
Understanding the Impact of CUDA Tuning Techniques for Fermi

Yuri Torres, Arturo Gonzalez-Escribano, Diego R. Llanos
Departamento de Informática

Universidad de Valladolid, Spain
{yuri.torres | arturo | diego}@infor.uva.es

ABSTRACT

While the correctness of an NVIDIA CUDA program is
easy to achieve, exploiting the GPU capabilities to obtain
the best performance possible is a task for CUDA experi-
enced programmers. Typical code tuning strategies, like
choosing an appropriate size and shape for the thread-
blocks, programming a good coalescing, or maximize oc-
cupancy, are inter-dependent. Moreover, the choices are
also dependent on the underlying architecture details, and
the global-memory access pattern of the designed solution.
For example, the size and shapes of threadblocks are usu-
ally chosen to facilitate encoding (e.g. square shapes),
while maximizing the multiprocessors’ occupancy. How-
ever, this simple choice does not usually provide the best
performance results. In this paper we discuss important
relations between the size and shapes of threadblocks, oc-
cupancy, global memory access patterns, and other Fermi
architecture features, such as the configuration of the new
transparent cache. We present an insight based approach to
tuning techniques, providing lines to understand the com-
plex relations, and to easily avoid bad tuning settings.

KEYWORDS: GPU, Fermi, performance, code tuning.

1. INTRODUCTION

Modern graphics processing units, such as new NVIDIA
GPUs, can be used as general purpose architectures with a
large amount of small processing cores. Nowadays, these
devices are an important resource for intensive-data com-
puting.

NVIDIA CUDA architecture and its associated parallel pro-
gramming model [3, 5] was proposed in order to simplify
the encoding of parallel, general-purpose applications, on
heterogeneous systems with GPUs devices. Although the

first steps with CUDA are easy, due to its reduced primitives
set, it remains a difficult task to tune the code to efficiently
exploit the underlying GPU architecture.

Fermi is the NVIDIA’s latest generation of CUDA architec-
ture [7]. Compared with earlier versions, the new architec-
ture presents significant changes, such as an improved dou-
ble precision performance; a transparent cache hierarchy;
variable-size shared memory; and faster atomic operations.

Although a CUDA kernel is ensured to run correctly on any
CUDA device, its global performance can vary greatly de-
pending on how the code is tailored for a particular CUDA
architecture. Optimizing a parallel GPU code is not a triv-
ial task. There are several common optimization strategies
in order to make an efficient use of hardware resources (see
e.g. [3]). The details of these hardware-dependent strategies
change with each new architecture release. Therefore, the
programmer should take into account the underlying hard-
ware design and threading model in order to exploit these
strategies to achieve a good performance.

The CUDA programming model forces the programmer to
divide the original problem into blocks of threads, whose
size and shape should be tailored to the specific process-
ing units present in the hardware. More specifically, the
size and shape of the threadblock, together with the global
memory access pattern of the threads, affect significantly to
the SM occupancy and the access coalescence.

In this paper we provide new insights into the relation-
ship between occupancy, threadblock size and shape, Fermi
cache hierarchy configuration, and thread access pattern to
global memory. We show that these factors interact in non-
intuitive ways, and that their understanding is key to exploit
GPUs for best performance.

The rest of the paper is organized as follows. Section dis-
cusses some related work. Section presents the Fermi ar-
chitecture, highlighting the differences between its prede-

978-1-61284-383-4/11/$26.00 ©2011 IEEE 631

cessors. Section shows the tradeoffs between different sizes
and shapes for threadblocks and their relationship with coa-
lescence and occupancy. Section describes the experimen-
tal environment, the benchmarks used and their access pat-
terns. Section discusses the experimental results obtained,
while Section concludes the paper.

2. RELATED WORK

Tuning strategies to improve performance, such as Coalesc-
ing, Prefetching, Unrolling and Occupancy maximization,
are introduced in classical CUDA text books, such as [3].
A typical, intuitive idea is that the best option when choos-
ing the threadblock size is to try to maximize the multipro-
cessors Occupancy to hide latencies when accessing global
device memory. However, there is no discussion about how
the size and shape of the threadblocks are related to other
tuning techniques and how their may affect global perfor-
mance.

