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1.1 Introduction

Many problems that arise in real-world networks imply the computation of shortest
paths and their distances from any source to any destinationpoint. Some exam-
ples include traffic simulations [1], databases [2], Internet route planners [3], sensor
network [4] or even the computation of graph features as betweenness centrality
[5]. Algorithms to solve shortest-path problems are computationally costly, so, in
many cases, commercial products implement heuristic approaches to generate ap-
proximate solutions instead. Although heuristics are usually faster and do not need
much amount of data storage or precomputation, they do not guarantee the optimal
path.

The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph
theory whose objective is to find the shortest paths between any pair of nodes. Given
a graphG = (V,E) and a functionw(e) : e ∈ E that associates a weight to the
edges of the graph, it consists in computing the shortest paths for all pair of nodes
(u, v) : u, v ∈ V . The APSP problem is a generalization of the classical problem of
optimization, the Single-Source Shortest-Path (SSSP), that consists in computing the
shortest paths from just one source nodes to every nodev ∈ V . If the weights of the
graph range only in positive values,w(e) ≥ 0 : e ∈ E, we are facing the so-called
Non-negative Single-source Shortest-Path (NSSP) problem.

There are two ways to solve the APSP problem. The first solution is to execute
|V | times a NSSP algorithm selecting a new node as source in each iteration. The
classical algorithm that solves the NSSP problem is Dijkstra’s algorithm [6]. The
second solution is to execute an algorithm that globally solves the APSP problem
using dynamic programming, as the Floyd-Warshall algorithm [7, 8]. The former
approach is used for sparse graphs whereas the latter is moreefficient for dense
graphs.

In this chapter we are going to face the APSP problem for sparse graphs combin-
ing parallel algorithms and parallel-productivity methods in heterogeneous systems.
The first level of parallelism we have used is the parallelization of Dijkstra’s algo-
rithm. The näıve Dijkstra’s algorithm is a greedy algorithm whose efficiency is based
in the ordering of previously computed results. This feature makes its parallelization
a difficult task. However, there are certain situations where parts of this ordering
can be permuted without leading to wrong results neither performance losses. The
second level of parallelism exploited is the execution of|V | simultaneous parallel
algorithms. As the APSP problem can be divided into independent NSSP subprob-
lems, we distribute the computation space into different processing units.

An emerging way of parallel computation includes the use of hardware accel-
erators, such as graphic processing units (GPUs). Their powerful capability have
triggered their massive use to speed up high-level parallelcomputations. High-level
languages for parallel-data computation, such as CUDA [9] and OpenCL [10], ease
the general purpose programming for these heterogeneous systems with GPUs. The
application of GPGPU computing to accelerate problems related with shortest-path
problems have increased during the last years. Some GPU-implemented solutions
to the NSSP problem have been previously developed in [11, 12, 13] using some
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modifications of Dijkstra’s algorithm. The latter algorithm is the parallel implemen-
tation that we have used as the first level of parallelism for the GPU units in our
heterogeneous system.

The new generation of high performance computing (HPC) trends to assemble
different kinds of multi-core CPU and many-core GPUs in the same heterogeneous
computing system. The goal of heterogeneous environments is to jointly exploit
all computational capabilities of devices with different hardware-resource configura-
tions. The different nature of these heterogeneous computational units (HCU) makes
necessary to implement the same algorithm in different waysin order to take the
maximum profit of each underlying architecture. However, although each HCU has
its own optimized code implementation, usually some of themsolve a problem faster
than others due to its different resource sets. In order to palliate this imbalance and
to maximally exploit the heterogeneous systems, differentmethods of load balancing
can be applied. One of this techniques is to assign more work to the most powerful
HCU, for our case the GPUs, and the remaining work to the conventional CPUs.

Load-balancing is one of the challenging problems which hasa tremendous im-
pact on the performance of parallel applications, especially in heterogeneous envi-
ronments. The objective of load-balancing methods is to distribute the workload
proportionally according to the computational power of thedevices. In this way,
these methods allow to avoid device overloads when others are idle. However, in or-
der to obtain a good performance exploiting heterogeneous systems, the programmer
needs to manually implement these load-balancing methods.

