
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

DEPARTAMENTO DE INFORMÁTICA

TESIS DOCTORAL:

Hierarchical Transparent Programming for

Heterogeneous Computing

Presentada por D. Yuri Torres de la Sierra para optar
al grado de

doctor por la Universidad de Valladolid

Dirigida por:

Dr. Arturo González Escribano
Dr. Diego R. Llanos Ferraris

Mayo 2014

ii

iii

Resumen

La computación paralela y el desarrollo de programas paralelos intentan reducir el
tiempo de ejecución de las aplicaciones. Durante años, las optimizaciones de códigos
secuenciales fueron diseñadas sin tener en cuenta la paralelizacion de datos ni de las
tareas. Actualmente, los dispositivos multi-core se han vuelto omnipresentes en nuestras
máquinas de cómputo, haciendo que la paralelización tome un papel aún más importante.
La computación paralela está estrechamente relacionada tanto con el hardware como con
el software. El objetivo final de la computación paralela es mejorar, en la medida de lo
posible, la capacidad computacional de las máquinas.

El constante crecimiento en el rendimiento de las Unidades de Procesamiento Gráfico
(GPUs), junto con recientes mejoras en su programabilidad, ha hecho que estos dispos-
itivos sean una buena opción como aceleradores hardware en la Computación de Altas
Prestaciones (HPC) para una variedad de aplicaciones.

La noción de la computación heterogénea ha emergido hace muy pocos años. Este
concepto se basa en explotar un sistema compuesto por dispositivos de naturaleza difer-
ente. Los sistemas heterogéneos pueden estar formados por procesadores con múltiples
núcleos, GPUs y procesadores reconfigurables entre otros. Aunque el uso de sistemas het-
erogéneos, para aprovechar al máximo toda la capacidad computacional, pueda resultar
una idea interesante, su complejidad de programación se encuentra un paso por delante
de la programación paralela. Los principales problemas que aparecen son los siguientes:
el primer problema es la necesidad de escribir código propios tanto para los núcleos de la
CPU como para la GPU y el segundo problema, es la distribución de carga de trabajo entre
los diferentes dispositivos, ya que estos sistemas no comparten un espacio de direcciones
común. Además, cada dispositivo presenta diferentes capacidades de cómputo, por lo que
cada uno es capaz de trabajar a ritmo diferente.

Durante la última década, se han propuesto diferentes modelos de programación con
el objetivo de manejar la complejidad de las particiones y mapeo multinivel de datos.
Estos modelos de programación pueden caer en dos categorías: aquellos que esconden las
comunicaciones subyacentes y aquellos en donde las comunicaciones son impulsadas por
las particiones creadas por el usuario. Estos modelos de programación paralela no ayudan
al programador a expresar de forma explícita el modelo de comunicación que necesita el
algoritmo independientemente de la partición de datos elegida. El Tiling es una técnica
conocida que es usada para distribuir datos y tareas en programas paralelos y mejorar la
localidad de bucles anidados en códigos secuenciales. El uso de estructuras de datos para
soportar tiling, permite explotar eficientemente la jerarquía de memoria ya que a menudo
los datos son reutilizados dentro del tile.

Trasgo es un framework de programación que está siendo desarrollado por nuestro
grupo de investigación de la Universidad de Valladolid. Trasgo se basa en especifica-

iv

ciones de alto nivel y paralelismo anidado, permitiendo expresar de forma sencilla varias
combinaciones de paralelismo de tareas con un esquema común. El back-end de Trasgo
es soportado por Hitmap, una biblioteca runtime para el tiling jerárquico y el mapeo de
arrays. Hitmap implementa funciones para crear, manipular, mapear y comunicar tiling-
arrays jerárquicos.

En esta tesis doctoral estudiamos la posibilidad de desarrollar un sistema de progra-
mación portable y transparente que incorpore tiling jerárquico y políticas de scheduling
con el objetivo de aprovechar las capacidades de la computación heterogénea.

Para abordar nuestra propuesta de investigación hacemos uso de la biblioteca Hitmap
como un framework prototipo. Este framework permite explotar sistemas de memoria dis-
tribuida. En este trabajo extendemos de forma conceptual y práctica este framework para
aprovechar todos los recursos hardware (CPU-GPU) en entornos heterogéneos. Además,
éste permite generar códigos abstractos que a su vez son transparentemente adaptados
para sistemas con diferentes tipos de dispositivos.

Para ello es necesario también un estudio de las arquitecturas GPU que ayude a deter-
minar unos buenos valores de los parámetros de configuración GPU (la geometría/tamaño
de los bloques de hilo o la configuración de la cache L1) que deberían ser escogidos de
otra forma por el programador. El conocimiento obtenido de este estudio es usado para
crear políticas de selección de dichos valores. Estas políticas son incluidas en la biblioteca
Hitmap.

Tras examinar y analizar los resultados experimentales concluimos que es factible la
creación de un sistema de programación que incorpore técnicas de particionado de datos,
herramientas de comunicación, y selección trasparente para el programador de buenos
valores de los parámetros de configuración GPU para sistemas heterogéneos.

Palabras clave

APSP, herramientas de mapeo automático, tuneado automático de código, benchmark-
ing, kernels concurrentes, CUDA, mapeo de datos, particionado de datos, Dijkstra, Fermi,
GPU, GP-GPU, dispositivos heterogéneos, sistemas heterogéneos, Kepler, técnicas de
mapeo, micro benchmarks, restricciones de tamaño de memoria, MPI, NSSP, OpenCL,
OpenMP, algoritmos paralelos, bibliotecas paralelas, medición de rendimiento, modelo
poliédrico, SSSP, geometría del bloque de hilos, tiling.

v

Abstract

Parallel computing and the development of parallel programs is a way to reduce the
time of the program execution. During many years, sequential optimization was designed
without thinking about parallel tasks. Currently, multi-core devices have arrived, making
code parallelization more important. The parallel computing is closely related with both
hardware and software point of view, in both cases, many calculations are carried out si-
multaneously. The final objective of parallel computing is the improvement in computing
capacity.

The rapid increase in the performance of Graphics Processing Units (GPUs), coupled
with recent improvements in its ease of programming, have made graphics hardware a
compelling platform for High Performance Computing field (HPC) in a wide kind of
applications. For this impressive processing potential, a single GPU has the sufficient
power to compete with many super-scalar CPUs.

The heterogeneous computing notion has emerged few years ago. This concept ref-
erences to exploit a system composed by multiple mixed compute devices. A Heteroge-
neous system can be composed by commodity multi-core processors, graphics processors
and reconfigurable processors among others. Although the use of heterogeneous systems
to take maximum advantage of all computing capabilities may seem a natural idea, their
programming complexity is also one step beyond of the intrinsically complex parallel pro-
gramming. Two main problems appear. First, the need of writing specialized code for both
the CPUs cores and GPUs or other accelerators that are present in the system. Second, the
problems related with data distribution among devices, and the associated load-balancing
problem since heterogeneous systems do not share a common address space and present
different computing powers.

During the last decade, different programming models have been proposed to han-
dle the complexity of multilevel data partition and mapping. These programming models
roughly falls into two categories: Those that hide the underlying communications, and
those where the explicit communication is driven by the partition made by the user. These
parallel programming models do not help the programmer to explicitly express the com-
munication pattern needed by the algorithm regardless of the data partition chosen. Tiling
is a well-known technique used to distribute data and task in parallel programs and to im-
prove the locality of nested loops in sequential code. The use of data structures to support
tiles allows to better exploit the memory hierarchy, since data is often reused withing a
tile.

Trasgo is a programming framework that is being developed by our Trasgo research
group at the University of Valladolid (Spain). Trasgo is based on high-level and nested-
parallel specifications allowing easily express several complex combinations of data and
parallelism tasks with a common scheme. One of the most important features is that

vi

this model hides the layout and scheduling details. The Trasgo back-end is supported
by Hitmap, a runtime library for hierarchical tiling and mapping of arrays. The Hitmap
library implements functions to efficiently create, manipulate, map, and communicate
hierarchical tiling arrays.

In this Ph.D. thesis we study the possibility of developing a portable and transparent
programming system that incorporates hierarchical tiling and scheduling policies in order
to take advantage of heterogeneous computing capabilities.

To accomplish our research proposal we take profit the of Hitmap library. Hitmap is
used as a prototype framework that integrates a parallel computation model which takes
profit of all available hardware resources (CPU-GPU) in heterogeneous environments.
This framework allows to generate abstract codes which are transparently adapted to het-
erogeneous systems with mixed types of accelerator devices.

We present a study of the GPU architectures to help to determine good values of con-
figuration parameters that should be chosen by the programmer. The knowledge obtained
from this study is used to create proper policies of selecting configuration parameters
values of GPU devices, such as, threadblock geometry/size and the configuration of L1.
These policies are included in previous framework.

After examining and analyzing the experimental results, we consider the feasibility
of creating a programming execution containing automatic data partitioning techniques,
communication tools, and select transparently to the programmer, good values of GPU
configuration parameters for heterogeneous systems.

Keywords

APSP, automatic mapping tools, automatic code tuning, benchmarking, concurrent
kernel, CUDA, data layout, data partition, Dijkstra, Fermi, GPU, GP-GPU, heteroge-
neous devices, heterogeneous systems, Kepler, mapping techniques, micro-benchmarks,
memory-size restrictions, MPI, NSSP, OpenCL, OpenMP, parallel algorithms, parallel li-
braries, performance measurement, polyhedral model, SSSP, threadblock geometry, tiling.

vii

A mis padres, Ramón y Eva,
y a mi hermano José Ramón,

con gratitud y gran admiración.

viii

Acknowledgments

After all these years of work, insomnia, work, fun, work, challenges, con-
ferences, and. . . , work, here it is, my Thesis is finally completed. It has been
a long, tough way, but if I could come back in time, I would definitely not
change it for anything. Becoming a PhD has been my dream during the last
four years, and during this long way I have found a lot of people that have
helped me to make this dream come true.

First of all, I am deeply indebted to my supervisors, Dr. Arturo González
Escribano and Dr. Diego R. Llanos Ferraris, for guiding me throughout the
process of becoming a PhD. None of this would have taken place without the
help and support of my supervisor, advisor, mentor, and friend Dr. Arturo
González Escribano. Thanks a lot for guiding me, for the daily interaction,
and for all your commitment, successful advises, and critical questions. I also
owe thanks to my supervisor Dr. Diego R. Llanos Ferraris for all the work
and fruitful discussions that challenged me, and for showing me the best way
to achieve my goals.

I want to thank my colleagues from the Trasgo Group at University of
Valladolid (Álvaro, Ana, Héctor, Javier, and Sergio). Sharing my time and
experiences with you all has been very rewarding.

I want to thank the Universidad de Valladolid fellowships program (For-
mación Personal Investigador, FPI-2010, aplicación presupuestaria 180.113-
541A.2.01-691) for providing me with the financial support necessary to carry
out this work, that has been co-funded by Banco Santander. Thanks a lot for
making it possible.

ix

x

I would like to thank all my friends and dear family. En particular me
gustaría dar las gracias a mis padres Ramón y Eva, por todo el amor y car-
iño, por el esfuerzo y sacrificio, y por responder a todas mis necesidades
con un rotundo sí a ojos cerrados. A mi gran amigo David Fernández, nos
conocemos de toda la vida, y siempre me ha apoyado en todo de forma in-
condicional, por ello, le estaré eternamente agradecido. Muchas Gracias.

Yuri Torres
Valladolid, 2014

Contents

0 Resumen de Tesis 1
0.1 Objetivo de la investigación . 1

0.1.1 Pregunta de investigación . 1
0.1.2 Tareas . 1
0.1.3 Metodología de investigación 2

0.2 Contribuciones y conclusiones . 2
0.2.1 Contribuciones . 3
0.2.2 Conclusiones . 5
0.2.3 Trabajo futuro . 6

1 Introduction 7
1.1 Context . 7

1.1.1 Parallel computing . 7
1.1.2 Multi- and manycore architectures 7
1.1.3 GPUs for parallel computing . 8
1.1.4 Heterogeneous computing . 9
1.1.5 Parallel programming and tiling models 10
1.1.6 The Trasgo programming framework 10
1.1.7 The Hitmap run-time library . 11

1.2 Purpose of this research . 11
1.2.1 Research question . 11
1.2.2 Tasks . 11
1.2.3 Research methodology . 12

1.3 Outline . 13

2 State of the Art 15
2.1 Programming tools for heterogeneous systems 15

2.1.1 Programming languages for GPUs 16

xi

xii CONTENTS

2.1.2 GPU tuning strategies . 16
2.2 Challenges in heterogeneous programming 18

2.2.1 Data partition and load balancing techniques 18
2.2.2 Memory size restrictions . 19
2.2.3 Tiling support . 19

2.3 Benchmarking . 20
2.3.1 Micro-Benchmarking for GPUs 20
2.3.2 Choice of benchmarks used in this work 21

3 The Hitmap Library for Homogeneous Systems 23
3.1 Overview . 24

3.1.1 Functionalities . 24
3.1.2 Notations . 25

3.2 Tiling functionalities . 26
3.3 Mapping and communication functions 27

3.3.1 Combinations of topology and layout functions 28
3.4 Design and implementation . 30

3.4.1 Tiling classes . 30
3.4.2 Data partition and mapping subsystem 32
3.4.3 Topologies . 32
3.4.4 Layouts overview . 33
3.4.5 Layout plug-ins implementation 33
3.4.6 Groups and hierarchical partitions 35
3.4.7 Topology and layout techniques currently implemented 35
3.4.8 Communications implementation 36

3.5 Experimental evaluation of Hitmap . 37
3.5.1 Design of experiments . 37
3.5.2 Performance comparison . 38

3.6 Conclusions . 44

4 New Abstraction Layers for an Heterogeneous Hitmap 45
4.1 Mapping synchronization issues . 45

4.1.1 Conceptual approach . 45
4.1.2 Design and implementation . 47
4.1.3 Mapping and synchronization issues: Summary 49

4.2 Memory size restrictions . 50
4.2.1 Model for parallel computations 51
4.2.2 Partition of regular computations 53
4.2.3 Memory size-restrictions: Summary 57

CONTENTS xiii

4.3 Conclusions . 57

5 Study of GPU Configuration Parameters 59
5.1 Threadblock geometry . 59

5.1.1 Threadblock size and occupancy tradeoff 59
5.1.2 Shape in several dimensions . 62
5.1.3 Tuning techniques and threadblock size and shape 63
5.1.4 ThreadBlock size and shape in OpenCL 63

5.2 Experimental study . 64
5.2.1 Setup . 64
5.2.2 Benchmarks with coalesced accesses 65
5.2.3 Benchmarks with non-coalesced accesses 67
5.2.4 Experimental results . 67
5.2.5 Limitations of this experimental study 75

5.3 Micro-benchmarks (uBench) . 75
5.3.1 The uBench suite . 75
5.3.2 uBench evaluation . 82
5.3.3 Summary . 87

5.4 Conclusions . 87

6 Experimental Evaluation of an Heterogeneous Hitmap 89
6.1 Mapping and synchronization issues . 89

6.1.1 Case study . 89
6.1.2 Experimental work . 92
6.1.3 Synchronization issues: Conclusions 95

6.2 Memory size restrictions . 95
6.2.1 Memory size-restrictions: Conclusions 98

6.3 A real-world benchmark: The SSSP problem 98
6.3.1 Parallel Dijkstra for GPUs . 98
6.3.2 Experimental setup . 102
6.3.3 Experimental results . 105
6.3.4 The SSSP problem: Conclusions 107

6.4 APSP problem . 108
6.4.1 Experimental setup . 108
6.4.2 Experimental results . 109
6.4.3 APSP-problem: Conclusions . 111

6.5 Load balancing techniques for the APSP problem 111
6.5.1 Load-balancing techniques evaluated 111
6.5.2 Methodology . 112

xiv CONTENTS

6.5.3 Target architectures . 112
6.5.4 Input set characteristics . 113
6.5.5 Load-balancing techniques evaluated 114
6.5.6 Experimental results . 114
6.5.7 Load balancing techniques: Conclusions 118

7 Conclusions 119
7.1 Summary of contributions . 119
7.2 Conclusions . 121
7.3 Future directions . 122

A CUDA Programming Model 123
A.1 CUDA model . 123

A.1.1 Brief examples . 124
A.1.2 Thread organization . 126
A.1.3 Synchronization barriers . 126
A.1.4 Memory accesses . 127
A.1.5 CUDA architecture . 128

A.2 Concurrent kernels . 129
A.3 CUDA heterogeneous programming . 130
A.4 CUDA strengths and weaknesses . 130

A.4.1 Advantages . 130
A.4.2 Constraints . 131
A.4.3 Summary . 132

A.5 Review of NVIDIA GPUs architectures 133

B Benchmarks 135
B.1 Matrix-matrix multiplication . 135

B.1.1 Cannon’s algorithm . 135
B.2 Shortest Path Problem . 136

B.2.1 Graph Theory Notation . 136
B.2.2 Dijkstra’s Algorithm . 137
B.2.3 Parallel Dijkstra . 138
B.2.4 SSSP problem . 138
B.2.5 APSP problem . 138

List of Figures

3.1 Hitmap library functionalities . 24
3.2 Tiling creation from an original array . 26
3.3 Partitions computed for different virtual processor topologies 29
3.4 UML diagram of the architecture of the Hitmap library 30
3.5 Performance results for MG benchmark 39
3.6 Performance results for some parallel kernels in a Beowulf cluster 40
3.7 NAS MG benchmark performance comparison 42
3.8 Comparison of code lines . 43

4.1 Mapping/Coordination levels of Hitmap 46
4.2 Mapping/Coordination levels Hitmap including automatic partition 51
4.3 Algorithms for the three cases studied 55

5.1 Maximum Occupancy for different threadblock shapes 62
5.2 Example of diagrams for results tables for uBench-1 83

6.1 Heterogeneous Hitmap implementation of Cannon’s matrix multiplication 90
6.2 Load balancing layout scheme in the Cannon’s example 91
6.3 Hitmap abstraction results (1st part) . 93
6.4 Hitmap abstraction results (2nd part) . 94
6.5 Execution times for Vector addition, Stencil and MM multiplication . . . 96
6.6 CPU-Martín vs. our Crauser-based GPU execution times (1st part) 104
6.7 GPU-Martín vs. our Crauser-based GPU execution times (2st part) 105
6.8 Total vs. Number of Working Threads in the relax kernel 106
6.9 Relax-kernel execution times for different input sets 110
6.10 Execution times of the relax kernel for the best/worst configurations . . . 110
6.11 Temporal cost of the different source nodes for the Kepler GPU 113
6.12 Execution times of Equitable and Numbered Ticket Scheduling policies . 115
6.13 Execution times of Equitable and Numbered Ticket Scheduling 117

xv

xvi LIST OF FIGURES

A.1 Computing Y ← Ax+ y in CUDA parallel model 125
A.2 Parallel sum reduction tree . 126
A.3 Grid of threadblocks . 127
A.4 A set of SIMT multiprocessors with on-chip shared memory 129
A.5 Heterogeneous Programming . 131
A.6 Fermi memory hierarchy (NVIDIA GTX-480). 133

B.1 3× 3 Data Location for Cannon’s Algorithm 136

List of Tables

3.1 Complexity metrics and development effort for the benchmarks considered 44

5.1 Execution times for the benchmarks considered in Fermi (A,B,1st) 69
5.2 Execution times for the benchmarks considered in Fermi (B,C,1st) 70
5.3 Execution times for the benchmarks considered in Fermi (E,1st) 71
5.4 Execution times for the benchmarks considered in Fermi (2nd) 72
5.5 Naïve matrix multiplication: L1 Cache misses 73
5.6 uBench classification, according to the criteria proposed 82

6.1 Martín et al. CPU Versions vs. our GPU Implementation speed-ups . . . 105
6.2 Comparison between Martín et al. GPU Versions vs. our GPU ones . . . 106
6.3 Experimental instances . 114

A.1 Summary of CUDA architecture parameters (pre-Fermi, Fermi and Kepler) 134

xvii

xviii LIST OF TABLES

Chapter 0
Resumen de Tesis

Este documento presenta mi tesis doctoral. Me inicié en paralelización en 2009 y desde
entonces siempre intento superarme en este complicado pero a la vez apasionante mundo.