In [8] the authors not only discuss the different tuning
strategies, but also show how the hardware resources usage
is critical for Occupancy and performance. However, the
entire study has been focused on a pre-Fermi architecture.

Focusing on Fermi, a description of how the cache mem-
ory helps to take advantage of data locality at run time is
presented in [11]. However, the cache makes performance
very hard to predict, and dependent on algorithm parame-
ters. The authors study a particular case, adjusting automat-
ically the shared memory and the amount of data assigned
to threads to optimize the execution. The paper does not
depend on the different cache memory effects that appear
when the global memory access pattern is not perfectly co-
alesced. General trends, and performance effects related
with the threadblock size and shape are not discussed.

Regarding hardware metrics, several metrics related to
hardware architecture and workload problems are presented
in [2]. They help to predict more accurately the perfor-
mance of CUDA kernel codes. In addition, they present the
Ocelot’s transaction infrastructure, where several low-level
optimizations are automatized.

An optimizing compiler for GPGPU programs is presented
in [12]. They propose compiler techniques to generate
memory coalesced code. However, they only work with
the same one naive matrix multiplication problem, and one
memory access pattern. The only variable in the optimized
code is the matrix size.

Other authors (see e.g. [4, 10]), have developed compilers
that transform easy and high level input specifications to

Table 1. Summary of CUDA Architecture Parameters

Parameter pre-Fermi Fermi
SPs (per-SM) 8 32
Registers (per-SM) 16 KB 32 KB
Max. number of threads (per-SM) 1024 1536
Max. number of threads (per-block) 512 1024
Warp size 32 32
Warp scheduler Single Dual
Shared memory banks (per-SM) 16 32
L1 cache (per-SM) - 0/16/48 KB
L2 cache - 764 KB
Global memory banks 8 6
Size of global memory transaction 32/64/128 B 32/128 B

optimized CUDA code. The input code is annotated by the
programmer, and translated to an optimized CUDA code us-
ing pre-Fermi state-of-the-art tuning techniques. In [9] the
author introduces models in order to provide a methodology
for predicting execution time of GPU applications, identi-
fying and classifying the major factors that affect both, sin-
gle and multiple-GPU environments. Nevertheless, none of
these works relate their results to the critical choice of size
and shape of threadblock. So far, there is a lack of liter-
ature about specific optimization and tuning problems for
the Fermi architecture. The new two-level cache memory
hierarchy, incorporated by this architecture, introduce new
behaviors, not yet studied, in the execution of CUDA ker-
nels.

Our work focuses on new Fermi architecture problems. We
introduce key points and strategies to choose an appropriate
size and shape for the threadblock depending on the global
memory access pattern. Furthermore, we expose factors re-
lated to the threadblock choice and the configuration of the
cache memory hierarchy, which may lead to thrashing and
bandwidth bottleneck problems.

3. FERMI ARCHITECTURE

Fermi is NVIDIA’s latest generations of CUDA architec-
ture [6,7]. It was launched early on 2010. The main changes
introduced by Fermi architecture are: Transparent L1 and
L2 cache hierarchy, increased shared memory size, ECC
support, faster atomic operations, and improved double pre-
cision support. Anyway, to make a good parameter setting
and code tuning, the programmer must take into account
some features described in the following sections.

Table 1 shows a summary of several architecture parameters
that have been modified in the new Fermi architecture. Be-
fore Fermi arrival, each SM only had 16 KB of shared mem-
ory to be addressed explicitly by the programmer, without
any transparent cache memory. Fermi introduces a two-

632

level transparent cache memory hierarchy. Each SM has 64
KB of on-chip memory, divided into shared memory and
transparent L1 cache. The programmer may choose be-
tween two configurations: 48 KB of shared memory and
16 KB of L1 cache (the default option), or 16 KB of shared
memory and 48 KB of L1 cache memory. Besides this, the
L1 cache memory can be deactivated.

