the UML diagrams show dependencies as dotted arrows,
where the arrow points to the class used, or referenced
by, the class located at the tail of the arrow. Diamond
headed arrows indicate that objects of the class located at
the head of the arrow are composed by several objects of
the tail class. The lines with a regular white arrow head
indicate classes inheriting from an abstract class, whose

name is depicted with italic font. The classes in white
boxes implement tiling functionalities; the classes in light
gray implement layout functionalities; finally, the classes
in dark gray implement communication functionalities.

3.1 Tiling classes
The classes Signature, Shape, and HitTile, define three
data-types to support multidimensional and hierarchical
tiling arrays. The library includes a macro function to
specialize the HitTile data structure for any base type.
The HitTile constructor only defines the tile domain.
Available methods include data allocation, access to ele-
ments, and creation of tiles that represents sub-selections
of the original domain. A detailed example is shown in
Sect. 8 of the supplementary material.

3.2 Data partition and mapping subsystem
Light gray classes (Topology and Layout) are used for
data distribution and mapping. Topology and Layout are
designed as abstract classes. Each new topology function
or data partition technique is implemented as an exten-
sion of one of these classes, providing the behavior of its
abstract methods. A header file and a skeleton code in
C are provided for both topologies and layout functions.
Thus, new techniques may be easily programmed and
compiled externally to the library, using them as plug-
ins at compile time.

3.3 Topologies
Topologies are used from the application code invoking
the constructor-like function hit topology (<name>). It
receives only one parameter indicating the name of the
chosen plug-in. The Topology class has only one abstract
method. A new topology plug-in is implemented as a
C function with a special name prefix. Topology func-
tions receive an internal HitPTopology (physical topology)
structure, containing information and details about the
physical processors and the platform. This information
is either automatically obtained by the library during
initialization (e.g. querying MPI about the number of
available processors and the local processor identifier),
or provided statically in a platform configuration when
an automatic query can not provide this information (e.g.
the information about relative computing performance
of each processor). The topology function fills up and
returns a HitTopology structure. Currently, this structure
supports mesh topologies for any number of dimensions.
In Sect. 9 of the supplementary material we show an
example of a topology plug-in code.

3.4 Layouts overview
Data-partition and mapping is done by classes inherited
from the Layout class. Hitmap introduces a generic layout
creation function, hit layout(), that divides a domain,
expressed by a shape, into subdomains mapped to

Page 4 of 24Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 5

virtual processors. This function receives at least three
parameters: (a) the name of a plug-in that implements
the particular layout to be used; (b) a virtual topology
created with hit topology(); and (c) a shape, either cre-
ated on the fly or extracted at runtime from any tile,
representing its data size. Each layout function may
define further compulsory parameters if needed. The
hit layout() function returns a HitLayout structure which
may be queried for the generated mapping information.
If there are less domain elements than processors on any
dimension in the virtual topology, the layout transpar-
ently determine the active virtual processors and assigns
domain elements to virtual neighbors, without manual
intervention.

The Layout class defines a common interface for both
regular and irregular data-partition techniques. We de-
fine two different inherited abstract subclasses for layout
functions implementations. Signature Layouts are more
appropriate for regular partitions, because they describe
the relationship between processors and data indexes
using signatures. List Layouts are more appropriate for
irregular partitions. Instead of using signatures, they
implement generic mapping algorithms that associate
lists of indexes to processors. The latter are more generic,
but not as efficient as shapes to represent big quantities
of indexes organized in regular (signature) form.

3.5 Layout plug-ins implementation
To define a new signature plug-in, the programmer
usually needs to provide only one function to compute
the partition in one dimension. The function fills up
an output signature with the local part for the local
processor, and returns true/false to indicate whether a
part has been assigned, or should be marked as non-
active. For example, a generic block partition function in
a signature layout plug-in receives four parameters: The
local virtual processor index (or rank), p; the number of
virtual processors on this dimension, P ; the signature of
the shape in this dimension to be divided, S = (b, e, s);
and a pointer to the resulting signature object, S′. The
local part of the signature assigned to this processor,
S′ = (b′, e′, s′), is calculated according to:

b′ =
p ∗ Card(S)

min(P,Card(S))

e′ =

(
(p+ 1) ∗ Card(S)
min(P,Card(S))

− 1

)
· s+ b

s′ = s

If there are less index elements in the signature than
the number of processors, the last processors remain
inactive. It is necessary to add a condition to handle this
situation.