0.1 Objetivo de la investigación

0.1.1 Pregunta de investigación

Es posible desarrollar un sistema de programación portable y transparente que incorpore
tiling jerárquico y políticas de scheduling con el objetivo de aprovechar las capacidades
de la computación heterogénea?

0.1.2 Tareas

Con el objetivo de responder a la pregunta de investigación, hemos llevado a cabo las
siguientes tareas:

• A partir de Hitmap, un framework que incorpora tiling y scheduling para sistemas
de memoria distribuida, se han estudiado las modificaciones conceptuales y prácti-
cas necesarias para dar soporte a Hitmap en entornos heterogéneos.

• Este estudio muestra la necesidad de nuevos niveles de particionado y sus políticas
asociadas. Estas políticas incluyen mecanismos para:

1. Mover datos de forma transparente entre los diferentes dispositivos.

2. Realizar subdivisiones de tareas que encajen de forma adecuada en la memoria
de cada dispositivo.

3. Seleccionar tamaños y geometrías para los conjuntos de hilos.

1

2 Chapter 0. Resumen de Tesis

0.1.3 Metodología de investigación

Con el fin de lograr los objetivos propuestos en este documento, seguiremos la metodología
de investigación definida por un método de investigación para ingeniería [2]. Este método
establece cuatro fases diferentes que el proceso de investigación debe seguir. Cada fase
puede repetirse de forma cíclica con el objetivo de redefinir las soluciones propuestas.

• Observar las soluciones existentes. Esta fase tiene el propósito de detectar prob-
lemas que serán alcanzados durante el proceso de investigación comenzando con
la solución existente. Esto conlleva un completo estudio del estado del arte con el
objetivo de encontrar trabajos relacionados con nuestro foco de investigación. Este
estudio es presentado en este documento.

• Proponer mejores soluciones. En esta fase se propone una solución que aborde las
limitaciones encontradas en la fase anterior. Como mostraremos a lo largo de este
trabajo, existe una carencia de frameworks que encapsulen técnicas de particionado
y mapeo de datos para entornos heterogéneos, que a su vez, exploten de forma au-
tomática y transparente los recursos hardware de los dispositivos GPU. Este trabajo
está estrechamente relacionado con la arquitectura de las GPUs. Proponemos varias
políticas para (a) seleccionar buenos valores para los parámetros de configuración
GPU (tamaño/geometría de los bloques de hilos y la configuración de la cache L1
entre otros) para algunos tipos de aplicaciones y (b), explotar de forma eficiente un
balanceo de carga sobre los sistemas heterogéneos.

• Construir o desarrollar la solución. La solución propuesta en la fase anterior es
implementada en la fase actual. Hemos llevado a cabo un estudio sobre las arqui-
tectura de la GPU y como ayudar al programador a determinar unos buenos valores
de los parámetros de configuración. También hemos desarrollado un framework de
programación para estudiar la factibilidad de las soluciones propuestas.

• Medir y analizar la nueva solución. Finalmente, este método ingenieril establece
que la solución propuesta tiene que resolver los problemas descubiertos en la primera
fase. Hemos evaluado el sistema usando tanto bancos de pruebas sintéticos como
aplicaciones reales.

0.2 Contribuciones y conclusiones

En este trabajo de Tesis se ha estudiado la viabilidad de desarrollar un sistema de progra-
mación portable y transparente que incorpore tiling jerárquico y políticas de scheduling
con el objetivo de aprovechar las capacidades de la computación heterogénea. Para ello

0.2. Contribuciones y conclusiones 3

hemos presentado un prototipo de framework que encapsula la elección de (a) buenos val-
ores de los parámetros de configuración para dispositivos heterogéneos, (b) estructuras de
datos tile, funciones de mapeo y balanceo de carga y (c), funciones de sincronización/co-
municación entre dispositivos heterogéneos CPU-GPU. Finalmente, se realiza una evalu-
ación experimental del prototipo de framework con el objetivo de contestar la pregunta de
investigación propuesta en esta Tesis.

0.2.1 Contribuciones

Primera
Hemos contribuido al desarrollado Hitmap. Se trata de una biblioteca software
diseñada para desacoplar los patrones de comunicación del particionado de datos
gracias al uso de expresiones abstractas de comunicación. Estas abstracciones son
automáticamente adaptadas en tiempo de ejecución dependiendo de la partición.
Podemos usar las abstracciones desarrolladas para Hitmap en sistemas homogéneos
para implementar unas nuevas orientadas a entornos heterogéneos.

1. Arturo Gonzalez-Escribano, Yuri Torres, Javier Fresno, and Diego R. Llanos.
An Extensible System for Multilevel Automatic Data Partition and Mapping.
Parallel and Distributed Systems, IEEE Trans. on Parallel and Distributed
Systems, PP(99):1–1, 2013. [45].

Segunda
Hemos proporcionado nuevos conocimientos sobre la relación entre la ocupación,
la geometría y el tamaño de bloque de hilos, la configuración de la jerarquía de la
memoria cache (en la arquitectura Fermi), y el patrón de acceso a memoria global
que presentan los hilos.

2. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Understand-
ing the impact of CUDA tuning techniques for Fermi. High Performance
Computing and Simulation (HPCS), 2011 International Conference on, pages
631–639, 2011. [113].

3. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. CUDA Tuning
and Configuration Parameters on FermiArchitectures. Advanced Computer
Architecture and Compilation for High Performance and Embedded Systems
(ACACES 2011), 2011. [112].

4. Yuri Torres, Arturo Gonzalez -Escribano, and Diego R. Llanos. Uso del
conocimiento de la arquitectura Fermi para mejorar el rendimiento en apli-
caciones CUDA. Actas XXII Jornadas de Paralelismo, 2011. [114].

4 Chapter 0. Resumen de Tesis

5. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Using Fermi
architecture knowledge to speed up CUDA and OpenCL programs. Proc.
ISPA’12, Leganes, Madrid, Spain, 2012. [118].

Tercera
Hemos introducido una suite de microbenchmarks (llamada uBench) para explo-
rar el impacto sobre el rendimiento de (a) criterios de selección de la geometría y
tamaño de los bloques de hilos y (b), las configuraciones y recursos hardware de la
GPU. Esta suite de microbenchmarks cubre los detalles hardware de las arquitec-
turas Fermi y Kepler.

6. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Measuring the
Impact of Configuration Parameters in CUDA Through Benchmarking. The
12th International Conference Computational and Mathematical Methods in
Science and Engineering, CMMSE 2012, 2012. [116].

7. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. uBench: Per-
formance Impact of CUDA Block Geometry. Technical Report IT-DI-2012-
0001, Depto. Informática, Universidad de Valladolid, Dec 2012. [117].

8. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. uBench: ex-
posing the impact of CUDA block geometry in terms of performance. The
Journal of Supercomputing, 65(3):1150–1163, 2013. [120].

Cuarta
Hemos desarrollado dos aplicaciones reales (el problema SSSP para encontrar el
camino/ruta más corto desde un punto a todos los demás; el problema APSP para
encontrar la ruta más corta entre cualquiera de los puntos al resto) con el objetivo de
probar y verificar las conclusiones obtenidas en [112, 113, 114, 116, 117, 118, 120].

9. Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego
R. Llanos. A New GPU-based Approach to the Shortest Path Problem. The
2013 International Conference on High Performance Computing & Simula-
tion, (HPCS 2013), pages 505–511, 2013. [92].

10. Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego R.
Llanos. A Tuned, Concurrent Multi-Kenel Approach to the APSP problem.
The 13th International Conference Computational and Mathematical Methods
in Science and Engineering, CMMSE 2013, 2013. [93].

Quinta
Hemos presentado un framework de programación extendiendo la biblioteca Hitmap

0.2. Contribuciones y conclusiones 5

con el objetivo de analizar la posibilidad de (a) crear un modelo de programación
y un framework que encapsulen la elección de unos buenos valores de los parámet-
ros de configuración de GPU y las estructuras de datos, (b) funciones de mapeo
y balanceo de carga, y (c), funcionalidades de comunicación/sincronización entre
dispositivos heterogéneos CPU-GPU.

11. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Automatic
Data Layout at Multiple Levels for CUDA. The 10th International Confer-
ence Computational and Mathematical Methods in Science and Engineering,
CMMSE 2010, 2010. [111].

12. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Data parti-
tion and syn- chronisation in heterogeneous systems. HPC-EUROPA2 project
(project number: 228398) with the support of the European Commission -
Capacities Area - Research Infras- tructures, 2013. [119].

13. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Encapsulated
Synchronization and Load-Balance in Heterogeneous Programming. Euro-Par
2012 Parallel Processing, volume 7484 of LNCS, pages 502–513. Springer
Berlin Heidelberg, 2012. [115].

14. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Automatic
run-time mapping of polyhedral computations to heterogeneous devices with
memory-size restrictions. In The 2013 International Conference on Parallel
and Distributed Processing Techniques and Applications, 2013. [53].

0.2.2 Conclusiones

Basado en la información, discusiones y resultados que se muestran a lo largo de este
trabajo de Tesis, las principales conclusiones son las siguientes:

• El uso de Hitmap promueve programas más abstractos, fáciles de mantener y codi-
ficar, manteniendo un buen rendimiento. Esta biblioteca permite lograr rendimien-
tos similares a implementaciones que han sido optimizadas manualmente para ker-
nels y benchmarks conocidos en la comunidad científica. Hitmap reduce significa-
tivamente el esfuerzo de programación.

• La elección de los valores de los parámetros de configuración de una GPU está
estrechamente relacionada con la implementación particular de la aplicación y la
arquitectura del dispositivo. Un análisis combinado del conocimiento de la arqui-
tectura GPU y las características del código implementado (tales como el tipo de
patrón de acceso a memoria global, el flujo de carga total por hilo y el ratio de

6 Chapter 0. Resumen de Tesis

operaciones lectura-escritura sobre la memoria global) puede ayudar, de forma sig-
nificativa, a seleccionar unos buenos valores para los parámetros de programación
GPU.

• Es posible crear un entorno de programación que contenga técnicas de particionado
automático, herramientas de comunicación, y seleccionar de forma transparente al
usuario buenos valores de los parámetros de configuración GPU para sistemas het-
erogéneos.

0.2.3 Trabajo futuro

Existen varias cuestiones que nos gustaría abordar. Estos focos definen la orientación
futura de este trabajo:

• Estamos planeando realizar un estudio sobre la influencia de los efectos hardware y
los parámetros de configuración en otras arquitecturas de GPU, tales como AMD e
Intel.

• Actualmente estamos trabajando sobre políticas de mapeo más sofisticadas que ex-
ploten de forma más eficiente los procesadores de la CPU y las arquitecturas GPU.
Se desea probar y verificar la aplicabilidad de estas técnicas para un conjunto más
amplio de problemas incluyendo otros benchmarks conocidos por la comunidad
científica y aplicaciones reales.

• Personalmente, tengo curiosidad por estudiar los dispositivos FPGA (Field Pro-
grammable Gate Array) ya que su funcionalidad hardware puede ser reconfigu-
rada tantas veces como se dese. Me gustaría automatizar aquellas decisiones que
cualquier programador debería de tomar antes de lanzar cualquier función sobre un
dispositivo de estas características. Desearía dar soporte a dispositivos FPGAs en
nuestro marco de programación.

Chapter 1
Introduction

This document presents my Ph.D. Thesis. I started working on paralleliza-
tion in 2009, always trying to move forward in this exciting and complicated
world. This document summarizes my research efforts.

This chapter briefly introduces the reader in the field, showing both the context and
motivation of this work and presenting the research question whose answer constitutes
this Ph.D. Thesis.

1.1 Context

1.1.1 Parallel computing

The basic idea of parallel computing appeared around 1960. From the hardware point of
view, at that point vacuum tubes had been replaced with transistors, and computers started
to be more manegeable. That was the era of small-scale shared memory multiprocessors,
with commercially-available systems made by Burroghs and IBM [30]. Since then, ad-
vances in processor architecture, memory systems, and network topologies, made parallel
computing ubiquitous. Nowadays, even modest laptops have two or four processors.

Despite their availability, it is still difficult to make several processors to cooperate in
carrying out a common task. Even with the huge number of processors available in mod-
ern manycore systems, some fundamental constrains such as Amdahl’s Law, and practi-
cal issues, such as data partitioning coordination, and sharing, limit the performance of
massively-parallel systems.

1.1.2 Multi- and manycore architectures

During the first decade of the new century, power and dissipation problems started to limit
the clock frequency of single processors. At the same time, new technologies pushed for-

7

8 Chapter 1. Introduction

ward the limits on the number of available transistors per square unit. Faced with both
situations, the natural choice of computer architects was to integrate in a single chip sev-
eral copies of a given processor chip design. These resulting systems, called multicore,
was comparatively simple to implement and manage, not only from the architectural point
of view but also with respect to the operating system. Task schedulers were modified to is-
sue processes to all available chips, quickly putting into production all hardware resources
if the system have several or many pending tasks. However, multicore technology does
not speed up the execution of a single task. On the contrary, multicore chips usually run
at a fraction of the clock frequency of the original design, making sequential tasks slower.

The manycore paradigm also benefited from the number of available transistors. How-
ever, their design starting point is different. Manycore architectures were only designed
with highly parallel applications in mind. They comprises several hundreds of very simple
processors, frequently combining several multiprocessor units that internally work with a
SIMD (Single Instruction, Multiple Data) execution model. Although manycore systems
are even less useful than multicores to execute a single task, their specialized design made
them the default choice for massively parallel applications.

1.1.3 GPUs for parallel computing

The most successful example of manycore architectures are Graphic Processing Units
(GPUs). These devices were initially designed to manage floating-point graphical infor-
mation to be sent to the user’s display. Therefore, algorithms that were executed on a
GPU had to be mapped into a graphics pipeline.

The search for other uses for the computing power provided by GPU devices, together
with the addition of more general processing units per computing element, led in 2007 to
the development of the CUDA platform SDK by NVIDIA [78]. The CUDA programming
interface allows to express many sophisticated programs with a few, easy-to-understood
abstractions. The development of CUDA has boosted the use of GPUs for general purpose
(GPGPUs) in the execution of massively-parallel tasks not related with graphic process-
ing.

Despite its popularity, CUDA is not the only choice for GPU programming. There are
multiple languages to exploit these devices, such as BrookGPU [19], developed at Stan-
ford University, and, more recently, OpenCL [60], a standard API for programming both
GPUs and multi-core CPUs. Other GPGPU languages include Scout [71] for scientific
visualization, and Intel Ct [102] for high-throughput architectures. It is interesting to note
that both of them, together with Brook, are based on the shape concept introduced by the
C* programming language [97] for the Connection Machine.

Although the different benefits of executing general-purpose applications on GPU de-
vices have widely been recognized [61], in order to exploit efficiently the GPU potential,

1.1. Context 9

and to predict the power consumption and performance, it is necessary to study in de-
tail the device architecture. In any case, the programmer needs to specify an appropriate
threadblock size-shape value for each GPU function, and to define the sizes of shared-
and L1 cache memories in order to improve the applications performance. As we will see
in this Thesis selecting good values of these GPU configuration parameters hinders even
more the GPU programming tasks.

The scalability has been an attractive feature of graphics systems from the beginning.
Although the benefits that multiple GPUs can provide are very hard to predict, the possi-
bilities that even a single GPU offers make multi-GPU programming a natural follow-up.
Predicting the execution performance of a system composed by multiple GPUs is still a
challenge. Some authors, such as Dana Schaa [101], introduce basic models to predict
the combined behavior of multiple GPUs in the execution of different applications, by
identifying and classifying the major factors that affect their behavior. Other efforts in-
clude the Rigel [62] project, that takes into account the different CUDA constrains (such
as shared memory utilization, thread fusing, or static work partitioning) to achieve high
performance on NVIDIA GPUs.

1.1.4 Heterogeneous computing

The concept of heterogeneous computing [17, 76] is related to the combined use of dif-
ferent kinds of computing resources. It is a step further with respect to what we may
call “homogeneous computing”, where all processing elements share a common set of
characteristics, regardless of the memory organization used (shared or distributed). In
heterogeneous computing, systems with different processing capabilities are combined to
collaborate in carrying out a given task. A classic example of such computing systems are
shared or distributed- memory multiprocessors with GPU devices attached to them.

Although the use of heterogeneous systems to take maximum advantage of all comput-
ing capabilities may seem a natural idea, their programming complexity is also one step
beyond of the intrinsically complex parallel programming. Two main problems appear.
First, the need of writing specialized code for both the CPUs cores and GPUs or other
accelerators that are present in the system. Second, the problems related with data dis-
tribution among devices, and the associated load-balancing problem since heterogeneous
systems do not share a common address space and present different computing powers.
All these problems, along with others, make programming for heterogeneous system a
piece of craftsmanship, since there is a lack of general-purpose programming frameworks
that handle this complexity. This Ph.D. Thesis aims to advance the knowledge needed to
solve this problem.

10 Chapter 1. Introduction

1.1.5 Parallel programming and tiling models

During the last decade, different programming models have been proposed to handle
the complexity of multilevel data partition and mapping. These programming models
roughly falls into two categories: Those that hide the underlying communications (e.g.
Chapel [27], UPC [22]), and those where the explicit communication is driven by the
partition made by the user (e.g. MPI). These parallel programming models do not help
the programmer to explicitly express the communication pattern needed by the algorithm
regardless of the chosen data partition. Parallel programming tools and frameworks pre-
sented in the last years do not establish clear boundaries between virtual topologies, do-
main partitions, and tile management (such as HTA [13] or UPC), or clear boundaries
between data management and communications (such as Chapel, UPC or HTA). Such a
division of duties would allow the programmer to decouple the communication structures,
that depend on the algorithm characteristics, from the data partition mechanisms.