Previously, the memory transaction segment sizes were
variable (32, 64, and 128 bytes). Depending on the amount
of memory needed and the memory pattern access (scat-
tering or contiguous data in memory), the segment size
was automatically selected to avoid wasted bandwidth. In
Fermi architecture, the memory transaction segment sizes
are determined as follows: When L1 cache memory is en-
abled, the hardware always issues segment transactions of
128 bytes, the cache-line size; otherwise, 32 bytes segment
transactions are issued. Finally, the Fermi architecture cur-
rently defines a non-configurable, 768 KB L2 cache.

A frequent problem in pre-Fermi architectures is the par-
tition camping problem [1]. Partition camping is a fairy
common problem, mostly because the number of memory
controllers in these architectures are always power of two,
and programmers tend to allocate arrays whose sizes per
dimension are also a power of two. In Fermi architecture,
the partition camping problem is alleviated due to the ex-
istence of a L2 cache, thus reducing the number of repeti-
tive, conflicting access to DRAM. Moreover, current Fermi
cards present a DRAM divided into five or six banks, and
the alignment described above is less frequent.

4. CHOOSING THE THREADBLOCK SIZE
AND SHAPE

A key decision in CUDA programming is the choice of the
size and shape of the threadblock. The cardinalities of the
three different dimensions of each block must be defined on
each CUDA kernel launch. For a given problem encoding,
the different threadblock sizes and shapes can significantly
affect the overall code performance.

4.1. Threadblock Size and Occupancy

Fermi architecture supports at most 1 024 threads per
threadblock, 1 536 threads per multiprocessor, and eight
blocks simultaneously scheduled per multiprocessor. The
most widespread and intuitive threadblock choice criterion
aims to maximize Occupancy. For example, 8 × 8 and
16×16 threadblocks will produce different SM Occupancy.
With 8× 8 blocks, each block will have 64 threads, and we
will need 1 536/64 = 24 blocks in a SM to reach its maxi-

mum number of threads. However, the limit of eight blocks
per SM prevents to achieve maximum occupancy. On the
other hand, 16 × 16 blocks lead to 256 threads per block.
Since 1 536/256 = 6, maximum Occupancy is obtained
with six blocks per SM. Recall that the number of threads
per blocks should be multiple of 32, to avoid idle processors
when executing a warp.

This implies: (1) The number of threads per block should
be an integer divisor of the maximum number of threads per
SM (1 536 in Fermi); (2) The number of threads per block
should be multiple of 32 to fill up warps (32 threads), but
also big enough to generate no more than 8 blocks per SM
(no less than 1 536/8 = 192 threads per block). Neverthe-
less, more threads imply more use of SM’s resources (reg-
isters and shared memory addresses). If resources are ex-
hausted, not all the expected threadblocks may be scheduled
to the same SM, thus reducing Occupancy. Remind that
Fermi introduces new SM resource sizes, and that shared
memory and transparent L1 cache sizes may also be config-
ured by the programmer, adding a degree of freedom.

Finally, it is remarkable that not only the size, but the shape
of the threadblock in 2- or 3-dimensional problems, is an
important tuning parameter. In general, there are several
combinations of dimension sizes with the same number of
threads. Maximum Occupancy may be achieved with dif-
ferent shapes, see discussion of Fig. 1 in section . The usual
form of coding coalescing is to use the global thread in-
dexes to directly access the corresponding matrix elements.
In these cases, shapes with less than 32 columns compro-
mise coalescing. Thus, the last dimension of the thread-
block shape should be a multiple of 32; the warp size.

4.2. Coalescing and Cache Hierarchy

One of the most important and common optimization strate-
gies in order to leverage the hardware resources is Coa-
lescing. This technique aims to maximize global memory
bandwidth usage, by reducing the number of bus transac-
tions. Coalescing is obtained by forcing threads with ad-
jacent global indexes in a block to request contiguous data
from global memory. In this way, a single segment transfer
can transport up to 32 requests of integer or float elements
when L1 cache is active. Reducing bus transactions is crit-
ical to improve performance, since warps are blocked until
their memory requests are solved.