In this chapter we present parallel solutions for the APSP problem for hetero-
geneous systems composed by GPUs and CPU-cores that implement two different
load-balancing methods. The used GPU devices have two latest architectures re-
leased by CUDA (Fermi and Kepler). Our experimental resultsshow that the use of
a heterogeneous environment for the APSP problem improves up to 65 percent the
execution time compared to the fastest GPU execution used asbaseline.

The rest of this chapter is organized as follows. Section 1.2introduces some basic
concepts and notations related to graph theory, and briefly describes both the se-
quential Dijkstra’s algorithm and the parallel version used. Section 1.3 introduces
some details for both Fermi and Kepler CUDA architectures. Section 1.4 describes
an introduction to the heterogeneous systems and how the load-balancing techniques
try to improve their performance distributing the work load. Section 1.5 explains in
depth our Dijkstra GPU-implementation using the ideas presented in [14] and our
heterogeneous implementations with different load-balancing methods. Section 1.6
poses the experimental methodology and used platform, and the input sets consid-
ered. Section 1.7 discusses the results obtained. Finally,Sect. 1.8 summarizes the
conclusions we have obtained.
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1.2 Algorithmic Overview

1.2.1 Graph Theory Notation

We will first present some graph theory concepts and notations related to the shortest-
path problem. A graphG = (V,E) is composed by a set of verticesV , also called
nodes, and a set of edgesE, also called arcs. Every vertexv is usually depicted as a
point in the graph. Every edgee is usually depicted as a line that connects two and
only two vertices. An edge is a tuple(u, v) that represents a link between verticesu
andv. The number of edges connected to a vertexv is called thedegreeof v. In an
undirected graphall edges can be traversed in both directions, whereas an edge(u, v)
of a directed graphonly can be traversed fromu to v. There is a weight function
w(u, v) associated to each edge, that represents the cost of traversing the edge.

A pathP = 〈s, . . . , u, . . . , v, . . . , t〉 is a sequence of vertices connected by edges,
from a source vertexs to a target onet. Theweightof a path,w(P ), is the sum of all
the weights associated to the edges involved in the path. Theshortest pathbetween
two verticess andt is the path with the minimum weight among all possible paths
betweens andt. Finally, the minimum distance betweens andt, d(s, t) or simply
d(t), is the weight of the shortest path between them. We denoteδ(s, t), or simply
δ(t), to a temporal tentative distance betweens andt during the computation ofd(t).

1.2.2 Dijkstra’s Algorithm

The basic solution for the NSSP is Dijkstra’s algorithm [6].This algorithm constructs
minimal paths from a source nodes to the remaining nodes, exploring adjacent nodes
following a proximity criterion.

The exploring process is known asedge relaxation. When an edge(u, v) is re-
laxed from a nodeu, it is said that nodev has beenreached. Therefore, there is a
path from source throughu to reachv with a tentative shortest distance. Nodev will
be consideredsettledwhen the algorithm has found the shortest path from source
nodes to v. The algorithm finishes when all nodes are settled.

The algorithm uses an array,D, that stores all tentative distances found from
source nodes to the rest of nodes. At the beginning of the algorithm, everynode is
unreached and no distances are known, soD[i] = ∞ for all nodesi, except current
source nodeD[s] = 0. Note that both reached and unreached nodes are considered
unsettled nodes.

The algorithm proceeds as follows:

1. (Initialization) The algorithm starts on the source nodes, initializing distance
arrayD[i] = ∞ for all nodesi andD[s] = 0. Nodes is considered as the
frontier nodef (f ← s) and it is settled.

2. (Edge relaxation) For every nodev adjacent tof that has not been settled, a
new distance from source is found using the path throughf , with valueD[f ] +
w(f, v). If this distance is lower than previous valueD[v], thenD[v]← D[f ]+
w(f, v).
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3. (Settlement) The nodeu with the lowest value inD is taken as the new frontier
node (f ← u). After this, current frontier nodef is now considered as settled.

4. (Termination criteria) If all nodes have been settled thealgorithm finishes. Oth-
erwise, the algorithm proceeds to step 2.

In order to recover the path, every node reached stores its predecessor, so at the
end of the query phase the algorithm just runs back from target through stored prede-
cessors till the source node is reached. Theshortest path treeof a graph from source
nodes is the composition of every shortest path froms to the remaining nodes.