Tiling is a well-known technique used to distribute data and tasks in parallel pro-
grams [125] and to improve the locality of loop nests in parallel and sequential code [124].
Although originally presented as a loop transformation technique, the use of data struc-
tures to support tiles for generic arrays allows to better exploit the memory hierarchy,
since data is often reused within a tile. Tiling can be applied to multiple levels, to dis-
tribute work among processors at the outermost level, while locality are enhanced at
the innermost level. In the context of distributed-memory, tiles can also make explicit
communication, since computations involving elements from different tiles result in data
movement [5, 18].

1.1.6 The Trasgo programming framework

Trasgo [43] is a programming framework that is being developed by the Trasgo research
group at the University of Valladolid (Spain). Trasgo is based on high-level and nested-
parallel specifications allowing easily express several complex combinations of data and
parallelism tasks with a common scheme. One of the most important features is that this
model hides the layout and scheduling details.

The Trasgo programming system supports its own programming model based on a
simple process-algebra model and exploiting data-distribution algebras. Trasgo provides
a high level parallel language. The main features of this new language are the following:
(1) It is a nested parallel coordination language; (2) it uses extended function interfaces to
allow the compiler detect data-flow; and (3), it uses an abstract and unified parallel prim-
itive for coarse- or fine-grain logical tasks. The parallel expressions combine topology
and data-distribution plug-in modules to automatically create data-domain partition and
mapping.

1.2. Purpose of this research 11

This high level programming language is translated to an intermediate language called
SPC-XML to allow the use of powerful XML tools to manipulate it. The framework in-
cludes a plug-in system with several modules that generate partition and mapping infor-
mation, which may be used to create abstract communication codes independently of the
mapping details. The framework uses a back-end to translate the internal representation
to a parallel source code using the MPI message passing interface as a communication
and synchronization layer.

1.1.7 The Hitmap run-time library

Hitmap [45], a runtime library for hierarchical tiling and mapping of arrays, gives support
to Trasgo as its back-end. The Hitmap library implements functions to efficiently create,
manipulate, map, and communicate hierarchical tiling arrays. Hitmap offers generic map-
ping functionalities that could be used to implement other tiling arrays solutions (such as
HTA) as a special case. The Hitmap topology and layout plug-in system is flexible, ex-
tensible, composable at different levels, and supports irregular or load-balancing data par-
titions with a common interface. These features go beyond HTA functionalities [31, 41].
Hitmap also has a generalized hierarchy system, where a given branch of the hierarchy
can be independently and recursively refined, in a dynamic way, to an arbitrary level.

I have participated in the development of Hitmap, and we decided to use it as testbed
for our heterogeneous development. In this work we derive a new prototype of Hitmap
that includes our proposals to take profit of the computational capability of heterogeneous
environments, hiding to the programmer the details about the machine structure and thread
management. As we will see, this allows to easily generate programs with multiple levels
of parallelism in heterogeneous systems.

1.2 Purpose of this research

1.2.1 Research question

Is it possible to develop a portable and transparent programming system that
incorporates hierarchical tiling and scheduling policies, in order to take ad-
vantage of heterogeneous computing capabilities?

1.2.2 Tasks

In order to answer to our research question, we have carried out the following tasks:

• We have contributed to the development of Hitmap, a runtime library for hierarchi-
cal tiling and mapping of arrays in distributed-memory systems. Starting with the

12 Chapter 1. Introduction

tiling and scheduling framework for distributed-memory systems, we have studied
the modifications needed to allow Hitmap to support heterogeneous environments.

• As we will see, this study shows the need for new partitioning levels and their
associated policies. This include mechanisms to:

1. Transparently move data across devices for GPUs.

2. Perform task subdivisions to fit into the devices capabilities.

3. Select appropriate shapes and sizes for thread sets.

• The final task is to integrate the proposed mechanisms and policies into an hetero-
geneous version of Hitmap, evaluating the resulting programming framework with
existing benchmarks.

1.2.3 Research methodology

In order to accomplish the objectives proposed in this document, we have followed a
research methodology defined by a research method for engineering [2]. This method
establishes four phases that the research process has to follow. These phases can be cycli-
cally repeated with the aim of refining the proposed solutions.

1. Observe existing solutions. This phase has the purpose of detecting the problems
that will be addressed during the research process, starting with the existing solu-
tions. It leads to a complete study of the literature, in order to find works related
with our research. This study is presented in this dissertation.

2. Propose better solutions. In this phase, a solution that overcomes the limitations
found in the previous step is proposed. As we will see, there is a lack of frameworks
that encapsulate data partition and mapping techniques for heterogeneous environ-
ments, automatically and transparently, squeezing the underlying GPU hardware
resources. These tasks are closely related to the GPU architecture. We propose sev-
eral policies to (a) select good values of GPU configurations parameters for some
kind of applications, and (b) exploit a good load balancing on an heterogeneous
system.

3. Build or develop the solution. The solution proposed in the previous phase is im-
plemented in this step. We have carried out a study about the GPU architectures
and how to help the programmer to determine good values of configuration param-
eters. We have also developed a prototype programming framework to study the
feasibility of the proposed solutions.

1.3. Outline 13

4. Measure and analyze the new solution. Finally, the research method for engineering
establishes that the proposed solution has to solve the problems discovered in the
first phase. We have evaluated the system using both synthetic benchmarks and
some real-world applications.

1.3 Outline

This document is organized as follows. Chapter 2 shows the state of the art through
citations and discussions. Chapter 3 presents a runtime library, named Hitmap, whose
distributed-memory version will be used to implement new abstractions that support het-
erogeneous systems composed by CPU and GPU devices. In Chapter 4 we analyze the
possibility of creating a programming model to encapsulate the selection of good values
of GPU configuration parameters and tile data structures, mapping and load balancing
functions, and synchronization/communication functionalities between CPU-GPU het-
erogeneous devices. As we will see in that chapter, to implement the desired abstraction
levels for heterogeneous computing it is needed to arrive to a good data and task parti-
tioning, that it turn leads to the need of an optimal choice of GPU parameters. This issue
is covered in Chapter 5. The experimental evaluation of the solutions proposed is carried
out in Chapter 6. Finally, Chapter 7, aims to answer our research question, summarizing
our results and enumerating the works published during the development of this Ph.D.
Thesis. Appendix A shows the fundamentals of the CUDA programming model used to
develop the GPU codes, and Appendix B contains some algorithms used as benchmark in
our experiments.

14 Chapter 1. Introduction

Chapter 2
State of the Art

This chapter presents the state of the art related to this Ph.D. Thesis. The citations and
discussions included in this chapter is the pillar that supports the research work presented
in this dissertation.

As we described in the previous chapter, the purpose of this work is to improve pro-
gramability aspects of heterogeneous systems. Thereby, a broad study of these architec-
tures and their related optimization techniques will be presented. In addition, we will
describe tiling arrays supporting tools, that will be the foundation of abstractions to hide
the parallel management of data structures in heterogeneous systems. Finally, we discuss
the properties and features of some scientific community benchmarks we have selected
for our experimental work.

2.1 Programming tools for heterogeneous systems

The notion of heterogeneous computing emerged many years ago [17, 76]. This concept
is associated with exploiting a system composed by multiple mixed computing devices.
We have to highlight the significant growth in the use of the scalable heterogeneous com-
puting system composed by commodity multi-core processors, graphics processors and
reconfigurable processors, among others [110]. In these years, heterogeneous computing
are gaining more acceptance, while problems, like their energy management, are being
gradually solved.

Several programming models can be jointly used to take profit of heterogeneous sys-
tems. For example, several works, such as [58, 65] use MPI and CUDA parallel program-
ming models in order to exploit the GPUs devices present in an heterogeneous environ-
ment. However, these works do not abstract the use of both models with respect to the
target underlying hardware details. Programming using only these tools can be a tedious
task.

15

16 Chapter 2. State of the Art

2.1.1 Programming languages for GPUs

There are multiple global-purpose languages to take profit of GPU capabilities. A first
classification criterion is to split them on Specific and General GPGPU language classes.

A Specific GPGPU language can only be used for a concrete architecture, such as
CUDA [61] for NVIDIA platform, and MIC [70] developed by Intel for their architec-
tures. These languages are specifically designed to squeeze the use of the underlying
hardware resources. Besides, the programmer has the possibility of using specific code
tuning strategies to take even more profit of the target GPU hardware design. On the other
hand, a General GPGPU language provides support for multiple vendor devices, such as
BrookGPU [19] developed at Stanford University, and the recent OpenCL [60], a standard
API for programming both GPGPUs and multi-core CPUs. These general GPU languages
do not have specific support to exploit, in the most efficient way, all the GPU hardware
resources. Besides, they generally limit the programmer when she wants to optimize a
parallel code.

2.1.2 GPU tuning strategies

In our study we are interested in how to transparently reach a high level of efficiency
exploiting and taking advantage of the most used GPU architectures, such as those de-
veloped by NVIDIA (pre-Fermi, Fermi and Kepler). This goal leads us to choose CUDA
as study case for GPGPU languages. There are multiple code tuning strategies in CUDA
model [61]. These strategies are currently more complicated to understand and develop
than those found on commercial CPUs. Then, to squeeze the computational power of a
GPU technology requires much more programming effort.

For example, the work by Wynters [128] shows a naïve matrix multiplication im-
plementation where several threadblock sizes are tested on pre-Fermi architecture. The
author says that this configuration has a significant performance impact when a parallel
problem is executed on a NVIDIA GPU.

One of most common tuning strategies is to choose a threadblock size that maximizes
the SM (Streaming Multiprocessor) Occupancy in order to reduce the memory latencies
when accessing the global device memory [61]. The authors focus on block shapes that
simplify the programming task, such as square shapes, or dimensions that are power of
two (an important part of the search space is not considered).

As [118] states, it is very important to adapt the values of configuration parameters
(such as threadblock geometry, shared memory size, and L1 cache memory state) to the
particular memory access pattern to squeeze, as far as possible, the computational capa-
bility of the heterogeneous systems. Despite the valuable work done in tools, such as
FLAME [96] and MCUDA [108], the authors still need to manually determine by trial-

2.1. Programming tools for heterogeneous systems 17

and-error the best values of configuration parameters. The first cite ([96]) focuses on
programming dense linear algebra operations on complex platforms, including multi-core
processors and hardware accelerators, such as GPUs and Cell. The authors abstract the
target accelerator dividing the parallelism in two levels, the first one considering each
accelerator device as a computation unit (coarse-grain parallelism), and the second one
considering each hardware accelerator as a set of multiple cores (fine-grain parallelism).
In the MCUDA paper [108] the authors present a framework to mix CPU and GPU pro-
gramming. In this work it is mandatory to define separate kernels for all available devices.
No data distribution policy is provided, and the toolkit can not make any assumption about
the relative performance of the supported devices. Introducing any of these features would
involve a redesign of the framework.

There are works, such as [11, 67, 126, 130], that use advanced compilation techniques
to transform high-level primitives, or constructors, into optimized CUDA code. However,
these frameworks take only into account architectures that are currently deprecated. A
simple performance model is introduced in [101], in order to obtain a methodology for
predicting execution times of GPU applications in single and multi-GPU environments.
However, the citations do not explore the relationships between the threadblock size and
shape, and their impact on the hardware resource utilization, which derives in performance
impact.

Maximizing the Coalescing factor is another tuning strategy that tries to overlap the
communication and computation in order to reduce the latencies in global memory ac-
cesses. In [132] the authors show several global memory access strategies in an attempt to
reduce these latencies. This work is developed on the pre-Fermi architecture and does not
consider global programming parameters, such as L1 cache configurations, threadblock
(size or shape) choice.

Other contributions, such as [6, 98], study less common tuning strategies. These works
present several problem implementations, testing significant parameters such as unroll
factors, prefetching, and work-per-thread among others. The performance obtained by
modifying these factors aims to reduce the search space for the optimal configuration. A
performance model is also provided. Pre-Fermi is the only considered architecture and
the impact of the hardware effects are omitted.

Focusing on more modern architectures (Fermi), in [129] the authors show how the
cache memory hierarchy helps to take advantage of data locality, thus, significantly im-
proving the global performance. However, taking into account the cache hierarchy leads
to a too much complicated performance prediction model. The authors study a particu-
lar benchmark where the shared-memory vs. transparent cache configuration is adjusted
automatically depending on the amount of data assigned to threads. Again, the effects
of the block size and shape are not considered. Finally, in [36, 59], for the same GPU
architecture, the authors show several interesting metrics related to hardware architecture.

18 Chapter 2. State of the Art

The authors use these metrics in an attempt to predict the performance of CUDA kernel
codes once the block shape is manually chosen.

2.2 Challenges in heterogeneous programming

2.2.1 Data partition and load balancing techniques

Load-balancing methods for heterogeneous systems try to distribute the workload among
computing units according to their computational capabilities. There are several load-
balancing methods suitable not only for traditional systems, but also for heterogeneous
systems. In the rest of this section a brief discussion of these methods is shown.

The use of some heuristics or data partition policies can be very useful to improve the
load balancing in any environment. Some works, such as [54, 131], exploit at the same
time CPU and GPU devices, attempting to obtain a good load balance. However, data-
structures partition and manipulation is not abstracted and authors do not support flexible
mechanisms to add new partition and layout policies.

Chapel [27], proposes a transparent plug-in system for domain partitions in generic
systems. It tries to hide the communication issues to the programmer. Most of the times
efficient aggregated communications can not be automatically derived from generic codes.
Moreover, the authors do not offer specific support for accelerator partition policies, or
synchronization among different CPU and GPU devices. The authors in [66] create a
model to estimate the execution time of each task (based on the number of instructions
and input data size), thus deciding which hardware would be the best for each case. The
size of each single task is fixed at compilation time. In [66, 100] the authors calculate
the data transfer time between the different devices (GPUs and CPUs), and also create a
model in order to reduce inter-GPU and CPU-GPU communication.

Other authors [56, 122] try to assign bigger data portions to the most powerful devices.
However, the data portion size has to be initially fixed. On the other hand, in [32], all tasks
have the same size, and the number of tasks assigned to each hardware depends on the
computing capacity of each device.

Graph dependencies are commonly used to discriminate which data-portion or area
are more profitable for each target architecture. An input data-portion represents the min-
imum data unit scheduled on the heterogeneous hardware devices. This technique is used
to represent any kind of dependencies between the different input data-portions, improv-
ing the load-balance factor in heterogeneous environments [20, 26, 34]. Nevertheless,
the recovery of the necessary information to fill the graph can be time consuming. Works
like [34] and [26] describe how to create a complete dependence-graph in order to classify
as dependent or independent the application tasks. Only independent tasks are launched
to GPU devices in order to reduce the costly data transfers through inter-GPU commu-

2.2. Challenges in heterogeneous programming 19

nications. In [20], the authors make a study of DDAs (data dependencies algebras) and
use this technique to improve the load-balance between a cluster of GPUs minimizing the
memory bottlenecks.

Finally, there are training methods to estimate the most costly computation portions,
and select an appropriate device to execute them. These methods select a small subset
of input data and execute the related part of the computation in the target system. The
execution is monitored and performance results registered. The information is then used
to predict the global execution time, which are the most powerful devices, or even which
devices are more appropriate for each input data-portion.

2.2.2 Memory size restrictions

Taking into account the memory size limitations of heterogeneous target devices is an
additional challenge. Currently, many approaches do not focus in this problem, working
with fixed sized middle-grain tasks [32], or assuming that the tasks fit, or are generated
to fit into the devices [14, 20]. Other approaches simply advise to add more computation
devices to allow finer partitions [10]. A simple way to tackle the problem is to gener-
ate more distributed processes than system nodes, mapping several of them to the same
device [115]. In this way, each process is responsible for a smaller part of the computa-
tion. When enough processes are launched, the parts are small enough to fit in any target
device. However, this leads to more costly inter-process communications and scalability
problems. A more sophisticated approach is to consider the device memory limitations
while creating the high-level partition [12]. This approach highly complicates the whole
partitioning activity.

An associated problem for memory-restrictions-aware systems is to find a proper rep-
resentation of the parallel computation that allows the system to locate, and measure the
size, of the data portions required by a generic part of the computation. This information
is needed for both generating a balanced partition, and mapping the parts adequately, even
for libraries that make transparent the node to device communication (e.g. [3, 12]).

None of these works propose a solution to allow a hidden layer to split an arbitrarily
large computation in parts that fit the memory limitations of an assigned target device, or
to transparently launch the partial computations generated to the target devices.

2.2.3 Tiling support

We have already discussed tiling techniques in Sec. 1.1.5. There is a lack of tiling support
in most programming languages, with the exception of some data-parallel languages such
as HPF [69] and PGAS languages (e.g. UPC [22]). Both supply some constructors to
align and distribute data among processors. HPF offers a limited set of patterns computed

20 Chapter 2. State of the Art

at compile time. Moreover, HPF does not offer a truly composable distribution mecha-
nism, since it is not possible to apply a second data distribution over the local part of a
previous distribution. For example, block-cyclic distributions can not be programmed as
a composition of cyclic over block distribution.

Regarding PGAS languages, it is responsibility of the programmer to define and dis-
tribute tiles, frequently in terms of the number of processors or specific architecture
details. This leads to the development of code that is hard to read and maintain. Fi-
nally, HTA [13, 49] is an elegant implementation of hierarchically tiling arrays in object-
oriented languages as an abstract data type. However, this implementation does not sup-
ports irregular or load-balancing data partitions with a common interface.

2.3 Benchmarking

2.3.1 Micro-Benchmarking for GPUs

The use of micro-benchmarks to evaluate hardware configurations has a long tradition.
There is not too much related work in the scientific community about the use of these
benchmarks to understand the GPU hardware behavior. The GPU devices present sig-
nificant performance changes when both, the problem implementation, and the values
of configuration parameters (such as threadblock size-shape or, L1 cache state) are even
slightly modified. In the rest of this section several approaches to micro-benchmarking
techniques are discussed.

A set of micro-benchmarks is described in [109] in order to obtain measures related
to architectural features, and basic program characteristics. These features and charac-
teristics include vectorization, burst write latency, texture fetch latency, global read and
write latency, ALU/Fetch operation. However, the study only focuses on the AMD GPU
architecture.

The authors in [127] introduce a suite of micro-benchmarks to measure the perfor-
mance of GPUs as well as the performance impact when a specific optimization strategy
is used. The authors measure execution times and obtain the different latencies for the
same threadblock configuration. In [4], the authors try to find the lower and upper bounds
of the partition camping problem [47]. They present performance results related to the
global memory read and write operations, with and without partition camping. As a result,
the authors provide a spreadsheet that calculates an estimation of the partition camping
problem for a given kernel. The authors do not consider the full range of threadblock
size and shape choices. All these studies are only focuses on the first NVIDIA released
architectures.