When the code uses a perfectly coalescent global mem-
ory access pattern, the best threadblock size is intuitively
one that maximizes Occupancy. However, the algorithm
may not lead to a clear Coalescing pattern by itself, and/or
rewriting the CUDA kernel to improve Coalescing may be

633

1.00

0.33

0.17

0.67

0.58

0.50

0.33

0.17

(a) Matrix addition and multiplication (b) Copy random positions

1

2

4

8

16

32

64

128

256

1024

512

1

2

4

8

16

32

64

128

256

1024

512

1 2 4 8 16 32 25
6

12
8

64 10
24

51
2

1 2 4 8 16 25
6

12
8

64 10
24

51
2

32

ro
w

s

ro
w

s

columns columns

Figure 1. Occupancy of Our Benchmark Programs for Different Threadblock Shapes

too expensive. In these situations both L1 and L2 transpar-
ent caches may help to solve the situation. Nevertheless, if
the pattern does not exploit some regularity and proximity,
cache misses degrade performance.

Continuous cache-failure, evicting useful cache lines to
store new ones, is known as cache-thrashing. When global
memory access patterns are not coalesced, and the mem-
ory accesses do not reuse the same cache lines, the cache-
failures number is quickly increased. Therefore both, L1
and L2 cache memories, suffer the cache-thrashing effect.
Moreover, in Fermi architecture, cache-thrashing does not
only leads to lose the beneficial performance effect re-
lated to cache-lines reutilization. When many different
cache lines are requested simultaneously, the global mem-
ory bandwidth may be an important bottleneck. These com-
bined effects can introduce significant delays in the program
execution.

Sometimes, changing the configuration of the transparent
L1 cache size, increasing its size to 48 KB, may help to
alleviate the problem. Nevertheless, this increase in cache
also means a reduction of the manually addresses shared-
memory to 16 KB, that may lead to a reduction of Occu-
pancy in some cases. Codes that heavily rely on global-
memory accesses, with small use of shared-memory, and
good reutilization of cached data, are candidates for this
configuration change.

On the other hand, Fermi L1 cache may be disabled by
the programmer. In that case, the size of the segment
transactions is decreased form 128B to 32B. When only
one data element is used per transaction segment (like in

many non-coalesced and random global memory access
patterns), smaller segments reduce the transfer time, and
global-memory bandwidth bottleneck. New programmers
are used to transparent caches that, even in thrashing sit-
uations, do not hinder the overall performance. In Fermi,
they need to be aware that disabling L1 cache is a powerful
and simple tuning technique for codes with sparse global-
memory accesses. Not disabling it may produce an impor-
tant slowdown.

5. DESING OF EXPERIMENTS

In this sections we present experiments devised to verify
the performance effects discussed in the previous section.
Although we focus on 2-dimensional problems and thread-
block shapes, results may be extrapolated to 3-dimensional
cases. We use as working examples the following prob-
lems: (1) Copy of random elements of a matrix to another
matrix; (2) matrix addition; (3) two matrix multiplication
algorithms.

The first problem simulates run-time or data-dependent
memory access patterns (such as those associated to graph
algorithms). We have developed a simple code in which
each thread computes two random indexes, and copies the
element in that position from matrix A to matrix B. There
are as many threads as matrix elements. Due to the random
choice of indexes, several positions are copied by different
threads, while some others are not copied. Several similar
codes have been developed and tested for one-dimensional
vectors, finding the same results discussed on the next sec-
tion. the same results discussed bellow.

634

Table 2. Execution Time (ms.) of the Program with Random Access Pattern

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1024

1 11058.98 6947.53 4179.44 2279.51 1223.05 653.31 393.02 348.15 354.68 411.52 *
2 7071.43 4130.58 2296.95 1230.77 655.25 392.73 348.24 353.67 411.41 * -
4 4072.45 2292.78 1244.79 655.47 393.31 348.37 352.98 410.99 * - -
8 2239.78 1231.08 657.29 393.39 348.8 353.1 411.26 * - - -

16 1207.69 652.23 394.05 349.08 353.68 411.27 * - - - -
32 649.39 391.78 349.82 354.46 411.86 * - - - - -
64 390.88 348.32 354.86 412.22 * - - - - - -

128 346.73 352.73 412.63 * - - - - - - -
256 352.01 410.91 * - - - - - - - -
512 409.31 * - - - - - - - - -

1024 * - - - - - - - - - -

We have selected as second benchmark a matrix addition
(C = A + B) algorithm. It presents a very simple global
memory access pattern, with no reutilization of the same
matrix element on different threads. Each thread is as-
sociated with a particular matrix position. This implies
three global memory accesses per thread (two reads and one
write).