After defining the layout function, the programmer
should define a plug-in that uses it. This plug-in simply
declares the function to be used and their properties,

and calls a method, provided by the library, that applies
the function either to each dimension of the input shape
present in the topology, or to a selected dimension
(chosen by the application programmer with an optional
parameter when calling the plug-in). Therefore, the li-
brary internally handles all the interactions between the
topology and the layout function.

The shape calculations implemented in this plug-in
provide valid outputs for any combination of input
parameters. Many parallel algorithms, both in literature
and in real implementations, assume cardinalities that
are powers of 2, or input shapes that are multiples of the
number of processors, thus generating simpler codes for
partition and communication. With our approach, this
complexity is encapsulated in the plug-ins, making the
general-case implementation of algorithms as simple as
the restricted ones.

When some processors are deactivated by the layout
function, neighbors are not simply the ones with adjacent
indexes. The layout is capable of calculating the neigh-
bor indexes, taking this information into account. We
also implement an optional wrapping flag, to generate
toroidal neighbor relationships. Thus, all the complex-
ity of detecting neighbors in the general case is again
encapsulated in the plug-in, not in the application code.

The HitLayout structure returned by the library con-
tains information automatically generated only for the
local part. Pointers to the signature and neighbor func-
tions are also stored in the structure, to generate neigh-
bor or non-local parts information on demand. Thus, the
amount of local information is fixed, instead of growing
with the number of processors, allowing a better scala-
bility.

Writing a new signature plug-in is straightforward. It
is enough to implement the corresponding formula into
a layout function. List plug-ins, on the other hand, are
more difficult to develop, because they are implemented
using an algorithm instead of a signature formula. The
HitLayout structure contains a C union with different
internal data for Signature and List layouts. Hitmap
provides a common API to query most of their internal
information. The most relevant change is that signatures
are internally substituted by lists that map each proces-
sor to a collection of associated indexes that do not need
to follow a regular pattern.

In summary, the development of a plug-in consists in
encapsulating in our abstract API the functions or algo-
rithms that the programmer would otherwise hardwire
into the application code, an improvement in terms of
reusability with a negligible performance penalty.

3.6 Groups and hierarchical partitions

Layout functions may create Groups. A group associates
a collection of virtual processors together, which are
considered a single virtual processor. Layout functions
can assign a part of the original shape not only to a
processor, but to a group. The part assigned can be

Page 5 of 24 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 6

a signature-based shape or an index list. This allows
the processors in the same group to use further levels
of data-partition (new layouts) on their assigned sub-
domain of indexes. This is useful for recursive data-
domain decompositions, or for mapping small quanti-
ties of highly-loaded tasks with more inner levels of
parallelism. As an example, Sect. 11 of the supplemen-
tary material shows the complete implementation of the
QuickSort algorithm in Hitmap.

Each group has a leader processor. It is the current
active processor of the group, the one doing the serial
computations before further data partitions are used, and
the one issuing communications to neighbor group lead-
ers if needed. Group management is almost transpar-
ent to the programmer. Hitmap provides a conditional
structure that executes a program block only if the local
processor is the group leader in a given layout.

3.7 Topology and layout techniques currently imple-
mented
The available topology plug-ins currently included in
Hitmap are the following: plain, one-dimensional ar-
rangement. This virtual topology simply enumerates
the available processors. mesh: Arranges all available
processors P into an n-dimensional mesh, for a given
n supplied as parameter. It is based on a prime-factors
decomposition. It tries to balance the number of pro-
cessors on each dimension. If P is prime, it falls back
to an P × 1 × 1 arrangement. square: Similar to mesh
in two dimensions, but arranges as many processors as
possible into a perfect-squared mesh, leaving the rest of
processors available for other parallel routines.