1.2.3 Parallel Version of Dijkstra’s Algorithm

Dijkstra’s algorithm, in each iterationi, calculates the minimum tentative distance
of the nodes belonging to the unsettled set,Ui. The node whose tentative distance
is equal to this minimum value can be settled and becomes the frontier node. Its
outgoing edges are traversed to relax the distances of the adjacent nodes.

In order to parallelize the Dijkstra algorithm, it is neededto identify which nodes
can be settled and used as frontier nodes at the same time. Theidea of inserting
into the frontier set,Fi+1, all nodes with this minimum tentative distance in order
to process them simultaneously was implemented for GPUs in [11]. A more aggres-
sive enhancement was introduced in [14], and later implemented for GPUs in [13],
augmenting the frontier set with nodes with bigger tentative distance. The algorithm
computes in each iterationi, for each node of the unsettled set,u ∈ Ui, the sum
of: (1) its tentative distance,δ(u), and (2) the minimum cost of its outgoing edges,
∆nodeu

= min{w(u, z) : (u, z) ∈ E}. Afterwards, it calculates the minimum of
these computed values. Finally, those nodes whose tentative distance are lower or
equal than this minimum value can be settled becoming the frontier set.

1.3 CUDA Overview

Graphics processing units started as image processing devices. Over the years, the
GPUs have increased in performance, architectural complexity, and programmabil-
ity. Currently, these devices are widely used for general purpose computing (GPGPU)
[15] due to the performance improvements achieved on multiple kind of parallel ap-
plications.

CUDA (Compute Unified Device Architecture) [9] is the parallel computing ar-
chitecture developed by Nvidia Company for general purposeapplications. CUDA
simplifies the GPGPU programming by means of high level API and a reduced set
of instructions.

Fermi [9] is the second generation of CUDA architectures, launched on early
2010, and the latest generation of CUDA architecture is Kepler [16], released on
early 2012. Table 1.1 summarizes the Fermi and Kepler’s maincharacteristics. Each
new architecture generation has increased the number of SPs(Streaming Processors),
and the maximum number of threads per SM (Streaming Multiprocessor). The main
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change introduced by Fermi is a transparent L1/L2 cache hierarchy that has been
maintained in Kepler. However, the sizes and configuration possibilities are different.
The global memory is organized in several banks. The number of banks has been
decreased on Fermi and Kepler. Finally, the main feature introduced by Kepler is
the next generation of Streaming Multiprocessor (SMX) with 192 single-precision
CUDA cores, four different warp schedulers and two dispatchunits.

Table 1.1 Summary of CUDA architecture parameters (Fermi and Kepler)

Parameter Fermi Kepler

SPs (per-SM) 32 192

Max. number of blocks (per-SM) 8 16

Max. number of threads (per-SM) 1 536 2 048

Max. number of threads (per-block) 1 024 1 024

L2 cache 768 KB ≥ 512 KB

L1 cache (per-SM) 0/16/48 KB 0/16/32/48 KB

Size of global memory transaction 32/128 B 32/128 B

Global memory banks 5-6 4

1.4 Heterogeneous Systems and Load-Balancing

Heterogeneous computing [17] tries to jointly exploit different kind of computational
units, such as, GPUs, FPGAs or CPU-cores. Compared to traditional, symmetric
CPUs, this computing paradigm offers higher peak performance while being both
energy and cost efficient. However, programming for heterogeneous environments
is a tedious task and has a long learning curve. The authors in[18] show the impor-
tance and the high interest of heterogeneous environments and how a heterogeneous
environment could improve significantly certain kind of parallel problems.

Load-balancing methods for heterogeneous systems try to distribute the work load
between any computing unit to exploit all available hardware resources. There are
several load-balancing methods not only for traditional systems, but also for hetero-
geneous systems. A brief classification is presented bellow.

In [19] the authors create dependence graphs in order to classify as dependent
or independent the application tasks. More independent tasks are launched to GPU
devices in order to reduce the costly data transfers betweenPCI-express bus.