Our third benchmark algorithm is matrix multiplication
(C = A × B). We have tested two implementations.
The first one is very simple and straightforward for a non-
experienced programmer. Each thread is associated with a
single C position, and computes the dot product of a row of
matrix A, and a column of matrix B. The global memory
access pattern is complex, and inefficient. There is also re-
utilization of data between threads in the same block. Thus,
it is interesting for our study of code tuning properties. We
also consider a second more sophisticated implementation
using an iterative block product, using tuning techniques
such as coalesced copy of matrix blocks to local shared
memory before computing.

The programs have been tested for different combinations
of square- and rectangular-shaped threadblocks. The exper-
iments have been conducted with integer and float matrices.
In this work we present results for the integer matrices ex-
periments. As the storage size of both types is the same, the
effects on the memory hierarchy, are similar. Float matrices
experiments simply present slightly higher execution times
due to the extra computation cost associated to the floating
point operations.

We use matrices with 6144 rows and columns. This size is
small enough to allocate three matrices in the global mem-
ory of the GPU device. The dimensions of the matrices
are multiples of the threadblock shapes considered in this
study, and the number of global memory banks. Thus, ma-
trix accesses on any threadblock are always aligned with the
matrix storage, generating the same access pattern.

The experiments have been run on an Nvidia GeForce GTX
480 device. The CUDA toolkit version used is 3.0. The host
machine is an Intel(R) Core(TM) i7 CPU 960 3.20GHz, 64
bits compatible, with a global memory of 6 GB DDR3. It
runs an UBUNTU desktop 10.4 (64 bits) operative system.

We present performance measures, considering only the to-
tal execution time of the kernel functions in the GPU, pre-
sented in milliseconds. We skip initialization, and CPU–
GPU communication times. The results show the mean of
three executions. Deviations are fairly low, as discussed
bellow for each application.

6. EXPERIMENTAL RESULTS

In this section we discuss the experimental results. We
explain the performance effects, how they relate to Fermi
hardware details, and the delicate choice of the size and
shape of the threadblocks. We also introduce simple ideas
to avoid the counter-intuitive situations that may appear
when using the new Fermi architecture, and to find appro-
priate threadblock settings for good performance.

6.1. Occupancy

As discussed in section different multi-dimensional thread-
block shapes have the same number of threads per block,
and lead to the same occupancy of the SMs. Figure 1
shows the occupancy reported by the CUDA profiler for our
benchmark programs. The pattern on the diagonals clearly
indicates the shapes with the same number of threads. The
matrix addition and multiplication programs do not use
enough resources (registers, shared memory, etc.) to pro-
duce a reduction of Occupancy due to resource exhaustion.
Indeed, the left plot in Fig. 1 shows the maximum Occu-
pancy that may be achieved by any CUDA kernel, for the
threadblock shapes considered in our study. The plot on the
right, shows the occupancy of the program with the random-

635



Table 3. Matrix Addition: Execution Time, and Cache Lines Requested per SM

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1 024

1 261.1 145.9 87.1 58.7 43.8 36.4 33.2 32 32.03 32.1 33.07
2 155.07 92.5 61.01 45.6 37.1 33.3 32.1 31.8 31.8 33.05 -
4 103.28 66.12 48.09 38.79 33.63 31.98 31.93 31.91 33.08 - -
8 77.42 53.49 41.97 35.27 32.3 31.85 31.94 33.36 - - -

16 65.97 47.76 37.93 33.75 32.21 31.93 33.62 - - - -
32 58.22 44.13 36.94 33.3 32.48 33.43 - - - - -
64 56.28 43.27 37.17 34.12 34.34 - - - - - -

128 66.9 48.35 39.83 38.03 - - - - - - -
256 73.19 53.05 43.91 - - - - - - - -
512 81.05 56.94 - - - - - - - - -

1 024 98.23 - - - - - - - - - -

a) Execution Time (ms.)