Several authors like [55, 133] have tried to develop performance analytic models that
help the user squeezing the GPU computational capabilities. In [133], the model is based

2.3. Benchmarking 21

on the results of a set of micro-benchmarks in order to measure the time of each kind
of instruction, and the global/shared memory accesses. The authors always use the same
threadblock shapes (square geometry) and extrapolate the memory data transfer band-
width. In [55], the authors identify two main parameters related to the efficiency of the
hardware resources use: (1) The time that a warp is waiting for data, and (2) the number
of operations that could be done during these delays. The authors estimate the values by a
set of micro-benchmarks. Again, different threadblock shapes have not been considered.

In summary, all these works do not systematically explore all the threadblock con-
figuration space. Moreover, several of these tests have been conducted using deprecated
GPU architectures, and do not relate the threadblock configuration with the underlying
hardware effects.

2.3.2 Choice of benchmarks used in this work

This section briefly discusses the most relevant benchmarks used throughout this Ph.D.
Thesis. A more complete description of the different benchmarks is included in Ap-
pendix B at the end of this document.

The desirable properties of benchmarks to test the different tuning strategies studied
on this work are the following: (1) benchmarks should have data reutilization and differ-
ent memory access pattern for each input data structure; (2) specific benchmarks should
be designed to exploit distributed memory systems where each one is composed by de-
vices of different nature; and (3), real-world benchmarks characterized as embarrassing
parallel applications to avoid the communication overhead, where each individual input
datum can be processed independently, are desirable. This set of benchmarks covers the
most common kernel features for GPU implementation codes. Therefore, we will use
them as relevant benchmarks to test the GPU hardware effects under the influence of its
configuration parameters.

First, we will consider simple linear algebra kernels that represent typical coalesced
access patterns. A good example of these benchmarks, is the matrix-matrix multiplication
where the simplicity of the algorithm helps to better understand the GPUs behavior. One
matrix-matrix multiplication variant (Cannon’s algorithm [21]) is also used, whose main
feature is to exploit distributed-memory systems. This method distributes data portions
among all available hardware accelerators.

Second, we will use real-world applications. These benchmarks are characterized by
being more complicated than the previous ones since they are composed by more than
one kernel with very different features. The first real-world benchmark that we will use
is the Single-Source Shortest Path (SSSP) problem, a classical problem of optimization.
Many problems that arise in real-world networks imply the computation of the shortest
path and its distances from a source to one or more destination points. Some examples

22 Chapter 2. State of the Art

include car navigation systems [99] or traffic simulations [9] among others. Algorithms to
solve the shortest-path problem are computationally costly, and in many cases commer-
cial products implement heuristic approaches to generate approximate solutions instead.
Although heuristics are usually faster and do not need a large amount of data storage or
pre-computation, they do not guarantee the optimal path.

The basic solution for the SSSP benchmark is Dijkstra’s algorithm [33]. This algo-
rithm constructs minimal paths from a source node s to the remaining nodes, exploring
adjacent nodes following a proximity criterion. Two parallelization alternatives can be
applied to Dijkstra’s approach. The first one parallelizes the internal operations of the
sequential Dijkstra algorithm, while the second one performs several Dijkstra algorithms
through disjoint sub-graphs in parallel [103].

Finally, the second real-world benchmark selected is the All-Pair Shortest-Path (APSP)
problem, that is a well-known problem in graph theory whose objective is to find the short-
est paths between any pair of nodes. There are two ways to solve the APSP problem. The
first solution is to execute n times, where n is the number of graph nodes, a NSSP algo-
rithm selecting a new node as source in each iteration. The classical algorithm that solves
the NSSP problem is also the Dijkstra’s algorithm [33]. The second solution is to exe-
cute an algorithm that globally solves the APSP problem using dynamic programming, as
the Floyd-Warshall algorithm [39, 123]. The former approach is used for sparse graphs
whereas the latter is more efficient for dense graphs.

Chapter 3
The Hitmap Library for Homogeneous
Systems

In the Trasgo research group, we have developed a runtime library for hierarchical tiling
and mapping of arrays named Hitmap. Our research plan includes using the Hitmap ab-
stractions for homogeneous systems as starting point to design new solutions focused on
heterogeneous environments. The abstractions already proposed in Hitmap library are a
very appropriate base to create a programming model and framework for heterogeneous
systems, to encapsulate the selection of good values of GPU configuration parameters,
the management of tile data structures for accelerators, mapping and load balancing func-
tions, and synchronization/communication functionalities between CPU-GPU heteroge-
neous devices (this programming model and framework will be shown in Chapter 4).

This chapter explores the details of the Hitmap library for homogeneous systems. A
complete description of Hitmap features and functionalities are shown, as well as details
about its design and implementation. Finally, we will measure to what extend the abstrac-
tions introduced by the library simplify the complexity of codes and also if they entail any
significant performance penalties.

Hitmap is a highly-efficient library for hierarchical tiling and mapping of arrays. It
aims at simplifying parallel programming, providing functionalities to create, manipulate,
distribute, and communicate tiles and hierarchies of tiles. Besides, Hitmap presents the
following functionalities: (1) Generates a virtual topology structure; (2) maps the data
to different processors with chosen load-balancing techniques, automatically determining
inactive processors at any stage of the computation; (3) identifies the neighbor processors
to use in communications; and (4) allows to build communication patterns to be reused
across algorithm iterations.

Hitmap was designed to decouple the communication pattern from data partitioning,
thanks to the use of abstract expressions of the communications that are automatically
adapted at runtime depending on the partition finally used. This library presents an unique

23

24 Chapter 3. The Hitmap Library for Homogeneous Systems

Tiling arrays
management

Mapping Communication

Topologies Layouts

Figure 3.1: Hitmap library functionalities.

combination of features, including: (1) An extensible plug-in system, based on two differ-
ent types of modules, to automatically compute data-partition and distributions of tiles as a
function of the topology of the underlying architecture, hiding the details to the program-
mer; (2) a common framework to program new plug-ins with regular, irregular, static,
or dynamic partitioning and load balancing techniques; (3) a flexible tool-set for data-
and task-parallelism mapping with a common interface; (4) an API to create complex
and scalable communication patterns in terms of an abstract partition and layout. Hitmap
was designed with an object-oriented approach in mind. It internally exploits several effi-
cient MPI techniques for communication, focusing on performance and on further native
compiler optimizations. Hitmap can be used to support complex data structures, such
as sparse matrices and graphs for irregular applications [41], using the same hierarchical
tiling methodology. All these features allow to embed complex mapping decisions, some
of them associated to compiler technology in a library. These features make Hitmap an
excellent choice to develop higher-level programming models [44].

We will show how Hitmap achieves a good tradeoff between performance and memory
usage. We will also compare Hitmap’s programming effort with other alternatives.

3.1 Overview

3.1.1 Functionalities

The Hitmap library implements functions to efficiently create, manipulate, map, and com-
municate hierarchical tiling arrays for parallel computations. The library supports the
following three sets of functionalities (see Fig. 3.1):

• Tiling functions: These operations allow to define and manipulate hierarchical array
tiles. These functions can be used independently of the rest of the library functions
to improve locality in sequential code, as well as to generate manually data distribu-
tions for parallel execution. Creation and tile selection functions typically receive
as parameters the particular sizes and ranges of the tiles to be created from the input
data structure.

3.2. Tiling functionalities 25

• Mapping functions: This second set of functionalities implements the plug-in sys-
tem for data distributions and layout functions, to automatically part an array into
tiles, depending on a virtual topology selected. They define a common interface for
static or dynamic partition techniques, or for fine or coarse grain techniques.

• Communication functions: Functions to create reusable communication patterns
for distributed tiles. They are internally implemented using a message-passing dis-
tributed tool, such as MPI. These functions receive tiles and mapping information
(including logical processes assignment and virtual topology information), and re-
turns a handler that can be used to repeatedly send and receive tile data across
physical processors.

3.1.2 Notations

In this section we introduce several key concepts and notations about arrays and tiles.

Signatures: We define a Signature S as a tuple of three integer elements representing a
subspace of array indexes in a one-dimensional domain. It resembles the classical For-
tran90 or MATLAB notation for array-index selections. The cardinality of the signature
is the number of different indexes in the domain.

S ∈ Signature = (begin : end : stride)

Card(s ∈ Signature) = b(s.end− s.begin)/s.stridec

Shapes: We define a Shape h as a n-tuple of signatures. It represents a selection of a
subspace of array indexes in a multidimensional domain (multidimensional parallelotope).
The cardinality of the shape is the number of different index combinations in the domain.

h ∈ Shape = (S0, S1, S2, ..., Sn−1)

Card(h ∈ Shape) =
∏n−1

i=0 Card(Si)

Our shapes unifies Chapel dense and stride domains [27] in a single type.

Tiles: We define a Tile as an n−dimensional array. Its domain is defined by a shape, and
all the elements belong to a given type, provided by the chosen programming language.

Tile h∈Shape : (S0 × S1 × S2 × . . .× Sn−1)→ < type >

A tile can represent a whole array, or a subset of array elements, determined by a
subset of its index domain, expressed as a shape.

26 Chapter 3. The Hitmap Library for Homogeneous Systems

Figure 3.2: Tiling creation from an original array.

3.2 Tiling functionalities

In Hitmap, tiles are implemented with an abstract data type: HitTile. To use a new tile, it
should be declared first as a HitTile variable, providing its dimensions and index ranges.
This information constitute the domain of the array. See array A in Fig. 3.2, where we
use a notation to specify dimensions and ranges that resembles Fortran90 and MATLAB
conventions.

A new tile can be derived from another tile, specifying a subdomain, which is a subset
of the index ranges of the parent tile. A subtile is indeed a tile with the same properties.
The user can access the elements of the original array using two different coordinates sys-
tems, either the original coordinates of the array, or new tile coordinates starting at zero
in all dimensions. See arrays B and C in Fig. 3.2, that are surrounded by their local co-
ordinates indexes. We provide different functions to access elements and/or specify new
subtiles using any of both coordinate systems. Tiles may also select subdomains with
stride, transforming regular jumps in the original array indexes to a compact representa-
tion in tile coordinates. See array D in Fig. 3.2.

Tiling allocation. Tiles are not automatically allocated. Instead, we provide a function
that allocates memory for a tile on demand. Accesses to a tile which has been already al-
located are solved referencing its own memory, no matter if the coordinates system being
used is the one belonging to the tile or to its ancestor. Accesses to tiles without their own
memory are mapped to the nearest ancestor with allocated memory. The corresponding
indexes are mapped transparently to the ancestor coordinates. This tile allocation sys-
tem greatly simplifies data-partition and parallel algorithm implementation. For example,
the programmer may define a global array without allocated memory, and create derived
tilings directly or even recursively based on it. Only the subtiles which are needed locally
should be allocated, while all the tiles generated have their associated tiles and array co-
ordinates spaces. Subtiles with their own allocated memory never lose the reference to

3.3. Mapping and communication functions 27

the parent tile or array. Thus, the library provides functions to update data elements of an
ancestor tiles with the values of the allocated memory containing elements also located
on the ancestor, or vice-versa. This is useful to create double buffers or shadow copies for
temporal use.

Tiling overlapping and range extension. Given an initial tile, it is possible to define
two children tiles whose indexes overlap. Allocating overlapping tiles is a natural and
easy way to generate local buffers for ghost zones in parallel stencil-based algorithms,
where each cell should be updated taking into account its neighbors [64]. Hitmap also
allows to define tiles that extend out of the range of the original array. Those elements
outside of the original range can not be accessed unless memory is allocated for the new
extended tile. Combining overlapping and extended tiles it is easy to implement boundary
conditions and stencil operations in finite-element methods.

Multilevel tiling. The mechanisms shown above allow to create hierarchies of tiles
with contiguous or regular-stride subselections. The access time to elements at any level
of the tile hierarchy is uniform. For more generic, irregular tile hierarchies, or other more
complex data structures, it is possible to define tiles with elements that are also of HitTile
type. These supertiles store arrays of pointers to other tiles. We use them to store matrices
by blocks, a useful solution for several linear algebra programs as discussed in [23]. The
access time to elements of such a tile may be non-homogeneous, as adjacent indexed
elements may be allocated at different referenced tiles, belonging to different levels on
their respective hierarchies.

3.3 Mapping and communication functions

Other members of the research group contributed to Hitmap library with a layer for map-
ping functions. This layer will be used in combination with our proposal described in
Chapter 4 to allow heterogeneous programming using distributed and shared memory en-
vironments with GPU accelerators.

Hitmap encapsulates all partition and mapping logic into separated modules avoiding
the need to reason in terms of the number and identification of physical processors in
the application code. One of the key characteristics of Hitmap is that clearly splits the
mapping process in two independent parts, which have been observed to be related to
different parallel algorithm features. Topology functions create virtual topologies using
internal data, thus hiding the physical topology details. Data partition is done by a Layout
function, that distributes domain indexes on a given virtual topology. The combination
of a topology and a layout function automatically organizes the physical processors in
a virtual topology, and automatically assigns a part of an index domain part to the local
virtual processor.

28 Chapter 3. The Hitmap Library for Homogeneous Systems

Functions already available in Hitmap implement different topologies, such as grids of
processors in several dimensions, or processor clustering depending on weights provided
at run-time. All virtual topologies in Hitmap define a group of active processors, that may
be hierarchical or even recursively splitted.

Layout functions implement partitions, and are also selected by name. The layout
modules receive a virtual topology, the layout function name to be used, and a specifi-
cation of the domain of the data structure to be distributed. The plug-in system allows
to define specific parameters for a Layout module, that are provided by the application
programmer when selecting the layout function name. These mapping modules return
a single structure with: (i) the part of the domain mapped to the local processor (which
may be defined and allocated using the Tiling functions), (ii) a mapping method to ob-
tain information about other processors parts if needed, and (iii) information about virtual
processors neighborhood for this specific mapping and virtual topology.

The layout building process also creates a more sophisticated neighborhood concept,
taking into account that not all virtual processors may have been assigned data to com-
pute. This solution allows neighbor communications to skip unassigned virtual processors
transparently. This happens, for example, in V-cycle iterative PDE solvers, such as the
MG program in the NAS Parallel Benchmarks [8, 40].

The Hitmap library supplies an abstraction to communicate selected pieces of hier-
archical structures of tiles among virtual processors. It provides a full range of com-
munication abstractions, including point-to-point communications, paired exchanges for
neighbors, shifts along a virtual topology axis, collective communications, etc. Hitmap
approach encourages the use of neighborhood and tile information automatically com-
puted by Layouts to create communications which are automatically adapted to topology
or data-partition changes.

The information needed to issue the real communication among physical processors
is stored at run-time in a single data type named Comm. Abstract communication objects
may be grouped in another data type named Pattern, generating reusable combinations of
communication structures.

3.3.1 Combinations of topology and layout functions

Traditional message-passing interfaces, such as MPI, allow to create virtual processors
topologies indicating their particular parameters. Hitmap provides a mechanism to create
and select virtual topologies. The layout functions are used to map data-domains to vir-
tual processors. Classical partition functions implementation are focused on splitting and
assigning more data elements than processing resources. The Hitmap implementations
deal also with the opposite case, to allow their use in hierarchical compositions of data
and task parallelism.

3.3. Mapping and communication functions 29

Figure 3.3: Different partitions automatically computed for different virtual processor topologies.

In the upper part of Fig. 3.3, a topology function has generated the requested one
dimensional topology using the available processors. Given that topology and the domain
of a tile, the partition of that tile and their assignment to different processors are computed
automatically. If the programmer selects a blocks layout function, a one dimensional band
partition is arranged dividing the odd numbers evenly among virtual processors. The
lower part of Fig. 3.3 shows another example that uses a 2D topology, where the same
layout function generates two dimensional blocks.

The correctness of some parallel algorithms depends on constraints on the topology or
layout functions. For example, Cannon’s algorithm for matrix multiplication is designed
to work with a perfect- square mesh of tasks, since the topology must have N ×N virtual
processors. But the data-pieces produced by the partition of the matrices may have any
kind of block shape. For this algorithm, the chosen layout function will surely have an
impact on the performance, but not on correctness. On the other hand, the algorithm of the
NAS MG benchmark [7] computes a 3-dimensional stencil convolution, leading to a 3D
partition and communication pattern. However, this partition and pattern may be mapped
on different 1D, 2D, or 3D arrangements of processors. In general, when an algorithm
is tied either to a specific topology or to a specific layout function, the other one can be
freely changed. Hitmap allows to test new topology/layout combinations with little effort,
by changing only the name of a plug-in function in the whole code.

Regarding robustness issues, expressing communications in terms of layouts greatly
helps the programmer to build deadlock-free communication patterns. Moreover, the au-
tomatic marshalling for tile communications helps to avoid programming errors.

30 Chapter 3. The Hitmap Library for Homogeneous Systems

(n,S0,S1,...,Sn)

Shape

Signature
b : e : s

Hierarchical
Tiles

HitTile

HitTile_doubleHitTile_int

Layout Layout
List

Layout Topology

Comm Pattern

Signature

Figure 3.4: UML diagram of the architecture of the Hitmap library.

3.4 Design and implementation

In this section we will dive into the design and implementation details of the Hitmap li-
brary. Although Hitmap has been designed with an object-oriented approach, the current
implementation has been written in C, to better exploit the Trasgo group members ex-
pertise in classical C compiler optimizations. The development of a C++ object-oriented
interface for Hitmap is straightforward.

Figure 3.4 shows the UML classes diagram. Recall that the UML diagrams show
dependencies as dotted arrows, where the arrow points to the class used, or referenced by,
the class located at the tail of the arrow. Diamond headed arrows indicate that objects of
the class located at the head of the arrow are composed by several objects of the tail class.
The lines with a regular white arrow head indicate classes inheriting from an abstract
class, whose name is depicted with italic font. The classes in white boxes implement
tiling functionalities; the classes in light gray implement mapping functionalities; finally,
the classes in dark gray implement communication functionalities.

3.4.1 Tiling classes

The classes Signature, Shape, and HitTile, define three data-types to support multidimen-
sional and hierarchical tiling arrays. The library includes a macro function to specialize
the HitTile data structure for any base type. The HitTile constructor only defines the tile
domain:

3.4. Design and implementation 31

hit_tileDomain(&tileName, type, #dimensions, cardinalities);

Available methods for HitTile data structure are described below:

• Data allocation: The HitTile data memory can be allocated at any time. The HitTile
structure does not require any data allocation until programmer begins to make data
accesses. We show an example of HitTile data allocation in the following code line:

hit_tileAlloc(&tileName);

• HitTile cloning: A tile data structure can be cloned independently of the HitTile data
memory state through the following primitive:

hit_tileClone(&clonedTileName, &tileName);

• Access to elements: The data accesses may contain strides in any dimension of
the data array. The elements location in memory have to be calculated using the
coordinates, tile dimensional cardinalities, and taking into account the stride values.