Signature-based functions include several blocks func-
tions, with different policies to allocate the group leaders
(active processors), and a cyclic function. We do not need
to introduce a explicit block-cyclic function, as it may be
generated in two-levels using first a blocking function,
and then a cyclic layout to distribute the blocks. In [15]
we describe this composability layout property, and how
to use it to efficiently implement an LU factorization.

Lists-based layouts include two techniques for load-
balancing. The first one is based on the partition needed
by the bucket sort algorithm, implemented in the IS NAS
benchmark, where it is used to redistribute data buckets
in terms of the buckets sizes. The second is a similar
technique, also using extra information about loads as-
sociated to the domain indexes, but it may associate non-
neighbor virtual processors to the same group to create a
smoother load balance on non-symmetric systems. Both
techniques for load balancing are also useful in recursive
decomposition algorithms, such as Quicksort.

3.8 Communications implementation
The current implementation uses several features of
the MPI communication library. Communications across
virtual processors are encapsulated in the Comm ob-
jects. Any point-to-point or collective communication is

represented by a single Comm object. A Comm object
stores information about either a single operation, or
a pair of send/receive operations. We provide different
constructors for different communication operations. The
constructors have a very similar interface with the fol-
lowing parameters, some of them optional for certain
communication types: (a) Sending and/or receiving tile
buffers (tile subselections); (b) sending and/or receiving
virtual processes indexes; and (c) a Layout object with
the information about neighborhoods generated by the
data distribution over the virtual topology. The Layout
constructor generates and stores in the layout object
a particular MPI communicator that contains only the
processors that have associated data domains after the
domain distribution.

The pointers to the sending and/or receiving tile data
buffers are stored in the object. The structure of the
sending or receiving tiles is examined to generate MPI-
derived data types that represent the tile data displace-
ments. Any hierarchical HitTile subselection can be rep-
resented by a combination of contiguous and vector MPI-
derived data types. Tiles with base elements that are also
tiles need also to combine the previous types with struct
MPI-derived data types. The result is a single, combined
type that is committed and stored in the Comm object.
Thus, buffering, marshalling, and unmarshalling of data
is automatically managed by the MPI layer in the best
possible way.

The programmer may directly provide values for the
sending/receiving virtual process parameters. Neverthe-
less, Hitmap methodology encourages the use of the
Layout methods for calculating neighbor processes in-
dexes. In this way, a change in the real topology, in
the policies selected for the virtual topology or layout
building, or in data sizes, is automatically captured in the
communication objects during their construction, storing
different real processor indexes, or different MPI-derived
data types for the data location.

Once built, the Comm object contains all the infor-
mation to issue the real data transfer as many times as
needed. The Comm class provides a method to activate
the communication in synchronous (normal) mode, and
two different methods to start and end the commu-
nication at different points of the code, allowing to
implement an asynchronous mode.

Communication Patterns are implemented as a queue
of Comm objects. The same activation modes are pro-
vided for Patterns. Associated methods simply traverse
the internal queue calling the corresponding method on
each Comm object.

Although the current backend implementation relies
on the rich API of MPI, these functions are abstract
enough to be ported to other backends. We are currently
working in the implementation of Hitmap with other
parallel programming models.

Page 6 of 24Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 7

4 EXPERIMENTAL RESULTS

Experimental work has been conducted to show that
the abstractions introduced by the library do not only
simplify the complexity of codes, but they do not entail
significant performance penalties.

4.1 Design of experiments

We have designed experiments with the following guide-
lines: (1) Choose parallel applications or kernels which
are well-known and representative of important applica-
tions classes and programming paradigms. They present
different challenges, and imply the use of different
library resources. (2) Obtain or generate a manually
programmed and optimized version of each application
in C language to be used as reference, since some of
the selected benchmarks were originally in Fortran. The
Fortran codes has been manually ported to C, obtaining
versions at least as efficient as the original codes. (3)
Write a new code version based on Hitmap. (4) Execute
both versions with the same inputs and conditions on
selected machines, and (5) compare the codes and the
execution times obtained.