The work in [20] presents a model to estimate the possible execution time of each
task (number of instructions and input data size), and thus,decide which hardware
would be the best for each case. The size of each single task isfixed at compilation
time. In [21] the author calculates the data transfer time between the different devices
(GPUs and CPUs), and creates a model in order to reduce inter-GPU and CPU-
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Algorithm 1.1

GPU implementation of Dijkstra’s algorithm {
(01) <<<initialize>>> (U,F, δ);
(02) while (∆ 6= ∞) {
(03) <<<relax>>> (U, F, δ);
(04) ∆ =<<<minimum>>> (U, δ);
(05) <<<update>>> (U,F, δ,∆);
(06) }

}

GPU communication. In [22] the authors collect all the information of each GPU
hardware. By means of CUDA API and a model created by the authors, they select
a good device for a given task.

For a given set of tasks with preset sizes in [23], the authorsassign bigger task to
more powerful devices. On the other hand, [24], for a specificproblem, assign tasks
with a similar size to the same device in order to equilibratethe communication
imbalance factor.

A static load balancing appears when all tasks are availableto schedule before any
real computation starts. From the previously mentioned works, [21], [25], present
static load-balancing techniques. The opposite is the dynamic load balancing. Now,
the tasks are not known until mid-execution and new ones can appear. From the
previously mentioned works, [26], [23], [27], and [24] present a dynamic load-
balancing.

1.5 Parallel Solutions to the APSP

This section describes both the single GPU parallel implementation used as baseline
and the different heterogeneous approaches implemented tosolve the APSP problem.

1.5.1 GPU Implementation

We have used the implementation described in [13] for the GPUunits of our hetero-
geneous system. It is an adaptation of the sequential Dijkstra’s algorithm described
in Sect.1.2.2 to the CUDA architecture (see Algorithm 1.1) following the parallel
enhancements of [14]. It is composed of three kernels that executes the internal
operations of the Dijkstra vertex loop:

The relax kernel(invoked in line 3 of Algorithm 1.1) decreases the tentative
distances for the remaining unsettled nodes of the current iterationi through
the outgoing edges of the frontier nodesf ∈ Fi. A GPU thread is associated
for each node in the graph. Those threads assigned to frontier nodes,f ∈ Fi,
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traverse their outgoing edges, relaxing the distances of their unsettled adjacent
nodes.

Theminimum kernel(line 4 of Algorithm 1.1) computes the minimum tentative
distance of the nodes that belong to theUi set. To do so, the advancedreduce3
method of the CUDA SDK [28] has been modified to accomplish this operation.
Ourminimum kernelis adapted in order to: (1) add the corresponding∆nodev

value toδ(v), and (2) compare its new assigned values to obtain the minimum
one. The resulting value of theminimum kernelis the∆i.

Theupdate kernel(line 5 of Algorithm 1.1) settles those nodes fromUi whose
tentative distances are lower or equal to∆i. This task is carried out extracting
them from the following-iteration unsettled set,Ui+1, and putting them to the
following-iteration frontier setFi+1. Each single GPU thread checks, for its
corresponding nodev, whether (U(v) and δ(v) ≤ ∆i). If so, the thread assigns
v to Fi+1 and deletesv fromUi+1.

The nodes are numbered from0 . . . n − 1. Besides the basic structures to hold
nodes, vertices, and their weights, three vectors are defined:

VectorU , that stores inU [v] whether nodev is an unsettled node.

VectorF , that stores inF [v] whether nodev is a frontier node.

Vectorδ, that stores inδ[v] the tentative distance from source to nodev.

1.5.2 Heterogeneous Implementation

The solution of the APSP through the V-NSSP approach allows us to divide the
problem in |V | independent tasks. Numbering the nodes of the graph from0 to
|V | − 1, the taskti solves the NSSP problem that has the nodei as source.

1.5.2.1 Equitable Scheduling A simple way to apply load-balancing to a het-
erogeneous system is to equitably distribute the work without taking into account
the computational capabilities of the devices. This kind oftechniques usually lead
to easy implementations, but at the expense of having a temporal cost equal to the
time that the worst device needs to compute its work. Equitable Scheduling can be
classified as a static load-balancing technique at compile time.