We show below an example of the use of a macro to access a 2-dimensional array
elements. We also show the implement of the macros that allow the access using
information in the tile variable.

hit_tileElemAt(tileName,2,rowIndex,columnIndex);

#define hit_tileElemAt(var,ndims,...)\
hit_tileElemAt##ndims(var,__VA_ARGS__)

#define hit_tileElemAt2(var, pos1, pos2)\
((var).data[(pos1)*(var).qstride[0]* \
(var).origAcumCard[1]+ (pos2)*(var).qstride[1]])

The qstride[dimension] structure stores a stride value per each tile dimension and
origAcumCard[dimension] contains the cardinality of each tile dimension multi-
plied by all its previous ones. The operations to calculate data coordinates with
stride, when the programmer is using an array with no stride (that is, stride == 1),
lead to performance degradation due to extra arithmetic operations. We provide a
specific data access macro for tile class where stride is one. Thus, each data access
is solved faster. We can see it in the following example:

#define hit_tileElemAtNoStride(var,ndims,...)\
hit_tileElemAtNoStride##ndims(var,__VA_ARGS__)

#define hit_tileElemAtNoStride2(var, pos1, pos2)\
((var).data[(pos1)*(var).origAcumCard[1]+(pos2)])

32 Chapter 3. The Hitmap Library for Homogeneous Systems

For two dimensional accesses, it is used like in the following example:

hit_tileElemAtNoStride(tileName,2,rowIndex,columnIndex);

• Creation of sub-tiles (sub-selections): The programmer can define a new HitTile
specifying with a shape an index subdomain of the original tile as follows:

hit_tileSelect(&tileChild, &tileParent, hit_layShape);

• To-from ancestor update operations: Each HitTile can update its data to the closer
relative with allocated memory (we provide alternatives for ancestor or descendant).
Internally, they use the memcpy C primitive, thus, the data contiguously stored in
the last dimensions, can be copied in a single operation if the stride value is equal
to the unit. This kind of update significantly reduces the data transfer between the
relatives in a HitTile hierarchical structure. An example of update operation call is
the following:

hit_tileUpdateToAncestor(&tileChild);

hit_tileUpdateFromAncestor(&tileParent);

3.4.2 Data partition and mapping subsystem

Mapping classes (Topology and Layout) are used for data distribution and mapping. Topol-
ogy and Layout are designed as abstract classes. Each new topology function or data
partition technique is implemented as an extension of one of these classes, providing the
behavior of its abstract methods. A header file and a skeleton code in C are provided for
both topologies and layout functions. Thus, new techniques may be easily programmed
and compiled externally to the library, using them as plug-ins at compile time.

3.4.3 Topologies

Topologies are used from the application code invoking a constructor-like function hit
_topology (<name>). It receives only one parameter indicating the name of the chosen
plug-in. The Topology class has only one abstract method. A new topology plug-in is
implemented as a C function with a special name prefix. Topology functions receive an
internal HitPTopology (physical topology) structure, containing information and details
about the physical processors and the platform. This information is either automatically
obtained by the library during initialization (e.g. querying MPI about the number of avail-
able processors and the local processor identifier), or provided statically in a platform

3.4. Design and implementation 33

configuration file when an automatic query can not provide this information (e.g. the in-
formation about relative computing performance of each processor). The topology func-
tion fills up and returns a HitTopology structure. Currently, the internal representation
supports mesh topologies for any number of dimensions.

3.4.4 Layouts overview

Data-partition and mapping is done by classes inherited from the Layout class. Hitmap
introduces a generic layout constructor tile function, hit_layout(). This function receives
at least three parameters: (a) The name of a plug-in that implements the particular layout
to be used; (b) a virtual topology created with hit_topology(); and (c) a shape, either
created on the fly or extracted at runtime from any tile, representing the domain to be
mapped data size. Each layout function may define further compulsory parameters if
needed. The hit_layout() function returns a HitLayout structure which may be queried
for the generated mapping information. If there are less domain elements than processors
on any dimension in the virtual topology, the layout function transparently determine
the active virtual processors and assigns domain elements to virtual neighbors, without
manual intervention.

The Layout class defines a common interface for both regular and irregular data-
partition techniques. We define two different inherited abstract subclasses for layout func-
tions implementations. Signature Layouts are more appropriate for regular partitions, be-
cause they describe the relationship between processors and data indexes using signatures.
List Layouts are more appropriate for irregular partitions. Instead of using signatures, they
implement generic mapping algorithms that associate lists of indexes to processors. The
latter are more generic, but not as efficient as shapes to represent big quantities of indexes
organized in regular (signature) form.

3.4.5 Layout plug-ins implementation

To define a new signature layout, the programmer should provide a function to compute
the partition in one dimension. The function fills up an output signature with the local
part for the local processor, and returns true/false to indicate whether a part has been
assigned, or the virtual process should be marked as non-active for communications using
this mapping. For example, a generic block partition function in a signature layout plug-
in receives four parameters: The local virtual processor index (or rank), p; the number of
virtual processors on this dimension, P ; the signature of the shape in this dimension to be
divided, S = (b, e, s); and a pointer to the resulting signature object, S ′. The local part of
the signature assigned to this processor, S ′ = (b′, e′, s′), is calculated according to:

34 Chapter 3. The Hitmap Library for Homogeneous Systems

b′ =
p ∗ Card(S)

min(P,Card(S))

e′ =

(
(p+ 1) ∗ Card(S)

min(P,Card(S))
− 1

)
· s+ b

s′ = s

For this example, if there are less index elements in the signature than the number of
processors, the last processors remain inactive. It is necessary to add a condition to handle
this situation.

After defining the layout function, the programmer should define a plug-in that uses
it. This plug-in simply declares the function to be used and their properties, and calls a
method, provided by the library, that applies the function either to each dimension of the
input shape present in the topology, or to a selected dimension (chosen by the application
programmer with an optional parameter when calling the plug-in). Therefore, the library
internally handles all the interactions between the topology and the layout function.

The shape calculations implemented in this plug-in provide valid outputs for any com-
bination of input parameters. Many parallel algorithms, both in literature and in real im-
plementations, assume cardinalities that are powers of 2, or input shapes that are multiples
of the number of processors, thus generating simpler codes for partition and communica-
tion. With our approach, this complexity is encapsulated in the plug-ins, making the
general-case implementation of algorithms as simple as the restricted ones.

We also implement an optional wrapping flag, to generate toroidal neighbor relation-
ships. Thus, all the complexity of detecting neighbors in the general case is again encap-
sulated in the plug-in, not in the application code.

The HitLayout structure returned by the library contains information automatically
generated only for the local part. Pointers to the signature and neighbor functions are also
stored in the structure, to generate neighbor or non-local parts information on demand.
Thus, the amount of local information is fixed, instead of growing with the number of
processors, allowing a better scalability.

Writing a new signature plug-in is straightforward. It is enough to implement the
corresponding formula into a layout function. List plug-ins, on the other hand, are more
difficult to develop, because they are implemented using an algorithm instead of a signa-
ture formula. The HitLayout structure contains a C union with different internal data for
Signature and List layouts. Hitmap provides a common API to query most of their internal
information. The most relevant change is that signatures are internally substituted by lists
that map each processor to a collection of associated indexes that do not need to follow a
regular pattern.

3.4. Design and implementation 35

In summary, the development of a plug-in consists in encapsulating in our abstract
API the functions or algorithms that the programmer would otherwise hardwire into the
application code, an improvement in terms of reusability with a negligible performance
penalty.

3.4.6 Groups and hierarchical partitions

Layout functions may create Groups. A group associates a collection of virtual processors
together, which are considered a single virtual processor. Layout functions can assign a
part of the original shape not only to a processor, but to a group. The part assigned can
be a signature-based shape or an index list. This allows the processors in the same group
to use further levels of partition (new layouts) on their assigned sub-domain of indexes.
This is useful for recursive data-domain decompositions, or for mapping small quantities
of highly-loaded tasks with more inner levels of parallelism.

Each group has a leader processor. It is the current active processor of the group,
the one doing the serial computations before further data partitions are used, and the
one issuing communications to neighbor group leaders if needed. Group management
is almost transparent to the programmer. Hitmap provides a macro function including a
conditional structure that executes a program block only if the local processor is the group
leader in a given layout.

3.4.7 Topology and layout techniques currently implemented

Typical available topology plug-ins are currently included in Hitmap. The first one is
plain, representing a one-dimensional arrangement. This virtual topology simply enu-
merates the available processors. The second is mesh, mesh, that arranges all available
processors P into an n-dimensional mesh, for a given n supplied as parameter. It is based
on a prime-factors decomposition. It tries to balance the number of processors on each
dimension. If P is prime, it falls back to a P × 1 × 1 × ... arrangement. Finally, we
have square, that is similar to mesh in two dimensions, but arranges as many processors
as possible into a perfect-squared mesh, leaving the rest of processors available for other
parallel routines.

Signature-based layout functions include several blocks functions, with different poli-
cies to allocate the group leaders (active processors), and a cyclic function. We do not
need to introduce a explicit block-cyclic function, as it may be generated in two-levels
using first a blocking function, and then a cyclic layout to distribute the blocks. In [31]
this composability layout property is described, explaining how to use it to efficiently
implement for example an LU factorization.

Lists-based layouts include two techniques for load-balancing. The first one is based

36 Chapter 3. The Hitmap Library for Homogeneous Systems

on the partition needed by bucket sort algorithm implemented in the IS NAS benchmark,
where it is used to redistribute data buckets in terms of the buckets sizes. The second
is a similar technique, also using extra information about arbitrary loads that can be for
example cardinality domain indexes. It may associate non-neighbor virtual processors
to the same group to create a smoother load balance on non-symmetric systems. Both
techniques for load balancing are also useful in recursive decomposition algorithms, such
as Quicksort.

3.4.8 Communications implementation

The implementation uses several features of the MPI communication library. Communi-
cations across virtual processors are encapsulated in the Comm objects. A Comm object
stores information about either a single operation, a pair of send/receive operations, or a
collective one. We provide different constructors for different communication operations.
The constructors have a very similar interface with the following parameters, some of
them optional for certain communication types: (a) Sending and/or receiving tile buffers
(tile subselections); (b) sending and/or receiving virtual processes (expressed as indexes
or neighbor relations); and (c) a Layout object with the information about neighborhoods
generated by the data distribution over the virtual topology. Internally, the MPI commu-
nicator is retrieved from the layout. The Layout constructor generates and stores in the
layout object a particular MPI communicator that contains only the processors that have
associated data domains after the domain distribution.

The pointers to the sending and/or receiving tile data buffers are stored in the object.
The structure of the sending or receiving tiles is examined to generate MPI-derived data
types that represent the tile data displacements. Any hierarchical HitTile subselection
can be represented by a combination of contiguous and vector MPI-derived data types.
Tiles with base elements that are also tiles need also to combine the previous types with
struct MPI-derived data types. The result is a single, combined type that is committed
and stored in the Comm object. Thus, buffering, marshalling, and unmarshalling of data
is automatically managed by the MPI layer in the best possible way.

The programmer may directly provide values for the sending/receiving virtual process
parameters. Nevertheless, Hitmap methodology encourages the use of the Layout meth-
ods for calculating neighbor processes indexes. In this way, a change in the real topology,
in the policies selected for the virtual topology or layout building, or in data sizes, is
automatically captured in the communication objects during their construction, storing
different real processor indexes, or different MPI-derived data types for the data location.

Once built, the Comm object contains all the information to issue the real data transfer
as many times as needed. The Comm class provides a method to activate the communica-
tion in synchronous (normal) mode, and two methods to start and end the communication

3.5. Experimental evaluation of Hitmap 37

at different points of the code, allowing to implement an asynchronous mode.
Communication Patterns are implemented as a queue of Comm objects. The same ac-

tivation modes are provided for Patterns. Associated methods simply traverse the internal
queue calling the corresponding method on each Comm object.

Although the current backend implementation relies on the rich API of MPI, these
functions are abstract enough to be ported to other backends.

3.5 Experimental evaluation of Hitmap

Experimental work has been conducted to show that the abstractions introduced by the
library do not only simplify the complexity of codes, but also they do not entail significant
performance penalties.

3.5.1 Design of experiments

We have designed experiments with the following guidelines: (1) Choose parallel appli-
cations which are well-known and representative of important applications classes and
programming paradigms. They should present different challenges, and imply the use of
different library resources. (2) Obtain or generate a manually programmed and optimized
version of each application in C language to be used as reference, since some of the se-
lected benchmarks may be originally in Fortran. The Fortran codes should be manually
ported to C. (3) Write a new code version based on Hitmap. (4) Execute both versions
with the same inputs and conditions on selected machines, and (5) compare the codes and
the execution times obtained.

The codes have been run on two different machines which represent two different
types of common architectures: A multicore, and a distributed memory cluster of com-
modity computers.

The first one, Geopar, is an Intel S7000FC4URE server, equipped with four quad-core
Intel Xeon MPE7310 processors at 1.6GHz and 32GB of RAM. Geopar runs OpenSolaris
2008.05, with the Sun Studio 12 compiler suite. The second architecture is a homoge-
neous Beowulf cluster of up to 36 Intel Pentium 4 nodes, interconnected by a 100Mbit
Ethernet network. The MPI implementation used in both architectures is MPICH-2, com-
piled with a backend that exploits shared memory if available.

The codes were instrumented to measure the execution times, distinguishing between
the execution of the main computation part, the communication times, and the creation of
data-partition, mapping, and communication information and structures. Thus, we may
fairly compare the performance of the library and its applicability in real cases.

The benchmarks chosen include: Two programs from the NAS Parallel Benchmarks [8]
(the MG multigrid program, and the IS integer sort program); an LU factorization and

38 Chapter 3. The Hitmap Library for Homogeneous Systems

back-substitution solver based on the ScaLAPACK package [15]; and a matrix multipli-
cation kernel based on the generalized Cannon’s algorithm.

3.5.2 Performance comparison

The execution times obtained for different versions of the benchmarks evaluated are
shown in Figs. 3.5, 3.6, and 3.7. The times include the stage of computing tiling hier-
archies, mapping, and communication information. According to the ScaLAPACK docu-
mentation, the ScaLAPACK’s LU factorization implementation does not scale well if the
interconnection network can not deliver several messages simultaneously, such as Ether-
net. Thus, this benchmark is not suitable for the Beowulf cluster, and we did not carry on
experiments for this program and platform. In the Geopar machine, when all 16 proces-
sors are used, the operative system, the MPI daemon, and the computations interfere with
each other, producing additional context changes and cache misses on at least one core,
delaying the overall computation. Thus, some applications exhibit a scalability limitation
for 16 processors in Geopar. None of the experiments have led to incorrect results or
runtime errors of any kind.

Tiling efficiency

Results show that the use of Hitmap library does not imply a significant performance
penalty, being less than 8.5 % in the worst case (LU Scalapack). Sequential time mea-
sures for the Cannon’s matrix multiplication and the LU factorization programs show that
the accesses to tile elements in Hitmap are almost as efficient as direct memory accesses.
Thus, the tiling abstraction layer does not introduce appreciable performance degrada-
tion. Moreover, the efficient management of MPI derived data types and reutilization of
communication patterns produces positive effects.

In general, the cost of initializing Hitmap data-structures, layouts and communication
patterns is similar to the cost of the manually programmed calculations in the reference
versions. This cost is amortized by their reutilization across many iterations of the com-
putation. It is remarkable that the IS program needs the computation of several different
patterns on each repetition of the code. However, the performance delivered by the Hitmap
and reference versions is almost the same.

General efficiency

Figure 3.7 shows a performance comparison between different MG benchmark imple-
mentations using state-of-the-art parallel programming models, with input set of size C
and D as defined by the NAS benchmark. The comparison include shared-memory mod-
els (OpenMP), PGAS models (UPC), and distributed-memory-based libraries (C+MPI,

3.5. Experimental evaluation of Hitmap 39

 10

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processors

Cannon’s 2000x4000 (Geopar)

C - manually optimized
Hitmap

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processors

IS class C (Geopar)

NAS
Hitmap

 100

 1000

 10000

 2 4 6 8 10 12 14 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processors

LU Scalapack 15000x15000 (Geopar)

Scalapack Fortran
Hitmap

C - manually optimized

Figure 3.5: Performance results for some representative parallel kernels and benchmarks in
Geopar, a shared memory system. Results for MG are shown in Fig. 3.7.

40 Chapter 3. The Hitmap Library for Homogeneous Systems

 1

 5

 15

 25

 35

 45

 4 8 12 16 20 24 28 32 36

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processors

Cannon’s 1000x2000 (Beowulf)

C - manually optimized
Hitmap

 30

 60

 90

 120

 160

 4 8 12 16 20 24 28 32 36

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processors

IS class C (Beowulf)

NAS
Hitmap

 25

 50

 75

 100

 4 8 12 16 20 24 28 32 36

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
.)

Processors

MG class C (Beowulf)

NAS Fortran
C - manually optimized

Hitmap

Figure 3.6: Performance results for some representative parallel kernels and benchmarks in a
Beowulf cluster.

3.5. Experimental evaluation of Hitmap 41

HTA, Hitmap). Results for the original NAS implementation, using Fortran+MPI, are
also shown. To allow the comparison of shared-memory and distributed-memory mod-
els in terms of performance, all experiments were run in the shared-memory machine:
Geopar. All implementations were compiled with GCC and equivalent optimization flags,
except HTA, that requires the use of the Intel C compiler. MG implementations that sup-
port the D input size (the biggest one that fits in the machine memory) need to be compiled
using the medium memory model in Geopar architecture. Each bar includes the overall
time as measured by the NAS benchmark, and the additional time spent in initializations.

From the results obtained we can draw the following observations. First, UPC delivers
good performance for the C input size. However, UPC’s memory footprint is three to four
times bigger than in other implementations. For this reason, the UPC implementation for
the D input size does not fit in Geopar’s memory. Second, the use of HTA to execute
MG with the D input set leads to much higher execution times and unsuccessful results,
so performance values for class D are not shown. Third, although C+MPI version is
generally faster than the Fortran+MPI version, it does not beat the performance obtained
with the OpenMP version. Nevertheless, OpenMP can not be directly used in distributed
memory environments.

Finally, the results show that Hitmap performance is comparable with the performance
with C+MPI and generally faster than HTA, thanks to a more efficient communication
management. Besides this, Hitmap presents a more flexible interface and a lower devel-
opment effort, as we will show in the following section.

Development effort

To compare Hitmap development effort with respect to other implementations, we have
used several complexity and development effort metrics, including-number of lines of
code, Halstead development effort (Halstead’s D.E.) [51], KDSI (COCOMO) [16] devel-
opment effort, and McCabe’s cyclomatic complexity (McCabe’s C.C.) [73].