The codes has been run on two different ma-
chines which represent two different types of com-
mon architectures. The first one, Geopar, is an Intel
S7000FC4URE server, equipped with four quad-core In-
tel Xeon MPE7310 processors at 1.6GHz and 32GB of
RAM. Geopar runs OpenSolaris 2008.05, with the Sun
Studio 12 compiler suite. The second architecture is a
homogeneous Beowulf cluster of up to 36 Intel Pentium 4
nodes, interconnected by a 100Mbit Ethernet network.
The MPI implementation used in both architectures is
MPICH-2, compiled with a backend that exploits shared
memory if available.

The codes are instrumented to measure the execution
times, including both the execution of the main compu-
tation part, and the creation of data-partition, mapping,
and communication information and structures. Thus,
we may fairly compare the performance of the library
and its applicability in real cases.

The benchmarks chosen include: Two programs from
the NAS Parallel Benchmarks [13] (the MG multigrid
program, and the IS integer sort program); an LU fac-
torization and back-substitution solver based on the
ScaLAPACK package [16]; and a matrix-multiplication
kernel based on the generalized Cannon’s algorithm. See
Sect. 13 of the supplementary material for the rationale
behind this benchmark choice.

4.2 Performance comparison

The execution times obtained for different versions of the
benchmarks evaluated are shown in Figs. 3, 4, and 4. The
times include the stage of computing tiling hierarchies,
mapping, and communication information. According
to the ScaLAPACK documentation, the ScaLAPACK’s
LU factorization implementation does not scale well

if the interconnection network can not deliver several
messages simultaneously, such as Ethernet. Thus, this
benchmark is not suitable for the Beowulf cluster, and
we did not carry on experiments for this program and
platform. In the Geopar machine, when all 16 processors
are used, the operative system, the MPI daemon, and
the computations interfere with each other, producing
additional context changes and cache misses on at least
one core, delaying the overall computation. Thus, most
applications exhibit a scalability limitation for 16 pro-
cessors in Geopar. None of the experiments have led to
incorrect results or runtime errors of any kind.

Results show that the use of Hitmap library does not
imply a significant performance penalty, being less than
8.5% in the worst case (LU Scalapack). Results for the
Cannon’s matrix multiplication and the LU factorization
programs show that the accesses to tile elements in
Hitmap are almost as efficient as direct memory accesses.
Moreover, the efficient management of MPI derived
data types and reutilization of communication patterns
produce positive effects.

In general, the cost of initializing Hitmap data-
structures, layouts and communication patterns is simi-
lar to the cost of the manually programmed calculations
in the reference versions. This cost is amortized by their
reutilization across many iterations of the computation.
It is remarkable that the IS program needs the compu-
tation of several different patterns on each repetition of
the code. However, the performance delivered by the
Hitmap and reference versions are almost the same.

Figure 5 shows a performance comparison between
different MG benchmark implementations using state-of-
the-art parallel programming models, with C and D in-
put sets. The comparison include shared-memory mod-
els (OpenMP), PGAS models (UPC), and distributed-
memory-based libraries (C+MPI, HTA, Hitmap). Re-
sults for the original NAS implementation, using For-
tran+MPI, are also shown. To allow the comparison
of shared-memory and distributed-memory models in
terms of performance, all experiments were run in
Geopar, the shared memory system described in Sect. 4.1.
All implementations were compiled with GCC and
equivalent optimization flags, except HTA, that requires
the use of the Intel C compiler. MG implementations
that support the D input size (the biggest one that fits
in the machine memory) need to be compiled using
the “medium” memory model in Geopar architecture.
Each bar is represents the sum of the time as measured
by the benchmark, and the “additional time” spent in
initializations.