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1 024

1 124 124 124 124 124 124 48 96 144 144 96
2 48 48 48 48 48 48 96 144 144 96 -
4 96 96 96 96 96 96 144 144 96 - -
8 192 192 192 192 192 144 144 96 - - -

16 288 288 288 288 288 144 96 - - - -
32 288 288 288 288 288 96 - - - - -
64 192 192 192 192 192 - - - - - -

128 384 384 384 384 - - - - - - -
256 768 768 768 - - - - - - - -
512 1 536 1 536 - - - - - - - - -

1 024 3 072 - - - - - - - - - -

b) Theoretical Number of Cache Lines Requested by a Block

access pattern. The occupancy reduction is produced by
the amount of registers used by the algorithm implemented
to generate the random indexes. Blocks with 1024 threads
lead to occupancy 0, because the SM registers are exhausted
even for a single block.

6.2. Random Pattern for Memory Accesses

Table 2 presents the execution times of the program with
random memory accesses. The first observation is the bad
performance for the threadblock shapes with light gray
numbers. These blocks are too small, with not enough
threads to fill up even a single warp. Thus, inner SM paral-
lelism is not exploited. The performance is greatly reduced
when approaching the upper-left corner of the table. These
small block shapes should not be considered as a choice by
the programmer.

The second observation is that the execution times for
shapes in the same diagonals is practically the same. The
deviation of the results on several executions is in the order
of one millisecond. In programs where the memory access
pattern is random, and with no possibility of exploiting co-
alescing or data reutilization, the performance is directly
related to the Occupancy. We can conclude that, in absence

of a defined memory access pattern, the best strategy is to
maximize occupancy, focusing on the number of threads,
and not in the shape of 2- or 3-dimensional blocks.

The random global accesses of this program imply contin-
uous cache misses, one for each memory transaction. De-
activating the transparent L1 cache reduces the size of the
transaction segment from 128 bytes to 32 bytes, alleviating
the global memory bandwidth bottleneck. The deactivation
of the L1 cache simply improves the performance results
shown, without losing the occupancy-performance relation
discussed.

6.3. Matrix Addition

The program exploits Coalescing, with a memory access
pattern where threads in the same warp access contiguous
global memory positions. Each matrix element is requested
and used only once, and no reutilization may be exploited.

Table 3(a) shows the execution times obtained for this pro-
gram. We can observe performance changes in the same di-
agonal (shapes with the same occupancy). Execution times
clearly increase on the left of the table, when the thread-
block shape have less than 32 columns. Remind that cache-

636



Table 4. Matrix Multiplication: Execution Time, and Cache Lines Requested per SM

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1024

1 867 208 432 212 215 609 107 867 53 982 27 015 13 766 7 780 6 237 6 502 7 935
2 433 990 216 378 107 948 53 970 27 016 13 592 7 154 5 856 5 874 7 212 -
4 217 653 108 544 54 162 27 076 13 609 7 269 6 155 6 337 7 352 - -
8 109 559 54 653 27 277 13 669 7 328 6 163 6 431 7 990 - - -

16 74 759 38 522 18 448 12 316 7 313 6 348 8 638 - - - -
32 112 494 56 336 28 248 14 267 6 550 8 355 - - - - -
64 126 553 63 547 30 550 14 730 8 123 - - - - - -

128 166 618 73 826 31 344 11 856 - - - - - - -
256 184 812 80 330 28 562 - - - - - - - -
512 190 406 69 624 - - - - - - - - -