Figure 3.8 shows a comparison of the Hitmap version of the benchmarks considered
with the other implementations in terms of lines of code. The comparison separates the
lines devoted to parallelism (data layouts and communications), sequential computation,
declarations, and other non-essential lines (input-output, etc).

With respect to MG, our results show that the use of Hitmap library leads to a signifi-
cant reduction in the number of lines, specially those devoted to parallelism (partitioning
and communication), even including the 14 lines of the new layout plug-in developed and
introduced in the library for this example (see [40] for the details). Although MG uses
a multilevel data partition, Hitmap automates the generation of communication patterns
and hides the particular cases that occur in smaller grids.

Significant reductions are also obtained for Cannon’s algorithm, because it only uses

42 Chapter 3. The Hitmap Library for Homogeneous Systems

UPC

Additional time

OpenMP Fortran

NAS Fortran+MPI

Hitmap

HTA

C+MPI

50

100

150

200

250

300

2 4 8 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

OpenMP Fortran

NAS Fortran+MPI

C+MPI

Hitmap

1000

2000

3000

4000

6000

5000

2 4 8 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Processors

Additional time

Figure 3.7: NAS MG benchmark performance comparison. Class C problem size (up) and Class
D problem size (down).

3.5. Experimental evaluation of Hitmap 43

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

MPI-F MPI-C HTA UPC OpenMP Hitmap

L
in

e
s
 O

f
C

o
d
e

MG Lines Of Code
Seq. Computation

Parallelism
Declaration

Non essential

 0

 50

 100

 150

 200

C Hitmap

L
in

e
s
 O

f
C

o
d
e

Cannon’s Lines Of Code
Seq. Computation

Parallelism
Declaration

Non essential

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

C Hitmap

L
in

e
s
 O

f
C

o
d
e

LU Lines Of Code
Seq. Computation

Parallelism
Declaration

Non essential

 0

 100

 200

 300

 400

 500

 600

C Hitmap

L
in

e
s
 O

f
C

o
d
e

IS Lines Of Code
Seq. Computation

Parallelism
Declaration

Non essential

Figure 3.8: Comparison of code lines.

a single communication pattern that is derived directly from the data partition. Regarding
LU, the use of Hitmap leads to a compact representation of blocks of tiles, thus reducing
many computations needed to handle size, paddings, and block-cyclic distribution man-
agement. Moreover, the use of layouts hides to a great extent the details on how to build
LU’s complex communication patterns. Finally, IS presents smaller reduction ratios, be-
cause most of the code is sequential. Even so, lines devoted to parallelism are reduced by
38 %.

In Table 3.1 the McCabe’s cyclomatic complexity indicates the total number of ex-
ecution paths in a piece of code. As can be seen in the table, cyclomatic complexity is
greatly reduced for Cannon’s (58.82 %), MG (49.04 %), LU (31.49 %) and IS (34.52 %)
code. The reason is that Hitmap hides many decisions to the programmer, thus avoiding
unnecessary conditional branches in the resulting code.

Table 3.1 also shows the Halstead’s development effort and the KDSI metric used in
the COCOMO model for the benchmarks considered. As can be seen in the table, the use
of Hitmap leads to a great reduction with all benchmarks.

We can conclude that Hitmap greatly simplifies the programmer effort for data dis-
tribution and communication, compared with the equivalent code needed to manually
calculate the information used by MPI routines, or to handle the synchronization details
needed in other models. Moreover, Hitmap encapsulates generic calculations into plug-

44 Chapter 3. The Hitmap Library for Homogeneous Systems

Metric Cannon’s MG
C + MPI Hitmap C + MPI HTA UPC OpenMP Hitmap

McCabe’s C.C. 34 14 210 148 218 168 107
Halstead D.E. 1 892K 359K 29 568K 54 366K 35 084K - 19 265K

KDSI (COCOMO) 201 104 1 389 1 277 1 413 1 343 945

Metric LU IS
C + MPI Hitmap C + MPI Hitmap

McCabe’s C.C. 216 148 84 55
Halstead D.E. 27 822K 7 576K 2 683K 2 193K

KDSI (COCOMO) 919 606 608 496

Table 3.1: Complexity metrics and development effort for the benchmarks considered.

ins, allowing the programmer to skip the use of tailored formula to compute local tile sizes
in the application code, and neighborhood relationship at the different grain levels.

3.6 Conclusions

This chapter introduced Hitmap, a runtime library for hierarchical tiling and mapping of
arrays in homogeneous systems. Hitmap was designed to simplify parallel programming,
providing functionalities to create, manipulate, distribute, and communicate tiles and hi-
erarchies of tiles.

After analyzing the experimental results, we can conclude that the use of Hitmap does
not imply a significant performance degradation. The tiling abstraction layer do not lead to
a noticeable efficiency loss, while the use of this library greatly simplifies the programmer
effort compared to the equivalent code needed in other implementations analyzed.

In the following chapter, we will use Hitmap library as a starting point to analyze
the possibility of creating a programming model to take profit of all available hardware
resources in heterogeneous environments.

Chapter 4
New Abstraction Layers for an
Heterogeneous Hitmap

In Chapter 3 we described the foundations of the Hitmap library, where dense data struc-
tures (tiling arrays) can be handled independently of the target platform. Nevertheless,
that work is only focused on CPU based, distributed systems environments.

In this chapter we analyze the possibility of creating a programming model and frame-
work that support heterogeneous platforms encapsulating the selection of (a) good con-
figuration parameters values for heterogeneous devices, (b) the management of arbitrary
tile data structures, (c) mapping and load balancing functions, and (d) synchronization/-
communication functionalities between CPU-GPU heterogeneous devices. To achieve it,
we present a programming framework that extends the Hitmap library. We introduce this
framework as a prototype tool that integrates a parallel computation model which takes
profit of all available hardware resources (CPU-GPU) in heterogeneous environments.
This framework allows to generate abstract codes which are transparently adapted to het-
erogeneous systems with mixed types of accelerator devices. Moreover, we present a lo-
cal data partition policy for polyhedral computations with affine expressions. This policy
transparently creates a tuned partition of computations to be launched in a single acceler-
ator device when it is not possible allocate the whole data structures of a computation in
the target device.

4.1 Mapping synchronization issues

4.1.1 Conceptual approach

Heterogeneous systems can be built with very different hardware devices (CPU-cores, ac-
celerators) in several interconnected nodes, in a distributed environment. Portable codes
for such systems should implement parallel algorithms, abstracting them from the map-

45

46 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

Data distribution and layout

Coordination of processes

Partition for local device
(Core, GPU, ...)

Coordination CPU/Accelerator

Memory access patterns C
o

o
rd

in
at

io
n

 le
ve

ls

M
ap

p
in

g
 le

ve
ls

Figure 4.1: Mapping/Coordination levels. White boxes show the original Hitmap approach.

ping activities that adapt the computation to the platform. Thus, the programming model
should encapsulate the mapping techniques and the CPU/accelerator synchronization with
appropriate abstractions.

We propose a programming model and framework for heterogeneous target platforms
based on the same Hitmap concepts: (1) Several layers of plug-in modules that encapsu-
late the mapping functions; and (2) functionalities to build the coordination (synchroniza-
tion and communication) structures of the algorithms, in a way that they are transparently
adapted at run-time in terms of the results of the mapping functions.

Our work extends the Hitmap approach. Figure 4.1 shows the different mapping levels
of the original Hitmap, among with our proposed extension for this transparent synchro-
nization solution. As we stated in the previous chapter, Hitmap has a single level of
data-partition and layout. It is designed to encapsulate coarse-grain mapping techniques,
appropriate for distributed-memory nodes.

We propose to add a second, middle-grain partitioning level, that allows to exploit
a further level of parallelism, adapting the local part of data to the specific characteris-
tics and architecture of the actual device associated to the logical process by the virtual
topology. We name Partitions to new local partition policy modules.

The programmer naturally introduces a third level of mapping inside the kernel code
by implementing specific, thread-level memory access patterns.

Our second-level mapping plug-ins use information about the device and the global
memory access pattern of the kernel, to generate domain partitions that exploit locality,
maximum occupancy, coalescence, or other device properties that affects performance.
The result is an object encapsulating information about a partition of the local computation
in a grid of blocks. The same abstraction can be used for techniques of very different
nature: tiling techniques for CPU-cores, threadblock size-shape choice policies for GPUs,
or other sophisticated tuning techniques.

Finally, the coordination of the data movement between the CPU and accelerators,

4.1. Mapping synchronization issues 47

together with the kernel launch, is automatized by a run-time system, using the second-
level partition results. Padding can be automatically added to tiles when needed, properly
aligning data to the memory banks of the particular device, alleviating memory bottle-
necks, and improving cache usage.

This approach can be used together with techniques to automatically generate kernels
for different architectures from common specifications (see e.g. [37, 104]), avoiding the
need to supply optimized kernels for all the architectures that compose the target het-
erogeneous system. By encapsulating the CPU/accelerator coordination in a transparent
system, we also allow to integrate calls to library kernels specifically optimized for a given
architecture, such as CUBLAS [88] for GPUs.

We also promote the abstraction of hierarchical tiles to specific programming lan-
guages for accelerators. In this work we use CUDA as a proof of concept, doing this
exercise for more generic languages, such as OpenCL, is straightforward. Thus, we in-
troduce a common array abstraction, simplifying the porting of code between CPU cores
and accelerators.

This conceptual framework adds new functionalities to the Hitmap library without
modifying the original structure. This imposes a minimal impact on the original Hitmap
codes, which takes care of the coordination of processes in the upper level. The new
extension takes care of adapting the local parts to the device automatically assigned to
the logical process. Plug-ins with new mapping techniques may be included and tested
without modifying the framework implementation.

4.1.2 Design and implementation

We have developed a prototype implementation of this framework by extending Hitmap.
In this section we describe some design and implementation considerations, and problems
that ought to be solved.

As described in Chapter 3, Hitmap is designed to manipulate hierarchical tiling ar-
rays. The HitShape class implements tile domains. A shape object represents a subspace
of array indexes defined as an n-dimensional rectangular parallelotope. Its limits are deter-
mined by n Signature objects. Each Signature is a tuple of three integer numbers (begin,
end, and stride), representing the indexes in a domain axis.

Hitmap defines an API for data-partition modules, named Layout plug-ins. It defines
a wrapper function that links the main code with the chosen plug-in. The Layout plug-
ins receive as parameters: (1) A virtual topology object (HitTopology), (2) a domain to
be mapped (a HitShape object), and (3) optional parameters for the specific technique.
They return a HitLayout object containing a local domain (another HitShape), information
about neighbor relations, and other mapping details. These objects are used as parameters
in the constructors of HitComm objects that express tile communications across logical

48 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

processes.

• Partitions: We follow the same approach for the new second-level of local partition
plug-ins. The wrapper function is similar, but also selects different implementations
of the same plug-in name depending on the architecture of the target device at run-
time assigned to the logical processes. Our current wrapper differences between
CPU-cores, and several NVIDIA’s CUDA supported architectures.

The Hitmap initialization function gathers information about the particular system
devices and builds an internal physical topology object. The virtual topology con-
structors attach each logical process to one device or devices subset (e.g set of CPU-
cores). The Partition plug-ins receive as parameters: (1) The attached devices data;
(2) a HitLayout object with information of the local domain to be mapped. Optional
parameters indicating the memory-access patterns of the low-level threads can be
supplied. The result is a new HitPartition object containing information about block
shapes, grid sizes, and information to generate tile paddings if needed.

As example, we have implemented a trivial partition plug-in called Default. The
CPU-cores implementation simply creates a grid with one element containing the
full local shape. The GPU implementations split the local domain in rectangular
blocks with 1×512 threads. This solution is based on an NVIDIA’s recommenda-
tion [118]. More sophisticated policies can be integrated as new plug-ins, as will be
described in Sects 5.1, 5.2, and 5.3.

• Assigning several logical processes to the same device: We have introduced a
new technique in the virtual topology modules of Hitmap. It allows to assign more
than one logical process to the same device. This has two purposes: As a po-
tential load-balancing technique, and to transparently use accelerators to perform
large computations whose data do not directly fit in the accelerator global memory.
Thus, the full computation is carried out in smaller parts, coordinated by the Hitmap
upper-level communication structures. (Another solution for this problem is studied
in Sect. 4.2.)

• Kernel definition and launch: We provide a macro function to declare the function
headers of different kernel versions for different architectures, using a common
interface. The following example shows the headers of two implementations (one
for CPU-cores, another for pre-Fermi GPUs) of the same kernel:

hit_kernelDefinition(CORE, mmult, HitTile_float *A,
HitTile_float *B, HitTile_float *C) {

hit_kernelDefinition(GPU_R1, mmult, HitTile_float *A,
HitTile_float *B, HitTile_float *C) {

4.1. Mapping synchronization issues 49

We develop a kernel launching function that transparently do the coordination with
the assigned device. It receives the kernel name, a partition object, and the ker-
nel parameters, indicating which ones are inputs and which ones are outputs (see
hit_kernelLaunch function call in the full example of Figs. 6.1).

This function deals with linking issues of kernels written in specific languages. For
example, the launch of a kernel for an NVIDIA GPU needs a special syntax, and
the launching code has to be compiled with the CUDA compiler. We use internal
wrapper functions with different implementations for different architectures. Each
implementation is compiled with the proper tools before linking. A selection mech-
anism checks at run-time the nature of the assigned device architecture and calls the
appropriate implementation for the local device.

For CPU cores, the wrapper simply calls the proper C function passing the indicated
arguments. For accelerators the process is more complex, and involves communi-
cation between the main system memory and the device memory. We have im-
plemented the synchronization for NVIDIA’s GPUs with the following stages: (1)
Move to the GPU memory the input tiles (the data and the tile handler structure).
Padding restrictions expressed in the HitPartition object are applied to the memory
allocation in this step. (2) Launch the kernel, using the grid parameters from the Par-
tition object, passing the pointers to the new tile handlers in GPU memory. (3) Copy
data from output GPU-memory tiles to the CPU, eliminating padding if needed. Fi-
nally, a mutual exclusion mechanisms has been added in the kernel launch function
to allow several processes assigned to the same device to coordinate themselves for
the use of the device.

These abstractions completely encapsulate the synchronization and coordination
between CPU and different devices, such as cores and accelerators. The same prim-
itive call automatically invokes CPU-core functions written in plain C language, or
launches CUDA kernels.

• Running the programs: Hitmap programs are started like any MPI program, using
the mpiexec command. The MPI hosts file is used to select the machines where the
processes are started. Processes in the same machine are automatically attached to
CPU-cores or GPU devices. If data do not fit into the memory of an accelerator
device, more MPI processes are required to obtain a finer partition. In Sect. 4.2 we
propose a better solution for this problem for some application classes.

4.1.3 Mapping and synchronization issues: Summary

The framework presented in this section encapsulates the mapping techniques into plug-
ins at two different layers of abstraction: One related to logical processes coordination,

50 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

and another related to adapting the computations to the inherent parallelism and architec-
ture details of the actual device associated to each logical process. Thereby, the proposed
high-level API transparently deals with all the details of communication and synchro-
nization between logical processes and accelerator devices, such as GPUs. Finally, this
framework allows to generate codes which are transparently adapted to heterogeneous
systems with mixed types of accelerator devices.

4.2 Memory size restrictions

In Sect. 4.1 we proposed an heterogeneous programming approach and framework based
on: (1) Several layers of plug-in modules that encapsulate the mapping functions; and (2)
functionalities to build the coordination (synchronization and communication) structures
of the algorithms, which are transparently adapted at run-time in terms of the results of the
mapping functions. The approach has been incorporated into Hitmap [31, 40], a parallel
programming library where partition policies are implemented through a set of plug-ins
with a common interface.

In the mapping approach described in Sect. 4.1, the computation partitioning is done
top-down. The whole computation is first split and coordinated among logical processes in
a distributed memory environment (Load balancing techniques can be used at that level to
adapt the amount of computation of each part to the computation power and characteristics
of each device assigned to a process).

Device memory restrictions can be considered at that level in the partition policies
creating a finer grain, partition to generate smaller tasks that fit into devices memories.
However, these policies would become much more complicated, and for huge compu-
tations, they will lead to the creation of a higher number of logical processes, with the
associated penalties for coordination and communication.

We propose to keep using simple partition policies at the highest level, that do not take
into account the memory restrictions of heterogeneous accelerator devices attached to the
system nodes. Then, we propose to introduce a hidden abstraction layer that splits the
computation in several parts whose memory requirements fit the device limits. This layer
is applied after determining the appropriate tile or block geometry (see the dark shaded
box in Fig. 4.2). To keep the obtained optimizations by the tiling techniques of the upper
layer, this new internal partition would use the tiles or blocks as basic mapping elements.
Sections of the grid of tiles/blocks are then sequentially launched to the device as separate
kernels.

In general, due to communication costs between the main node and the device mem-
ories, the partition of a computation should maximize the part sizes. Besides this, when
launching a subpart of a computation, the exact pieces of data structures accessed by

4.2. Memory size restrictions 51

Data distribution and layout

Coordination of processes

(Core, GPU, ...)
Tiling/blocking for local device

Memory access patterns

Coordination CPU/Accelerator C
o

o
rd

in
at

io
n

 le
ve

ls

M
ap

p
in

g
 le

ve
ls

Partitioning Tiles/blocks Grid

Figure 4.2: Mapping/Coordination levels. The new level of automatic partitioning is highlighted
with a dark-grey shadowed box.

the different blocks (mapping units) of that subpart are determined by the program al-
gorithm and the design details of the parallel solution. In our approach, we introduce a
simple abstraction to help the programmer to express the threads access patterns to any
data structure involved. Thus, the system will be able to automatically derive expressions
to compute at run-time the exact memory requirements, and the exact locations of data
pieces needed for a given computation subpart.

4.2.1 Model for parallel computations

Polyhedral domain spaces

We define a domainD as a collection of n-tuples of integer numbers that define a space of
n-dimensional indexes. For dense arrays, the index domain is a subspace of Zn, defined
by a rectangular parallelotope. In this approach we also allow strided domains, where the
parallelotopes are defined by its dimensional limits, and a stride value for each dimension.
A Signature is a 3-tuple of integer numbers S = (b, e, s) : b, e, s ∈ Z representing a subset
of integer numbers where the begin or lower limit is b, the end or upper limit is e, and the
elements are selected using the stride value s. We denote this subset of integer numbers
as the range of the signature S̆.

S = (b, e, s); S̆ = {x ∈ Z : x ≥ b, x ≤ e, (x− b) mod s = 0}

D < S0, . . . , Sn >= {(p0, . . . , pn) : pi ∈ S̆i}

Domains are used in this work to represent the index space of a data structure, a set
of indexed threads, the geometry of a tile/block of threads, a grid of tiles/blocks, or a

52 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

superblock geometry (a subdomain of a grid of tiles/blocks).