From the results obtained we can draw the following
observations. First, UPC delivers good performance for
the C input size. However, UPC’s memory footprint is
three to four times bigger than in other implementations.
For this reason, the UPC implementation for the D input
size does not fit in Geopar’s memory. Second, the use
of HTA to execute MG with the D input set leads to
much higher execution times and “unsuccessful” results,

Page 7 of 24 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 8

 10

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processors

Cannon’s 2000x4000 (Geopar)

C - manually optimized
Hitmap

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processors

IS class C (Geopar)

NAS
Hitmap

 100

 1000

 10000

 2 4 6 8 10 12 14 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processors

LU Scalapack 15000x15000 (Geopar)

Scalapack Fortran
Hitmap

C - manually optimized

Fig. 3. Performance results for some representative parallel kernels and benchmarks in Geopar, a shared memory
system. Results for MG are shown in Fig. 5.

 1

 5

 15

 25

 35

 45

 4 8 12 16 20 24 28 32 36

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processors

Cannon’s 1000x2000 (Beowulf)

C - manually optimized
Hitmap

 30

 60

 90

 120

 160

 4 8 12 16 20 24 28 32 36

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processors

IS class C (Beowulf)

NAS
Hitmap

 25

 50

 75

 100

 4 8 12 16 20 24 28 32 36

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

Processors

MG class C (Beowulf)

NAS Fortran
C - manually optimized

Hitmap

Fig. 4. Performance results for some representative parallel kernels and benchmarks in a Beowulf cluster.

so performance values for class D are not shown. Third,
although C+MPI version is generally faster than the
Fortran+MPI version, it does not beat the performance
obtained with the OpenMP version. However, OpenMP
can not be directly used in distributed memory environ-
ments.

Finally, the results show that Hitmap performance is
comparable with the performance with C+MPI and gen-
erally faster than HTA, thanks to a more efficient com-
munication management. Besides this, Hitmap presents
a more flexible interface and a lower development effort,
as we will show in the following section.

4.3 Development effort: code lines

To compare Hitmap code complexity with respect to
manual implementations, we will use several complexity
and development effort metrics, including number of
lines of code, McCabe’s development effort, and cyclo-
matic complexity.

Figure 6 shows a comparison of the Hitmap version of
the benchmarks considered with the manual implemen-
tations in terms of lines of code. The comparison sepa-
rates the lines devoted to parallelism (data layouts and
communications), sequential computation, declarations,
and other non-essential lines (input-output, etc).

With respect to MG, our results show that the use of
Hitmap library leads to a significant reduction in the
number of lines, specially those devoted to parallelism
(partitioning and communication), even including the 14
lines consumed by the new layout plug-in developed

for this example (see [14] for the details). Although
MG uses a multilevel data partition, Hitmap automates
the generation of communication patterns and hides the
particular cases that occur in smaller grids.

Significant reductions are also obtained for Cannon’s
algorithm, because it only uses a single communication
pattern that is derived directly from the data partition.
Regarding LU, the use of Hitmap leads to a compact
representation of blocks of tiles, thus reducing many
computations needed to handle size, paddings, and
block-cyclic distribution management. Moreover, the use
of layouts hides to a great extent the details on how to
build LU’s complex communication patterns. Finally, IS
presents smaller reduction ratios, because most of the
code is sequential. Even so, lines devoted to parallelism
are reduced by 38%.

4.4 Development effort: other metrics

Table 1 shows the McCabe’s cyclomatic complexity (Mc-
Cabe’s C.C.) [17] for the benchmarks considered. This
metric indicates the total number of execution paths in
a piece of code. As can be seen in the table, cyclomatic
complexity is greatly reduced for Cannon’s (58.82%), MG
(49.04%), LU (31.49%) and IS (34.52%) code. The reason
is that Hitmap hides many decisions to the programmer,
thus avoiding unnecessary conditional branches in the
resulting code.