1024 194 297 - - - - - - - - - -

a) Execution Time (ms.)

````````Rows
Columns 1 2 4 8 16 32 64 128 256 512 1024

1 - - - - - 379 429 512 520 503 488
2 - - - - 329 202 252 264 252 244 -
4 - - - 365 195 212 341 298 123 - -
8 - - 366 179 349 355 365 64 - - -

16 - 3 538 186 154 936 351 37 - - - -
32 4 294 4 294 3 635 1 831 797 30 - - - - -
64 4 294 4 294 3 829 1 811 45 - - - - - -

128 4 294 4 294 3 843 195 - - - - - - -
256 4 294 4 294 3 615 - - - - - - - -
512 4 294 4 294 - - - - - - - - -

1024 4 294 - - - - - - - - - -

b) Number of Global Load Misses in L1 Cache (in Millions)

lines on Fermi have 128 bytes, enough size for 32 integer
elements. Blocks with less than 32 columns are request-
ing a full cache-line for each row of threads, but they are
not using all the data in the cache-line. It is straightforward
to relate the performance results obtained to the theoretical
number of cache lines requested by a block. See Tab. 3(b).

6.4. Matrix Multiplication

Table 4(a) shows the performance obtained for the naive
matrix multiplication program. The deviation of the mea-
surements is in the order of milliseconds. We have already
discussed the bad performance on the upper-left corner of
the table, where small blocks with non-full warps lead to
poor inner parallelism in the SMs. And also the perfor-
mance degrading effect associated with block shapes with
less than 32 columns. However, we observe some relevant
differences on the execution times found in the same diag-
onal, for blocks with more than 32 columns.

In this benchmark, a straight-forward implementation lead
to access A by rows, while B is accessed by columns. Each
thread computes a dot product of a row of A, and a column
of B, storing the corresponding C element at the end. A
elements are reused by all threads with the same row index,

and B elements by all threads with the same column index.
Coalescing is exploited on A and C accesses, although the
impact of the small number of C accesses is very small. The
performance of this program is ruled by the non-coalesced
accesses to B elements. The L1 cache helps. Elements of B
are reused by other threads in the same column of the block,
during different iterations of the dot product. The key of the
performance of this program is to avoid cache-thrashing, in
order to keep B elements in cache until all threads in the
same block-column have used them.

With the delicate deal of cache misses produced by A, B,
and C accesses, it is difficult to model the cache behav-
ior for the full computation. Table 4(b) shows the num-
ber of global load misses (in millions), as reported by the
CUDA visual profiler. The relation of the load misses and
the performance is clear on the right part of the table. We
can see how the best performance results are obtained for
threadblocks of 2 × 128 and 2 × 256 threads, where we
find the minimum number of cache misses, and maximum
occupancy.

It is remarkable the big amount of cache misses, and the
bad performance obtained for shapes with only one row. In
these blocks, the B elements are not reused, because there is

637



only one thread on each block with the same column index.
We also notice effects derived from partition camping on
the global memory banks. Each global memory bank has
lines of 256 bytes. Thus, the requests of two consecutive
cache-lines of 128 bytes (32 consecutive integer elements),
are camping for the same global-memory bank. L2 cache
helps to minimize the impact of this effect, for cache-lines
requested many times due to L1 cache misses. Some other
stochastic effects derived from scheduling, and L1/L2 cache
reutilization across different blocks, slightly modify the fi-
nal execution times.

Experiments with other non-naive matrix multiplication im-
plementations have been also conducted, finding always
the same relations on performance, occupancy, and cache-
misses. A proper choice of the threadblock shape may
achieve a good exploitation of the L1 cache, producing the
same performance effects as explicitly encoding coalesced
copies of global memory blocks to local shared memory,
before computing block products.

6.5. Discussion

The conclusion is that it is easy to identify the threadblock
sizes and shapes which produce maximum occupancy. For
shapes that produce maximum occupancy, performance is
related to the number of global memory transactions, repre-
sented in Fermi by cache misses. Due to the 128B cache-
line size, the maximum performance is obtained for shapes
with at least 32 columns when accessing integer or float ele-
ments. Deriving a complete cost model is really difficult, as
cache hierarchy behavior is complicate to predict. However,
even for this narrowed search space, it is not so difficult to
relate performance with conceptually simple measures of
cache requests and elements reutilization.