Parallel computations

A data structure or tile T is a map between elements of a domain and data elements of a
given type: T : D → dataType. We denote with d(T) the Domain of a tile.

We define a Parallel Computation P < D, f, T0, . . . , Tm > as a collection of threads
manipulating data in one or more data structures or tiles T0, . . . , Tm. The domain of the
computation D defines the number and indexes of the threads to be executed. The com-
putation is the application of the function f (or collection of statements) by each thread
on data elements. A Polyhedral Computation is a parallel computation where its domain
D can be expressed as a parallelotope, and where the function f uses affine expressions
on the thread indexes to locate and access data elements in any data structure Ti.

Access patterns

An Access Pattern AP is a set of access expressions. An Access Expression represents
a domain transformation A : D,Zn → D. It is a tuple of n Signature Functions A =

(A0, . . . , An). Each signature function maps a signature, and one domain element, to
another signature: Ai : S,Zn → S.

Affine Access Expressions are those whose signature functions determine the resulting
signatures using affine expressions in terms of the input domain element ~x ∈ D. Let
S = (b, e, s) be the signature of the dimensional domain of data structure Ti:

Ai < ~ab, bb,~ae, be, c > (S, ~x) = (b′, e′, s′) :

b′ = ~ab · ~x+ bb,

e′ = ~ae · ~x+ be,

s′ = c× s

In some real parallel computations one dimension of a data structure is fully traversed
by any thread. We model this special behavior using infinity values in the signature func-
tion to refer to the limits of the input signature. If bb = −∞, then b′ = b. If be =∞, then
e′ = e.

Union of domains

The union of generic domains expressed by signatures, cannot always be expressed them-
selves by signatures. As an example, consider the situation where there is a gap between

4.2. Memory size restrictions 53

their extremes, such in S = (2, 100, 2), S ′ = (250, 300, 2), or when the strides are not
compatible, such in S = (2, 100, 2), S ′ = (2, 100, 3).

We define the Signature coarse union operator t as: S t S ′ = (b′′, e′′, s′′) : b′′ =

min(b, b′), e′′ = max(e, e′), s′′ = m.c.d.(s, s′). We can also extend the operator defini-
tion to n-dimensional domains. The Domain coarse union of two domains is calculated
applying the signature coarse operator to each pair of signatures with the same index:
D tD′ = (S0 t S ′0, . . . , Sn t S ′n). The application of this operator to merge two strided
parallelotope domains generates another strided parallelotope that can be expressed with
signatures, with minimal number of extra added elements.

Domain transformations

We define a Domain transformation Γ : D,AP,D → D as the coarse union of the
domains obtained applying each access pattern to each element of the second domain,
using as reference or data-structure domain the first parameter domain.

Γ(D,AP,D′) = t{A(D,~x)} ∀~x ∈ D′ ∧ ∀A ∈ AP

We call Regular access expressions to those that for two given input domain elements
~x, ~y, the signatures Ai(D,~x) = (b, e, s) are a coordinates translation of the signatures,
Ai(D, ~y) = (b′, e′, s′) such that ∀i: (1) b′ = b, e′ = e, s′ = s, or (2) b′ = b+ (yi−xi), e′ =
e + (yi − xi), s

′ = s. A Regular access pattern is a pattern with only regular access
expressions. Memory requirements of regular access patterns grow linearly when the
threads space grows in only one dimension.

4.2.2 Partition of regular computations

In this section we present a general algorithm that, given a polyhedral parallel computation
with regular access patterns, determines how to split the grid of tiles/blocks of threads
in regular parts, in such a way that the number of parts is minimal, and the memory
requirements of each part do not exceed a given memory limit. To introduce the basic
concept we first present the special case for 1-dimensional domains. Then, we present the
solution for 2-dimensional domains. Algorithms for higher dimensions can be deduced
from these ones.

To simplify the presentation, in the following algorithms we assume that the thread
index space starts at 1 and, has stride 1 for all dimensions. It is straightforward to extend
the algorithm to use generic thread index domains with any stride or starting positions.

Inputs/Outputs

The algorithms have the following parameters:

54 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

Input: The device memory limit devLim ∈ N.

Input: The dimensional sizes of the grid of tiles/blocks ~g ∈ Nn.

Input: The dimensional sizes of any tile/block~b ∈ Nn.

Input: A collection of data structures or tiles T0, . . . , Tm.

Input: A collection of access patterns, one for each tile AP0, . . . APm.

Output: The number of blocks in each dimension that will form a subpart ~r ∈ Nn.

Algorithm for 1-dimensional spaces

The algorithm is based on determining the linear increasing rate of memory requirements
when more blocks are grouped together, representing it with a linear equation. Substitut-
ing the device memory limit into the equation, we can obtain the higher number of blocks
which memory requirements fits in the available space.

1. B1 = ((1, b, 1)), B2 = ((1, 2× b, 1))
2. s1 =

⊔
i |Γ(d(Ti), APi, B1)|, s2 =

⊔
i |Γ(d(Ti), APi, B2)|

3. Compute α, β, γ : 0 = αx + βy + γ, the linear equation that contains both (1, s1) and
(2, s2).
4. Return r = b−(β · devLim+ γ)/αc

Algorithm for 2-dimensional spaces and beyond

For two dimensional spaces we obtain a plane equation for the memory requirements of
three samples of block groups. Substituting the device memory limit into the equation,
we obtain a linear equation. The points of this equation determine the best candidates for
the solution. These candidates are checked to determine which one leads to less number
of parts due to better alignment of multiples of the new superblock sizes with the grid
dimensions.

1. B1 = ((1, b0, 1), (1, b1, 1)), B2 = ((1, b0, 1), (1, 2 × b1, 1)), B3 = ((1, 2 ×
b0, 1), (1, b1, 1))
2. s1 =

⊔
i |Γ(d(Ti), APi, B1)|, s2 =

⊔
i |Γ(d(Ti), APi, B2)|, s3 =

⊔
i |Γ(d(Ti), APi, B3)|

3. Compute α, β, γ, δ : 0 = αx + βy + γz + δ , that is, the plane equation that contains
(1, 1, s1), (1, 2, s2), and (2, 1, s3).
4. Substitute z = devLim to obtain a linear equation 0 = αx+ βy + δ′.
5. ∀ ~r = (r0, r1) : r0 = bq0c, r1 = bq1c : 0 = αq0 + βq1 + δ′

5.1. Compute k(~r) = dg0/r0e × dg1/r1e
6. Return ~r with the minimum value of k(~r).

4.2. Memory size restrictions 55

Vector addition
1. ∀i ∈ d(~z)
1.1. zi = xi + yi
2. Return ~z

Cellular automata
1. for i=1. . . t
1.1. A′ = A
1.2. ∀(i, j) ∈ d(A)
1.2.1. A(i, j) = (A′(i− 1, j)

+A′(i+ 1, j) + A′(i, j − 1)
+A′(i, j + 1))/4

2. Return A

Matrix-matrix multiplication
1. C = 0
1. ∀(i, j) ∈ d(C)
1.1. ∀ k ∈ [0,m− 1]
1.1.1. C(i, j) = C(i, j)

+A(i, k)×B(k, i)
2. Return C

Figure 4.3: Algorithms for the three cases studied.

Study cases

We are going to present some examples of regular kernels and applications to show how
our model can be used to express different access patterns. The base algorithms for the
study cases are presented in Fig. 4.3.

• Vector addition: This simple kernel computes ~z = ~y + ~x using one thread to
compute the result of each zi element. It uses a 1-dimensional thread space of as
many threads as elements in the arrays. The access pattern for this kernel have a
single access expression:

A0 < 1, 0, 1, 0, 1 >

Thus, the resulting signature

S ′ = A0(S, ~x) = (1× x0 + 0, 1× x0 + 0, 1) = (x0, x0, 1)

contains only one point in its range S̆ ′ = ~x.

• Stencil program: Cellular automata: This is an example of an stencil application
in a two dimensional array space. It implements a PDE solver to compute the
heat distribution is a 2-dimensional discretized space using the Jacobi method. The
application has a step loop that applies a stencil computation, computing the new
value of a matrix position using the old values of its four neighbors. There is only
one input/output parameter, a matrix A.

The thread domain is the same as the matrix index domain. Each thread compute
one matrix position. All threads synchronize on each i loop step.

56 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

The access pattern for this kernel can be expressed with one access expression for
each matrix access, or in a compact form with only one expression:

A = (A0 < 1,−1, 1, 1, 1 >,A1 < 1,−1, 1, 1, 1 >)

Thus, the resulting signatures are:

S ′0 = A0(S0, ~x) = (x0 − 1, x0 + 1, 1)

S ′1 = A1(S1, ~x) = (x1 − 1, x1 + 1, 1)

This compact form directly includes in the access pattern result the four corner
elements that are not really accessed. However, the resulting domain is a parallelo-
tope. When the pattern is applied to a subset of the thread index space, the amount
of added data is negligible, and the parallelotope shape conveniently simplifies the
movement of data between node and device memories.

Note that, for threads in the limits of the thread domain, the resulting accessed
pattern exceeds the limits of the original matrix. To avoid the use of costly condi-
tional evaluations in the fine-grain threads, the A matrix should be extended with
ghost borders, or the thread index space should be reduced by one element on each
border.

• Matrix multiplication: In all the previous examples the resulting domains do not
need to take into account the domain description of the data structures. Thus, the
input signatures on the access expressions are simply ignored.

This study case is a direct implementation of the classical matrix-matrix multiplica-
tionCn,n = An,m×Bm.n, with three loops. It implements a fine-grain parallelization
of the first two loops. Each thread executes the third loop to compute one position
of the resulting matrix.

There are three different access patterns for this application, one for each matrix.
Each pattern has a single access expression:

For matrix A: (A0 < 0,−∞, 0,+∞, 1 >,A1 < 1, 0, 1, 0, 1 >)

For matrix B: (A0 < 1, 0, 1, 0, 1 >,A1 < 0,−∞, 0,+∞, 1 >)

For matrix C: (A0 < 1, 0, 1, 0, 1 >,A1 < 1, 0, 1, 0, 1 >)

4.3. Conclusions 57

This access patterns indicate that each thread accesses to a full row of the A matrix,
a full column of the B matrix, and one element of the C matrix, with the same
indexes as the thread.

4.2.3 Memory size-restrictions: Summary

In this section we have introduced a partition technique that abstracts memory restrictions
of heterogeneous accelerator devices. It can be used to create a transparent mapping layer
for Hitmap library to split the computation in several parts whose memory requirements
fit the device limits. The objective of this policy is to compute the pieces of data structures
required by a generic Hitmap partition, and determine the best sub-partition that ensures
that each subpart fits in the target device memory.

We will discuss in Chapter 6 the feasibility of the local partition technique proposed
to be included in Hitmap, with the help of some experimental results.

4.3 Conclusions

In this chapter we have proposed an extensible framework model to encapsulate runtime
decisions related to data partition, granularity, load balance, synchronization, and com-
munication for systems including assorted GPUs.

Our goal is to create a set of policies to select GPU configuration-parameter values
for Hitmap, exploiting efficiently the GPU capabilities. However, to squeeze the per-
formance of parallel applications in heterogeneous environments it is necessary to study
how the values of GPU configurations parameters affect to the parallel application per-
formance. Thus, in the following chapter we will present an in-depth study of how the
GPU configuration parameters impact on the GPU performance. That study, that helps to
determine good values for threadblock geometries, can be used to create threadblock ge-
ometry selection policies, and will allow us to incorporate these policies in the framework
already discussed.

58 Chapter 4. New Abstraction Layers for an Heterogeneous Hitmap

Chapter 5
Study of GPU Configuration Parameters

The implementation of the abstraction layers described in the previous chapter requires
new level of partitioning methods. For the particular case defined by GPU architectures,
this in turn requires to study the optimal choice of some GPU configuration parameters.
This topic will be covered in this chapter. As we will see, these values have a heavy impact
on the GPU parallel programs performance. The knowledge obtained in this study will
be used in the next chapter to integrate it into our framework, allowing it to transparently
choose good values of GPU configuration parameters at the lower partition level.

5.1 Threadblock geometry

In this section we explain our hypotheses about the effects of changing the threadblock
geometry and other parameters on performance. The subsequent sections are devoted to
the design and execution of appropriate benchmarks to evaluate these hypotheses.

The threads launched to any target GPU architecture are grouped in blocks of threads
(named threadblock in CUDA). This first section presents a discussion on how CUDA
architecture details (Fermi architecture as example in our study) affect the programmer
decisions about threadblock size and shape. We will also discuss the implications derived
from the changes in other configurable parameters, such as deactivating the L1 cache, or
modifying its size. A description of CUDA GPU architectures is presented in Appendix A.

5.1.1 Threadblock size and occupancy tradeoff

Maximize occupancy

A warp in CUDA is a group of 32 threads that is the logical scheduling unit processed in
SIMD by a CUDA multiprocessor (SM). One SM can execute two half-warps at the same
time, each one in a different computational unit. The warps of several threadblocks can
be queued on the same SM, and the warps of the same block are always scheduled to the

59

60 Chapter 5. Study of GPU Configuration Parameters

same SM. When the threads of a warp issue a global memory request, these threads are
blocked until the data arrives from memory. During this high latency time period, other
warps in the SM’s queue can be scheduled and executed. Thus, it is important to have
enough warps queued in the SM to hide the global memory latencies by overlapping them
with computation, or with other memory accesses.

"the number of active warps over the number of max warps supported on one Stream
Multiprocessor" [61] is named Occupancy. The first consideration to maximize Occu-
pancy is to select a proper block size. For example, to maximize the occupancy in Fermi,
the number of threads per block should be an integer divisor of the maximum number
of threads per SM, and higher or equal to 192, to allow to fill up the maximum number
of threads per SM with no more than 8 blocks that is the maximum number of blocks
supported by the SM at a given instant of time (1 536/8 = 192). The only values that
fulfill this requirements are: 192, 256, 384, 512, and 768 (see the Occupancy calculator
spreadsheet developed by NVIDIA [79]).

However, we can also observe that in computations that use a grid with a small number
of total threads, it may be beneficial to use very small blocks to distribute the computa-
tional load across the available SMs in the GPU. For example, to execute 512 threads,
using only one block for all of them forces to execute all the load in one SM [118].

Coalescing and high ratio of global memory accesses

Memory Coalescing is a technique used in kernel coding to force consecutive threads in
the same warp to concurrently request consecutive logical addresses from global mem-
ory. This allows to minimize the number of transaction segments requested to the global
memory. Typically, it is done by properly associating consecutive data-structure indexes
to thread indexes when traversing dense data-structures, such as multidimensional arrays.
Classical examples include many dense matrix and linear algebra operations. Coalescing
is particularly important on codes with a high ratio of global memory accesses.

For this study, we consider that a kernel has a high-ratio of global memory accesses
when each thread contains more than 100 arithmetic instructions per global memory ac-
cess. (see Formula 5.1). We omit the arithmetic instructions usually added to compute the
global thread indexes at the start of the kernel.

#instructionsper_thread

#memory_accessesper_thread
> 100 (5.1)

A common technique to ease the programming of coalescing is to ensure that the
dense data-structures are aligned with the global memory banks and transfer segments.
Thus, arrays with a cardinality of their last dimension that is multiple of 32, simplify the
programming of Coalescing. Moreover, to avoid partition camping problems [80], it is

5.1. Threadblock geometry 61

better to use data structures that are aligned to the number of global memory controllers
or banks on the target architecture.

We suggest that for kernels with a high-ratio of coalesced global memory accesses, the
best performance would be obtained with a block size that maximizes occupancy, and at
the same time maximizes the number of blocks in any SM (e.g. 192 in Fermi). The ratio-
nale behind this hypothesis is that programs with continuous accesses to global memory
need at all times the maximum number of supported threads in an SM to properly hide
latencies (e.g. in Fermi 48 warps, or 1 536 threads). This effect should be especially no-
ticeable on kernels with a short number of total arithmetic instructions per thread, because
when blocks finish, they need to be replaced as fast as possible.

It is highly recommended to activate the L1 cache for kernels with data reutilization
to reduce the global memory accesses [61]. When the L1 memory is not active the size
of transaction segment is reduced and a higher number of them are necessary to supply
the same number of data (see Appendix A). For coalesced kernels, the number of transac-
tions segments required is inversely related to the size of them. Thus, we expect that for
coalesced and no data reutilization kernels deactivating the L1 cache in Fermi does not
lead to a performance degradation. Similarly, for coalesced and data reutilization kernels
to active the L1 cache memory could relax the global memory latencies.

On the other hand, when the code in the kernel is not requesting data fast enough to
need these number of warps to hide latencies, we expect that it is not needed to force the
maximum Occupancy to obtain the best performance. Examples include codes with high
computational workload between global memory requests, not issued at the same time. In
this situation, the computation of one warp may hide the latencies of the memory requests
of other warps, and the best performance results could also be obtained with block sizes
that does not maximize Occupancy.

Non-coalesced accesses

Codes with non-coalesced global memory accesses request many different memory trans-
fer segments from the same warp at the same time, up to one different segment for each
thread. These memory requests are serialized: Therefore, it is much more difficult to have
a code with enough computational workload vs. memory accesses overlapping, to hide
such latencies. In these cases, reducing the number of requests could also have beneficial
impact on the partition camping problems that arise in the global memory banks. Reduc-
ing the blocks up to 32 threads, may preserve at the same time all possible parallelism
(e.g. in Fermi eight blocks with their maximum of 32 threads per block), minimum global
memory bandwidth requested, and minimum number of bank conflicts.

The global memory bandwidth bottleneck, and the partition camping problems, can
become so expensive that it may even compensate to reduce the number of active SPs per

62 Chapter 5. Study of GPU Configuration Parameters

2

4

3

6

8

16

12

24

32

64

48

96

128

192

256

384

512

768

1024

1

ro
w

s

0.33 − 0.17

0.67 − 0.50

0.94 − 0.75

1.00

1 2 43 6 8

1
6

1
2

2
4

3
2

6
4

4
8

9
6

1
2
8

1
9
2

2
5
6

3
8
4

5
1
2

7
6
8

1
0
2
4

columns

Figure 5.1: Maximum Occupancy for different threadblock shapes. It is not possible to cover the
ranges not considered in this figure.

warp using blocks with less than 32 threads. However, reducing it too much may lead to
waste parallelism capabilities and to lose performance. Without using more information
about the architecture details it is difficult to predict the optimum block size. Codes
with scatter accesses could benefit from deactivating the L1 cache memory, since the
transaction segment size is reduced, thus alleviating bottlenecks.

5.1.2 Shape in several dimensions

Besides the effect of size on Occupancy, the chosen shape has also a significant impact on
coalescing, partition camping, and memory bottlenecks.