Table 1 also shows the the Halstead’s development
effort (Halstead’s D.E.) [18] and the KDSI metric used
in the COCOMO model [19] for the benchmarks consid-

Page 8 of 24Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 9

UPC

Additional time

OpenMP Fortran

NAS Fortran+MPI

Hitmap

HTA

C+MPI

50

100

150

200

250

300

2 4 8 16

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Processors

OpenMP Fortran

NAS Fortran+MPI

C+MPI

Hitmap

1000

2000

3000

4000

6000

5000

2 4 8 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

Additional time

Fig. 5. NAS MG benchmark performance comparison. Class C problem size (left) and Class D problem size (right).

ered. As can be seen in the table, the use of Hitmap leads
to a great reduction with all benchmarks.

We can conclude that Hitmap greatly simplifies the
programmer effort for data distribution and communica-
tion, compared with the equivalent code needed to man-
ually calculate the information used by MPI routines, or
to handle the synchronization details needed in other
models. Moreover, Hitmap encapsulates generic calcula-
tions into plug-ins, allowing the programmer to skip the
use of tailored formula to compute local tile sizes in the
application code, and neighborhood relationship at the
different grain levels.

5 RELATED WORK

There is a lack of tiling support in most programming
languages, with the exception of some data-parallel lan-
guages such as HPF [20] and PGAS languages such as
UPC [6]. Both supply some constructors to align and
distribute data among processors. HPF offers a limited
set of patterns computed at compile time, while Hitmap
provides a common interface that also supports data-
dependent distributions computed at runtime. Moreover,
HPF does not offer a truly composable distribution
mechanism, since it is not possible to apply a second
data distribution over the local part of a previous distri-
bution. For example, block-cyclic distributions can not
be programmed as a composition of cyclic over block
distribution as in Hitmap [15]. Regarding PGAS lan-
guages, it is responsibility of the programmer to define
and distribute tiles, frequently in terms of the number
of processors or specific architecture details. This leads
to the development of code that is hard to read and to
maintain.

HTA [7], [21] is an elegant implementation of hierar-
chically tiling arrays in object-oriented languages as an
abstract data type. Hitmap offer lower-level and more
generic mapping functionalities that could be used to
implement HTA as a special case. The Hitmap topology
and layout plug-in system is more flexible, extensible,
composable at different levels, and supports irregular

or load-balancing data partitions with a common inter-
face. These features go beyond HTA functionalities [9].
Hitmap also has a generalized hierarchy system, where a
given branch of the hierarchy can be refined dynamically
to an arbitrary level.

The Chapel language also proposes a transparent
plug-in system for domain partitions, although no com-
plete specification, implementation, nor experimental re-
sults are available yet [5]. Chapel proposes only one type
of partition plug-ins, eliminating the flexibility to work
with Topology and Layout combinations. It also forces to
create specific modules for partitions which may be ex-
pressed by multilevel layouts (such as block-cyclic). Our
approach allows to express communications in terms of
tiles as derived from the algorithm dependencies, lead-
ing to communications of the appropriate granularity; a
problem found in Chapel prototype partition modules.

Additional literature review can be found in Sect. 14
of the supplementary material.

6 CONCLUSIONS

In this paper we have presented Hitmap, an efficient
library for hierarchical tiling and mapping of arrays.
Hitmap presents an abstract layer, facilitating the build-
ing of more complex programming abstractions for par-
allel languages and compilers. Hitmap introduces a flexi-
ble tile domain and memory allocation system, featuring
a modular system where programmers may add their
own layout and mapping functions. It allows to build
reusable and adaptative communication patterns for dis-
tributed tiles. Our experimental results show that the
use of Hitmap leads to more abstract programs, easier
to code and maintain, still obtaining good performance
results. The Hitmap library, together with the example
codes, is available at trasgo.infor.uva.es/hitmap.