Our Equitable Scheduling (ES) approach statically dividesthe workspace between
the computing threads giving to each one the same quantity oftasks. Ifnc represents
the number of computing threads,id the thread identifier, andnt = |V |/nc the num-
ber of tasks per thread, this approach makes each thread responsible for computing
the tasks fromid · nt to id · nt+ nt− 1. If this task division is not exact, each of the
first threads takes one of the remaining tasks until there is no more work to do.
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Algorithm 1.2

Work-stealing implementation{
(01) #parallel /* Parallel region */
(02) if (idThread < numGPUs){ /* For GPUs */
(03) selectGPU(idThread); /* GPU selection */
(04) atomic{ t = steal work(taskQueue) };
(05) while( t != NULL ){
(06) launch GPU Kernel(t);
(07) atomic{ t = steal work(taskQueue) };
(08) }//while
(09) }else{ /* For CPU-cores */
(10) atomic{ t = steal work(taskQueue) };
(11) while( t != NULL ){
(12) launch CPU Kernel(t);
(13) atomic{ t = steal work(taskQueue) };
(14) }//else
(15) #end parallel

}

1.5.2.2 Work-Stealing Scheduling Work-stealing is one of the most important
techniques of load-balancing. It is commonly employed to accomplish a dynamic
work scheduling between any kind of hardware device. All hardware devices of the
heterogeneous system can steal a task from the global task queue. Note that the
access to the global task queue must be implemented with somekind of synchro-
nization in order to avoid that two or more devices steal the same task. Usually,
this synchronization involves a bottleneck in the execution times. Work-Stealing
scheduling can be classified as a dynamic load-balancing technique at runtime.

Our Work-Stealing Scheduling (WS) approach lets to an idle thread that has fin-
ished its previous work to steal the following taskti. This task is immediately elim-
inated from the queue at the moment it is taken. Then, the thread computes the
corresponding NSSP problem with nodei as source. Finally, when the thread ends
its work, it comes back to the global task queue in order to take another one, repeat-
ing the process till there is no more pending work. The synchronization of the task
stealing has been implemented using an atomic region. That means that only one
thread can be taking the following work at any moment.

Algorithm 1.2 is the pseudocode of work-stealing techniqueto solve the APSP
problem. The02 and09 lines indicate that the first threads are assigned to GPU
devices and the rest to CPU-cores. ThetaskQueuestores the list of all tasks, and the
atomic{} primitive creates an exclusion region to avoid a simultaneous stealing of
the same task from different idle threads.
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1.6 Experimental Setup

We will first describe the methodology used for our experiments, as well as the input
set problems and the load-balancing techniques evaluated.

1.6.1 Methodology

We have compared our heterogeneous implementations against the single GPU im-
plementation, that we have denominated baseline, in order to evaluate the perfor-
mance gain of using heterogeneous systems for the particular APSP problem. The
algorithm implemented for GPU devices is an adaptation of [14] ideas for the CUDA
architecture presented in [13]. Moreover, the sequential version of this algorithm is
used for the CPU devices.

Furthermore, several instances with different number of OpenMP threads, for
both load-balancing methods presented, have been executedin order to determine
the best configuration. These instances have been tested with graphs of1 · 220 nodes
solving the complete APSP problem. Additionally, we have used for our experiment
graphs whose number of nodes is ranging from1 ·220 to 11 ·220. However, due to the
large amount of computational load needed to solve the APSP in these graphs, we
have bounded the problem to a512-source-nodes-to-allin order to reduce the global
execution time. For the selection of these source nodes we have used the random
functionsrand48()from the C libraries.

1.6.2 Target Architectures

The evaluated heterogeneous system is composed by different computational units
that are grouped in two categories:

The shared-memory CPU system, the host machine, is an Intel(R) Core(TM) i7
CPU 960 3.20 GHz, 64-bits compatible, with a global memory of6 GB DDR3,
with two GPUs.

The GPU system has two GPU devices of different architectures:

– a GeForce GTX 680 (Kepler) Nvidia GPU device, and

– a GeForce GTX 480 (Fermi) Nvidia GPU device.

The evaluated baseline implementation is executed in the same shared-memory
host machine of the previously described heterogeneous system, but it only uses one
GPU device as computational unit, that is GeForce GTX 680 (Kepler) GPU device.

Regarding the software used, the host machine runs an UBUNTUDesktop 10.10
(64 bits) operating system, and the experiments have been launched using CUDA 4.2
toolkit and the 295.41 64-bit driver.
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Figure 1.1 Temporal cost of the different source nodes in the graph for the Kepler GPU.