It is interesting to notice that many matrix computations are
implemented with square blocks for code simplicity. How-
ever, square blocks lead to threadblock shapes that are not
good candidates for best performance. Moreover, focusing
only on square-shaped blocks, the programmer cannot see
the important relation of performance and cache-misses on
other possible shapes with the same number of threads.

The different threadblock sizes and shapes have an impor-
tant interaction with the cache, and the global memory ac-
cess patterns. Thus, this is the first decision to take when
facing a kernel tuning. Other tuning techniques should be
applied after selecting an appropriate threadblock, consid-
ering the insight provided about the interactions with the
GPU architecture model, and in particular, the memory hi-
erarchy.

7. CONCLUSION

Writing efficient CUDA codes is demanding, because the
programmer needs to know the underlying architecture
specifications. Fermi architecture incorporates a two-level
cache hierarchy, introducing new parameters on the opti-
mization procedure. Although caches behavior is difficult
to predict, they are helpful for the programmer who under-
stands their constraints and advantages.

CUDA programmers should first use well-known tuning
techniques to reduce the number of resources used by a
threadblock, in order to obtain the maximum occupancy
possible for any block size. After that, the threadblock
shape is a key choice, as occupancy and shape present a
predefined relationship.

Since cache-misses clearly determine the overall perfor-
mance, the global memory access pattern is essential. Coa-
lescing, a somewhat mystic CUDA tuning technique, is eas-
ily understood in Fermi when thinking in terms of cache-
lines accesses. CUDA programs use the thread and block
indexes to create global memory access patterns. Thus, it is
straightforward to relate the threadblock shape to both, the
cache-misses and the occupancy.

We have also found that a good shape choice may de-
rive on an efficient use of the L1 cache, even for the non-
coalesced access patterns, avoiding the need to program ex-
plicit copies of the global memory to the shared memory.
Our results also indicate that codes using square-blocks,
such as many typical matrix computations, are not exploit-
ing efficiently the multicore devices.

Understanding all these relationships and interactions leads
to a more systematic approach to code tuning, and greatly
simplifies the optimization procedure.

ACKNOWLEDGMENTS

This research is partly supported by the Ministerio de In-
dustria, Spain (CENIT MARTA, CENIT OASIS, CENIT
OCEANLIDER), Ministerio de Ciencia y Tecnologı́a
(CAPAP-H3 network, TIN2010-12011-E), and the HPC-
EUROPA2 project (project number: 228398) with the sup-
port of the European Commission - Capacities Area - Re-
search Infrastructures Initiative.

REFERENCES

[1] Paulius Micikevicius Greg Ruetsch. Nvidia optimizing ma-
trix transpose in CUDA, June 2010. Last visit: Dec 2, 2010.

638



[2] Andrew Kerr, Gregory Diamos, and Sudakhar Yalaman-
chili. Modeling GPU-CPU workloads and systems. In Proc.
GPGPU’10, Pittsburg, PA, USA, Apr. 2010.

[3] David B. Kirk and Wen-mei W. Hwu. Programming Mas-
sively Parallel Processors: A Hands-on Approach. Morgan
Kaufmann, February 2010.

[4] Allen Leung, Nicolas Vasilache, Benoı̂t Meister,
Muthu Manikandan Baskaran, David Wohlford, Cédric
Bastoul, and Richard Lethin. A mapping path for multi-
GPGPU accelerated computers from a portable high level
programming abstraction. In Proc. GPGPU’10, pages
51–61, Pittsburgh, PA, USA, March 2010.

[5] NVIDIA. NVIDIA CUDA ProgrammingGuide 3.0 Fermi,
2010.

[6] NVIDIA. Tuning CUDA Applications for Fermi, July 2010.

[7] NVIDIA. Fermi Architecture Home Page, Last visit: Au-
gust 2, 2010. http://www.nvidia.com/object/
fermi_architecture.html.

[8] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi,
Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. Opti-
mization principles and application performance evaluation

of a multithreaded GPU using CUDA. In Proc. PPoPP ’08,
pages 73–82, Salt Lake City, UT, USA, 2008.

[9] Dana Schaa. Modeling execution and predicting perfor-
mance in multi-GPU environments. In Electrical and Com-
puter Engineering Master’s Theses, Boston, Mass, 2009.
Department of Electrical and Computer Engineering, North-
eastern University.

[10] Michael Wolfe. Implementing the PGI accelerator model. In
Proc. GPGPU’10, pages 43–50, Pittsburg, PA, USA, 2010.

[11] Changyou Zhang Xiang Cui, Yifeng Chen and Hong Mei.
Auto-tuning dense matrix multiplication for GPGPU with
cache. In Proc. ICPADS’2010, pages 237–242, Shanghai,
China, December 2010.

[12] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. An
optimizing compiler for GPGPU programs with input-data
sharing. In Proc. PPoPP ’10, pages 343–344, Bangalore,
India, 2010.

639