ACKNOWLEDGMENTS

This research is partly supported by the Spanish Govern-
ment (TIN2007-62302, TIN2011-25639, CENIT OCEAN-
LIDER), Junta de Castilla y León, Spain (VA094A08,

Page 9 of 24 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

MPI-F MPI-C HTA UPC OpenMP Hitmap

L
in

e
s
 O

f
C

o
d
e

MG Lines Of Code
Parallelism

Seq. Computation
Declaration

Non essential

 0

 50

 100

 150

 200

C Hitmap

L
in

e
s
 O

f
C

o
d
e

Cannon’s Lines Of Code
Parallelism

Seq. Computation
Declaration

Non essential

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

C Hitmap

L
in

e
s
 O

f
C

o
d
e

LU Lines Of Code
Parallelism

Seq. Computation
Declaration

Non essential

 0

 100

 200

 300

 400

 500

 600

C Hitmap

L
in

e
s
 O

f
C

o
d
e

IS Lines Of Code
Parallelism

Seq. Computation
Declaration

Non essential

Fig. 6. Comparison of code lines.

Metric Cannon’s MG LU IS
C + MPI Hitmap C + MPI Hitmap HTA UPC OpenMP C + MPI Hitmap C + MPI Hitmap

McCabe’s C.C. 34 14 210 107 148 218 168 216 148 84 55
Halstead D.E. 1 892K 359K 29 568K 19 265K 54 366K 35 084K - 27 822K 7 576K 2 683K 2 193K

KDSI (COCOMO) 201 104 1 389 945 1 277 1 413 1 343 919 606 608 496

TABLE 1
Complexity metrics and development effort for the benchmarks considered.

VA172A12-2), and the HPC-EUROPA2 project (project
number: 228398) with the support of the European
Commission - Capacities Area - Research Infrastruc-
tures Initiative. The authors wish to thank Dr. Valentı́n
Cardeñoso-Payo and Prof. Arjan van Gemund for their
support during the early stages of this research; and
Dr. Mark Bull, Dr. Murray Cole, Prof. Michael O’Boyle,
Prof. Henk Sips, Dr. Maik Nijhuis, and Dr. Ana Lucia
Varbanescu for many helpful discussions.

REFERENCES

[1] M. Wolfe, “More iteration space tiling,” in Proc. of the 1989
ACM/IEEE conference on Supercomputing. Reno, Nevada, United
States: ACM, 1989, pp. 655–664.

[2] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
in Proc. of the ACM SIGPLAN PLDI. Toronto, Ontario, Canada:
ACM, 1991, pp. 30–44.

[3] J. Brodman, B. Fraguela, M. Garzarn, and D. Padua, “New
abstractions for data parallel programming,” in First USENIX
Workshop on Hot Topics in Parallelism, Berkeley, CA, Mar. 2009.

[4] S. Baden and S. Fink, “The Data Mover: A machine-independent
abstraction for managing customized data motion,” in LCPC’99,
ser. LNCS, vol. 1863. Springer, 2000, pp. 333–349.

[5] B. Chamberlain, S. Deitz, D. Iten, and S.-E. Choi, “User-defined
distributions and layouts in Chapel: Philosophy and framework,”
in 2nd USENIX Workshop on Hot Topics in Parallelism, June 2010.

[6] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and
K. Warren, “Introduction to UPC and language specification,”
IDA Center for Computing Sciences, Tech. Rep. CCS-TR-99-157,
1999.

[7] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela,
M. J. Garzarn, D. Padua, and C. von Praun, “Programming for
parallelism and locality with hierarchically tiled arrays,” in Proc.
of the ACM SIGPLAN PPoPP. New York, New York, USA: ACM,
2006, pp. 48–57.

[8] A. Gonzalez-Escribano and D. R. Llanos, “Trasgo: A nested-
parallel programming system,” The Journal of Supercomputing,
vol. 58, no. 2, pp. 226–234, 2011.

[9] J. Fresno, A. Gonzalez-Escribano, and D. R. Llanos, “Extending
a hierarchical tiling arrays library to support sparse data parti-
tioning,” The Journal of Supercomputing, 2012, online-first version
available.

[10] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Encapsulat-
ing synchronization and load-balance in heterogeneous program-
ming,” in Euro-Par 2012, to appear. Rhodes, Greece: Springer-
Verlag LNCS Series, 2012.