1.6.3 Input Set Characteristics

The input set is composed by a collection of graphs randomly generated by a graph-
creation tool used by [11] in their experiments. They have been created adding seven
adjacent predecessors to each node of the graph. Afterwards, they have inverted the
graphs in order to store the node successors sequentially. These graphs are repre-
sented through adjacency lists, the nodes are numbered from0 . . . |V | − 1, and the
edge weights are integers that randomly range from1 . . . 10.

The node distribution of this kind of graphs shows an irregular behavior for the
computational time of the APSP problem in terms of each NSSP subproblem. The
iterations of the first nodes of the graph need more computational time to solve its
NSSP problem than the final ones. Figure 1.1 shows, using intervals of 32 nodes,
how the time needed is considerably reduced as long as the baseline implementation
gets closer to the final nodes. Due to the nature of the problem, there are no inter-
NSSP dependences and communication in the complete APSP computation.

1.6.4 Load-balancing Techniques Evaluated

Both load-balancing techniques described, equitable scheduling and work-stealing,
have been implemented with support to different number of OpenMP threads. Sev-
eral instances with different number of threads have been evaluated against the base-
line implementation.

We have tagged each instance, depending which load-balancing technique im-
plements, with the label “E” for equitable scheduling instances, and “W” for work-
stealing scheduling instances, followed by a number that represents the number of
OpenMP threads used (see Table 1.2). Thus, the evaluated instances “E3” and “W8”
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Table 1.2 Experimental instances

Legend Description

G1 Single GPU thread (Kepler)

E2 / W2 2 GPU threads (Fermi & Kepler)

E3 / W3 2 GPU threads + 1 CPU threads

E4 / W4 2 GPU threads + 2 CPU threads

E6 / W6 2 GPU threads + 4 CPU threads

E8 / W8 2 GPU threads + 6 CPU threads

E14 / W14 2 GPU threads + 12 CPU threads

E16 / W16 2 GPU threads + 14 CPU threads

are a implementation of Equitable Scheduling with 3 threadsand a implementation
of Work-Stealing scheduling with 8 threads respectively.

The first two threads are always assigned to the two GPU hardware devices, one
for each graphic accelerator. The rest of the threads are executed in the CPU-cores.
Therefore, the instances “E2” and “W2” only use the GPUs resources with the cor-
responding load-balancing technique.

1.7 Experimental Results

In this section we present the experimental results obtained for the execution of the
complete APSP with|V | = 1·220 and the 512-source-to-all for graphs which number
of nodes ranges from1 · 220 to 11 · 220.

1.7.1 Complete APSP

1.7.1.1 Equitable Scheduling Figure 1.2a presents the execution times of equi-
table scheduling technique for instances with different number of OpenMP threads.
The performance of the baseline approach (G1) is significantly improved when a
second GPU device is used (E2). However, a 2× speed-up is not reached because
the architectures of the used GPUs are different. This meansthat the total execu-
tion time corresponds with the total execution time of the less powerful GPU device.
Nonetheless, E2 presents a 30 % of performance improvement against the baseline.

The use of one and two CPU-cores (E3 and E4) helps to decrease this critical
execution time because the number of subproblems (SSSP problems) that the criti-
cal GPU has to resolve is reduced. The instance E4 shows a 65 % of performance
improvement. The more launched threads, the less the computation given to each
device. Nevertheless, due to the irregular nature of the graph (see the distribution
time in Fig.1.1), there is a threshold where the equitable partition overloads so much
the work that the CPU-cores have. This occurs when the most costly tasks, that they



EXPERIMENTAL RESULTS 13

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

G1 E2 E3 E4 E6 E8 E14 E16

T
im

e(
se

co
nd

s)

Techniques

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

G1 W2 W3 W4 W6 W8 W14 W16
T

im
e(

se
co

nd
s)

Techniques

(a) (b)

Figure 1.2 Execution times of (a) Equitable and (b) Work-Stealing Scheduling policies.

were assigned to GPUs before, are assigned to CPU-cores. Forthis reason, the to-
tal execution time of the approach E6 is significantly increased even surpassing the
baseline time. Furthermore, as more threads are launched from this point, the total
time execution is reduced. This occurs because the number oftasks per computa-
tional unit is less and all devices are used, but the time still overpasses the baseline
times.

1.7.1.2 Work-Stealing Scheduling Figure 1.2b shows the execution time results
of the work-stealing technique for instances with different number of OpenMP threads.
The performance of the baseline approach (G1) is significantly improved by any ex-
perimental instance that uses the work-stealing method (Wi). The instance that uses
only two GPUs has a 44 % of performance improvement against the baseline. As
we increase the number of OpenMP threads, more hardware devices are used, re-
ducing the execution times. Although the most costly tasks are also taken by the
CPU-cores, while they are computing their subproblem, the GPUs are continuously
stealing tasks. The instance with the fastest execution times is the W4 instance, lead-
ing to a 60 % of performance improvement. However, when the number of launched
threads exceeds the number of heterogeneous computationalunits (W14 and W16),
the execution of threads that belong to the same CPU-core is concurrent. This be-
haviour leads to slightly penalty times, reaching a performance improvement of 40 %
against the baseline.

1.7.2 512-Source-Node-to-All Shortest Path

1.7.2.1 Equitable Scheduling Figure 1.3a presents the execution times for in-
stances for the equitable scheduling implementation and different OpenMP launched
threads. The best performance is obtained with the E2 configuration, leading to a
45 % of performance improvement against the baseline.

The heterogeneous approaches with CPU-cores (E{3...16}) have worse execution
times than the baseline due to memory access bottlenecks. That is because the CPUs
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Figure 1.3 512 nodes execution times of (a) Equitable and (b) Work-Stealing Scheduling.

are taking the costly tasks due to the random nature of the 512nodes selection.
However, as it happened in the complete APSP scenario, this time is reduced when
more threads are launched.

1.7.2.2 Work-Stealing Scheduling Figure 1.3b shows the work-stealing imple-
mentation for different OpenMP launched threads. As it happens in the APSP sce-
nario, the execution time of any work-stealing instance (W{2...16}) is better than the
baseline (G1). The instance of two threads that only uses GPU devices, W2, has a
very good performance against the baseline (46 % of performance improvement). In-
serting an additionally CPU-core to the heterogeneous system, W3, leads to an even
better performance improvement of 47 %. However, adding more than one CPU-
cores to the heterogeneous system, W{4...16}, leads to slightly worse execution times
compared with the best.

1.7.3 Experimental Conclusions

The best execution time for the complete APSP scenario is achieved with an equi-
table scheduling implementation, E4, leading to an 65 % of performance improve-
ment compared with the baseline G1. However, the next approaches that closely fol-
lows this improvement are those that use a work-stealing implementation, (W{3...8}),
instead other equitable scheduling instances with similarthread configuration.

For the 512-source-to-all scenario, the best results are reached with a work-stealing
implementation, W3, with a 47 % of improvement compared to G1. The equitable
scheduling approach looses performance against the baseline for any thread config-
urations excepting the version that only uses GPUs, E2.

These results show that (1) the equitable scheduling can be tuned up to achieve
the best performance times avoiding critical code regions but it is very sensible to
changes of the input graph, and (2) the work-stealing implementations have a more
robust performance than the equitable scheduling because they are more independent
from the graph nature.
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1.8 Conclusions

We have presented solutions of the APSP problem for heterogeneous systems com-
posed by GPUs and CPU-cores using equitable and work-stealing load-balancing
techniques. These solutions have achieved a performance improvement up to 65 %
compared with the baseline single-GPU solution. Moreover,the results of our exper-
iments have shown that the work-stealing implementation with the same number of
OpenMP threads have given a good performance for both testedscenarios. However,
the equitable scheduling implementation that involves CPU-cores have not shown a
significantly performance improvement if the nature of the graph is not taken into
account.

Our first conclusion is, that the jointly use of very different computational power
devices is useful to improve the total execution time compared with the fastest GPU
implementation. Second, the previous study of the nature ofthe input problem allows
us to better mapping the most costly tasks to the most powerful devices. For our
case, the equitable scheduling that maps all costly tasks tothe GPUs and leaves
light ones to the CPU-cores leads to the best performance. Finally, the application
of the work-stealing technique results in a more robust implementation against the
equitable scheduling because it is less sensible to the nature of the input problem.
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