[11] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic paralleliza-
tion of stencil computations,” in Proceedings of the ACM SIGPLAN
PLDI. San Diego, California, USA: ACM, 2007, pp. 235–244.

[12] M. Castillo, E. Chan, F. Igual, R. Mayo, E. Quintana-Ortı́,
G. Quintana-Ortı́, R. van de Geijn, and F. Van Zee, “Making
programming synonymous with programming for linear algebra
libraries,” The University of Texas at Austin, Department of
Computer Sciences, Tech.Rep. TR-08-20, Apr 2008.

[13] E. Bailey, E. Barszcz, J. Barton, D. Browning, and R. Carter, “The
NAS parallel benchmarks,” NASA Ames Research Center, Tech.
Rep. RNR-94-007, Mar. 1994.

[14] J. Fresno, A. Gonzalez-Escribano, and D. R. Llanos, “Automatic
data partitioning applied to multigrid pde solvers,” in PDP’11, to
appear. Ayia Napa, Cyprus: Euromicro, 2011.

[15] C. de Blas, A. Gonzalez-Escribano, and D. R. Llanos, “Effortless
and efficient distributed data-partitioning in linear algebra,” in
HPCC’10. Melbourne, Australia: IEEE, 2010, pp. 89–97.

[16] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide.
Society for Industrial Mathematics, 1987.

[17] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, pp. 308–320, 1976.

[18] M. H. Halstead, Elements of Software Science. Elsevier, 1977.
[19] B. W. Boehm, Software Engineering Economics, 1st ed. Prentice-

Hall, 1981.
[20] D. Loveman, “High performance fortran,” Parallel & Distributed

Technology: Systems & Applications, vol. 1, no. 1, pp. 25–42, Feb
1993.

[21] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D. Padua,
“Programming with tiles,” in Proceedings of the ACM SIGPLAN
PPoPP. Salt Lake City, UT, USA: ACM, 2008, pp. 111–122.

Arturo Gonzalez-Escribano received his MS
and PhD degrees in Computer Science from
the University of Valladolid, Spain, in 1996 and
2003, respectively. Dr. Llanos is Associate Pro-
fessor of Computer Science at the Universidad
de Valladolid, and his research interests include
parallel and distributed computing, parallel pro-
gramming models, and embedded computing.
He is a Member of the IEEE Computer Soci-
ety and Member of the ACM. More informa-
tion about his current research activities can be

found at http://www.infor.uva.es/∼arturo.

Page 10 of 24Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 11

Javier Fresno received his MS in Computer
Science and his MS in Research in Information
and Communication Technologies from the Uni-
versity of Valladolid, Spain, in 2010 and 2011,
respectively. Mr. Fresno is a Ph.D. candidate
at the Universidad de Valladolid. His research
interests include parallel and distributed com-
puting, and parallel programming models. More
information about his current research activities
can be found at http://www.infor.uva.es/∼jfresno.

Yuri Torres received his MS in Computer Sci-
ence and his MS in Research in Information
and Communication Technologies from the Uni-
versity of Valladolid, Spain, in 2009 and 2010,
respectively. Mr. Torres is a Ph.D. candidate at
the Universidad de Valladolid. His research inter-
ests include parallel and distributed computing,
and GPU computing. More information about
his current research activities can be found at
http://www.infor.uva.es/∼yuri.torres.

Diego R. Llanos received his MS and PhD de-
grees in Computer Science from the University
of Valladolid, Spain, in 1996 and 2000, respec-
tively. He is a recipient of the Spanish govern-
ment’s national award for academic excellence.
Dr. Llanos is Associate Professor of Computer
Architecture at the Universidad de Valladolid,
and his research interests include parallel and
distributed computing, automatic parallelization
of sequential code, and embedded computing.
He is a Senior Member of the IEEE Computer

Society and Member of the ACM. More information about his current
research activities can be found at http://www.infor.uva.es/∼diego.

Page 11 of 24 Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