We show in Figure 5.1 the Occupancy obtained for different combinations of thread-
block shapes for 2-dimensions in a Fermi architecture, when the code does not exhaust
SM resources (registers and shared memory). The block shapes with the same block size,
that also maximize Occupancy, are linked by a gray line.

We expect that in programs with good Coalescing, the best performance results will be
obtained with shapes with no less than 32 columns. One warp should request 32 integer

5.1. Threadblock geometry 63

or float contiguous elements to request full transaction segment and consequently reduce
the total memory bandwidth for the some number of threads. With perfect Coalescing,
in Fermi, the first half-warp request 16 elements, obtaining a full cache line with 32 ele-
ments: The 16 elements requested by the first half-warp, and 16 more elements which are
needed by the second half-warp. Thus, the second half-warp finds all needed elements in
the cache, skipping the global memory access and its latency.

In Fermi, we find 320 or 380 (depending on the exact number of memory banks in
the device) consecutive elements spread across the full span of the five or six memory
banks. Thus, perfectly coalesced codes using a threadblock shape with that amount of
columns, minimize the global memory bank conflicts. We expect that reducing the num-
ber of columns to increment the number of rows immediately derives in an increment of
these conflicts, and in performance degradation.

5.1.3 Tuning techniques and threadblock size and shape

Some of the common code tuning strategies [61] heavily interact with, or are dependent
on, the chosen block size and shape. For example, the CUBLAS optimized matrix opera-
tions [88] uses specific block shapes to improve performance while keeping correctness. It
is an open question when, and where, it is possible to isolate the threadblock configuration
from the application of other tuning techniques.

5.1.4 ThreadBlock size and shape in OpenCL

OpenCL [107] (Open Computing Language) is an open, royalty-free standard for general
purpose parallel programming across CPUs, GPUs, and other processors. It provides
developers with a platform to build portable and efficient software to manipulate these
heterogeneous processing platforms.

OpenCL provides a mechanism to select manually the threadblock shape. The behav-
ior of programs when using the CUDA driver with OpenCL are expected to be similar to
direct CUDA programming. The effects discussed on previous sections are dependent on
the hardware architecture, and thus, they will affect performance in the same way.

OpenCL includes a convenient mechanism to automatically select the threadblock
shape, letting the programmer to skip this decision. However, our study on the use of this
OpenCL automatic mechanism shows that it is focused on using the maximum number
of threads per block (1024 on Fermi). Based on the previous discussion, the reader can
expect that other smaller block sizes will lead to better performance.

64 Chapter 5. Study of GPU Configuration Parameters

5.2 Experimental study

In this section we introduce the design of experiments to verify the previously presented
hypotheses and deductions derived from the architecture observation. We will run differ-
ent benchmarks on a Fermi architecture platform to isolate and test different application
features. Kernels used are intentionally simple, to minimize the interactions among differ-
ent hardware effects, such as coalesced vs. scattered accesses, different ratios of workload
vs. number of memory accesses, cache reutilization, etc.

5.2.1 Setup

The algorithms and coding ideas of some of the benchmarks are obtained from examples
included in the CUDA and OpenCL SDK, or well-known linear algebra libraries, such as
CUBLAS [88] and MAGMA [77]. The original codes cannot be directly used in our study
because their optimizations and tuning strategies are dependent on specific threadblock
sizes and shapes. For example, the threadblock sizes for the basic matrix multiplication
on CUBLAS and MAGMA libraries is fixed to 512 and 256 respectively. We have adapted
and simplified the codes to make them completely independent of the threadblock shape.
We avoid the use of sophisticated tuning techniques to isolate the different effects of the
block shape on each benchmark.

Although we focus on 1- and 2-dimensional problems, results can be extrapolated to
3-dimensional cases. The programs have been tested for different combinations of square-
and rectangular-shaped threadblocks. We use shapes with a number of rows or columns
which are powers of 2, or powers of 2 multiplied by 3, to include all the combinations
that maximize Occupancy for Fermi. With this two shape configurations all blocks that
maximize the SM Occupancy are obtained for Fermi [79]. Thereby, the power of 2 multi-
plied by 3 leads to blocks that does not perfectly exploit the coalescence. That is because
multiple of 32 (the warp size) threads cannot be reached as cardinality in any of the two
block dimensions.

The experiments have been conducted using integer and float elements. We present
results for the integer arrays experiments. As the storage size of both types is the same,
the effects on the memory hierarchy are similar. Float arrays experiments simply present
slightly higher execution times due to the extra computation cost associated to the floating
point operations.

We present one 1-dimensional benchmark. This benchmark uses one input vector
with 1024k-elements. Therefore, we can use blocks with eight or more threads, to gen-
erate grids with no more than the maximum number of blocks allowed in CUDA for any
dimension (e.g. in Fermi 65 535). For 2-dimensional benchmarks we use input matrices
of 6 144 rows and columns. The size chosen has several advantages. First, this size is

5.2. Experimental study 65

small enough to allocate up to three matrices in the global memory of the GPU device
used for the experimentation (see bellow). Second, this size ensures that not all blocks
can be executed at the same time. This size mimics the behavior of bigger matrices, as
long as data is aligned in the same way. Moreover, the dimensions of the matrices are mul-
tiples of: (1) all the block-shape dimensions tested; and (2) the number of global memory
banks in our test platform (described below). Thus, matrix accesses on any threadblock
are always aligned with the matrix storage, generating the same access pattern.

The experiments have been run on an NVIDIA GeForce GTX 480 device. The host
machine is an Intel(R) Core(TM) i7 CPU 960 3.20GHz, 64 bits compatible, with a global
memory of 6 GB DDR3. It runs an UBUNTU desktop 10.10 (64 bits) operative system.
The programs have been developed using CUDA and OpenCL. The CUDA driver used
was the version included in the 4.0 toolkit. All benchmarks were also executed with both
OpenCL 1.0 and 1.1, with the same performance for both versions.

We measure performance considering only the total execution times of the kernel func-
tions in the GPU. We skip initialization and CPU-GPU communication times because they
are not related to our study. Our results are the arithmetic mean of the measures of at least
three more executions.

5.2.2 Benchmarks with coalesced accesses

Vector reduction

We use a reimplementation of one of the CUDA SDK examples modified to allow the
modification of the threadblock shape. The kernel is launched in several synchronized
stages. On each stage each thread reduces two contiguous data elements, storing the result
in a properly compacted ancillary data structure, used as input for the next stage. Thus,
each thread issues two contiguous read requests to global memory, in two consecutive
load operations. After the single arithmetic operation, each full warp performs a write
request. No matter the number of active threads, the coalescing makes the warp to write
the results in a single transaction segment (when the L1 cache is active, otherwise, results
are stored in four transaction segment). The number of blocks is divided by two on each
stage. The main code executes this kernel 16 times to generate enough load to obtain
stable results.

Adaptive-block vector reduction

We suggested in previous sections that applications that executing a small amount of
threads in the whole GPU can benefit from using many small blocks instead of a sin-
gle bigger one, in order to spread the workload and exploit more parallelism across the
SMs. Taking into account this observation, we have introduced an improvement on the

66 Chapter 5. Study of GPU Configuration Parameters

vector reduction code. The first stages are computed with a fixed block size. When we
need less than 15 blocks (the number of SMs in our GPU testing device) to process the
data, we divide the threadblock size to increase the number of blocks and the potential
parallelism. This improvement is done on stages with low workload. We expect a slight
performance improvement, more noticeable for small input data sets.

Matrix addition

This benchmark consists on a direct matrix addition (C = A+B) algorithm. Each thread
is associated with a particular matrix position. This implies three global memory accesses
per thread (two reads and one write). It presents a full coalesced memory access pattern,
with no reutilization of the same matrix elements by other threads

Overloaded kernel

We have generated a synthetic program based on the matrix addition code. It simply
adds an arbitrary number of dummy arithmetic operations (10 000) to the original single
addition after loading the two elements. This code keeps the matrix addition access pat-
tern, but introduces an overload between the load and the store global memory accesses
obtaining a high-ratio of arithmetic operations per thread.

Overlapped memory accesses kernel

We propose another modification to the matrix addition code to force different warps in
the same block to issue load global memory operations at different times. In Fermi there
is a maximum of 48 warps in a SM. We use the warp number to select the exact amount of
dummy arithmetic operations carried out before the loads (warpId × 1 000), and between
the loads and stores ((48 - warpId) × 1 000). We have tested that 1000 dummy arithmetic
operations take more time than the global memory latency. Thus, the warps of the same
block that are scheduled to the Sm at the same time completely overlap the communication
latencies of the load operations with computation across the different warps.

Naïve matrix multiplication

This benchmark is very simple and straightforward even for a non-experienced program-
mer. Each element of the C matrix, Cij , is calculated through the scalar product of two
arrays. The first one corresponds to the i-th row of the A matrix and the second one to
the j-th column of the B matrix. There is reutilization of data between threads in the same
block at different stages of the dot product. This naïve version is interesting due to the
relationship of the reutilization of caches with the coalesced memory access pattern

5.2. Experimental study 67

Matrix multiplication by block products

We have coded two versions of matrix multiplication (C = A×B) which are independent
of the block size and shape. A naïve matrix multiplication The previously described, and
an iterative block-product matrix multiplication.

In this new benchmark the values of result matrix are updated iteratively on each
iteration. Each block of threads calculates a specific area of the result matrix, bringing to
cache on each iteration as many elements of the two input matrices as threadblock size.

5.2.3 Benchmarks with non-coalesced accesses

Regularly-scattered accesses

This synthetic benchmark is designed to create a simple scattered access pattern in which
each thread requests a different memory transfer segment. Each thread accesses a different
matrix element. The position is computed multiplying the column index of the thread by
the maximum size of a transfer segment (32 elements when L1 cache is active). The
obtained global memory datum is modified with a single arithmetic operation and copied
into the same element to reuse the same transfer segment.

Random accesses

This benchmark is a modified version of the previous one. Each thread copies one value
from a random position of a matrix, in the same position of another matrix. The workload
associated with computing the random indexes is higher than in the previous benchmark,
and comprises around 20 arithmetic operations. Two memory transfer segments are re-
quested per thread, one per each matrix access. The random indexes force most threads
to request elements on different transfer segments, with little or no reuse of transaction
segments contents. This benchmark simulates scattered accesses that typically appears in
graph traversing algorithms, or codes for other sparse data structures.

5.2.4 Experimental results

In this section we present the results obtained by our experiments for both, CUDA and
OpenCL implementations, in order to verify the hypotheses proposed in the previous sec-
tions. We discuss the results in terms of the effects related to the Fermi architecture
features commented at the beginning of this chapter, and in Appendix A. We first describe
the results obtained with CUDA, and then, we discuss the differences with OpenCL.

The results tables shown in this chapter contain the execution time of each scenario.
The tables axes indicate the cardinality of threadblock dimensions.

68 Chapter 5. Study of GPU Configuration Parameters

Coalesced global memory accesses

Small kernels with no data reutilization: Table 5.1(A) shows the execution times of
the matrix addition benchmark for different shapes. The results for the block sizes that
maximize Occupancy are presented with a dark-grey background. The table does not
show the first columns where the warps have at least three quarters of their threads idle,
deriving in a quick grow of the execution time.

The table confirms the expected results, as previously discussed in Sect. 5.1.1: (1) The
best performance is obtained with block sizes that maximize Occupancy; (2) considering
the maximum Occupancy block sizes, diagonals of smaller blocks present better perfor-
mance, with the optimum in blocks of 192 threads; (3) blocks with less than 32 columns
perform really bad due to the loss of coalescing and idle threads in the warp; and (4)
blocks with more columns and less rows, imply less conflicts when accessing the global
memory banks (with this kind of shapes the same warp accesses to a lower number of
global memory banks).

Table 5.4(A) shows the execution times of the vector reduction benchmark. For the
vector sizes chosen, we cannot choose blocks sizes below 32, due to the maximum number
of blocks per dimension supported in CUDA (reducing the size of the blocks increments
the number of them for the same input set). Having similar properties than the matrix
addition, the effects observed are similar, and the best performance is found in 192 threads
per block. Our results indicate that the adaptive-block vector reduction improves the
performance only for small input data sets. For example, 3 % to 4 % for 1023 k-elements
input vector. This technique has more impact on computations with a higher workload
per thread.

As described in Sect. 5.1.1, for coalesced codes without data reutilization, deactivat-
ing the L1 cache does not affect performance. There are four more transaction segment
requests, but the segments are four times smaller. The final requested global memory
bandwidth does not significantly change.

Higher loaded kernels: Table 5.1(B) shows the execution times of the overloaded ker-
nel. As expected for high loaded coalesced codes, with no data reutilization across
threads, and low number of memory accesses comparing with arithmetic operations, the
results indicate that any shape that maximizes occupancy produces a similar performance.
The big number of computation compared to the number of global memory accesses per
thread reduces the effect produced by the block shape on the memory accesses. In these
cases, the computations govern the performance behavior.

The effect of the faster replacement of ending warps when smaller blocks finish, is
negligible comparing with the overall computation. In this code, all warps begin executing
the load accesses at almost the same time. Thus, latencies are not really well hidden across

5.2. Experimental study 69

(A
)M

at
ri

x
A

dd
iti

on
:E

xe
cu

tio
n

Ti
m

es
C

ol
um

ns
R

ow
s

8
12

16
24

32
48

64
96

12
8

19
2

25
6

38
4

51
2

76
8

1
02

4
12

8
9,

01
96

6,
35

64
5,

49
5,

48
5,

78
48

5,
24

5,
60

4,
00

32
4,

86
4,

80
3,

36
3,

88
4,

23
24

4,
70

4,
68

3,
28

4,
17

3,
07

16
5,

05
4,

43
3,

23
3,

45
3,

04
3,

38
4,

14
12

5,
42

4,
58

3,
28

3,
55

3,
02

3,
43

3,
05

8
6,

05
4,

97
3,

42
3,

41
2,

96
3,

05
2,

95
3,

17
4,

45
6

7,
18

5,
52

3,
87

3,
53

2,
95

3,
06

2,
94

3,
46

3,
19

4
9,

70
6,

73
5,

06
3,

92
3,

11
3,

10
2,

90
3,

00
3,

05
3,

19
4,

44
3

11
,9

4
8,

48
6,

16
4,

64
3,

53
3,

12
2,

89
2,

96
2,

95
3,

35
3,

18
2

16
,4

3
11

,4
3

8,
55

6,
12

4,
54

3,
68

3,
08

2,
93

2,
93

2,
95

2,
96

2,
99

3,
95

1
29

,9
7

20
,2

4
15

,1
6

10
,5

1
7,

74
5,

73
4,

40
3,

49
3,

08
2,

89
2,

89
2,

91
2,

94
3,

01
3,

94

(B
)O

ve
rl

oa
de

d
K

er
ne

l:
E

xe
cu

tio
n

Ti
m

es
C

ol
um

ns
R

ow
s

8
12

16
24

32
48

64
96

12
8

19
2

25
6

38
4

51
2

76
8

1
02

4
12

8
13

53
96

13
51

64
13

49
13

50
13

51
48

13
49

13
51

13
50

32
13

49
13

49
13

49
13

49
13

50
24

13
49

13
49

13
49

13
49

13
48

16
13

49
13

49
13

49
13

49
13

49
13

49
35

0
12

13
49

14
99

13
49

13
49

13
48

13
49

13
48

8
13

52
13

49
13

49
13

49
13

49
13

49
13

49
13

48
13

50
6

18
02

17
99

13
49

14
99

13
49

13
49

13
48

13
49

13
48

4
23

22
18

03
13

52
13

49
13

49
13

49
13

49
13

49
13

49
13

48
13

50
3

30
96

24
03

18
02

17
99

13
49

14
99

13
49

13
49

13
49

13
49

13
48

2
46

48
30

99
23

25
18

03
13

52
13

49
13

49
13

49
13

49
13

49
13

49
13

48
13

50
1

92
86

61
95

46
45

30
99

23
25

18
03

13
52

13
49

13
49

13
49

13
49

13
48

13
49

13
48

13
50

Table 5.1: Execution times for the benchmarks considered (A,B,part 1). Time in milliseconds.
Maximum Occupancy with dark-gray background in Fermi architecture.

70 Chapter 5. Study of GPU Configuration Parameters

(C
)O

ve
rl

ap
pe

d
M

em
or

y
A

cc
es

s
K

er
ne

l:
E

xe
cu

tio
n

Ti
m

es
C

ol
um

ns
R

ow
s

8
12

16
24

32
48

64
96

12
8

19
2

25
6

38
4

51
2

76
8

1
02

4

12
8

90
1

96
87

3
64

85
1

87
2

89
5

48
84

1
85

1
87

3
32

83
1

84
0

85
0

87
3

89
6

24
82

7
83

5
84

1
84

9
87

3
16

82
2

82
8

83
1

84
2

85
2

87
3

89
6

12
81

9
91

5
82

8
83

4
84

2
84

7
87

3
8

82
8

81
9

82
4

82
8

83
2

84
2

85
1

87
3

89
6

6
11

03
10

92
81

9
91

4
82

8
83

4
84

2
84

8
87

3
4

14
38

11
04

82
8

81
9

82
3

82
8

83
2

84
2

85
1

87
3

89
6

3
19

16
14

69
11

03
10

92
81

8
91

4
82

8
83

4
84

2
84

8
87

3
2

28
71

19
15

14
36

11
03

82
8

81
9

82
3

82
8

83
1

84
2

85
2

87
3

89
6

1
57

41
38

28
28

71
19

15
14

37
11

03
82

8
81

8
82

3
82

8
83

2
84

2
85

2
87

3
89

6

(D
)R

eg
ul

ar
ly

-s
ca

tte
re

d:
E

xe
cu

tio
n

Ti
m

es
C

ol
um

ns
R

ow
s

8
12

16
24

32
48

64
96

12
8

19
2

25
6

38
4

51
2

76
8

1
02

4
12

8
12

,8
2

96
12

,6
8

64
12

,5
8

12
,6

0
12

,6
3

48
12

,4
4

12
,4

7
12

,5
1

32
12

,2
9

12
,3

4
12

,3
3

12
,3

9
12

,3
3

24
12

,1
3

12
,1

8
12

,1
6

12
,1

7
12

,1
9

16
11

,8
9

11
,9

9
11

,9
8

12
,0

1
12

,0
0

12
,0

5
11

,9
3

12
11

,6
3

11
,7

8
11

,8
3

11
,8

7
11

,8
6

11
,8

1
11

,8
8

8
11

,2
5

11
,4

1
11

,5
3

11
,7

1
11

,7
4

11
,7

3
11

,7
1

11
,7

5
11

,6
5

6
10

,8
9

11
,1

5
11

,2
8

11
,5

0
11

,6
3

11
,6

5
11

,6
3

11
,5

4
11

,6
7

4
11

,5
3

11
,5

2
11

,5
2

11
,1

6
11

,3
1

11
,5

2
11

,5
5

11
,5

3
11

,5
2

11
,5

2
11

,2
8

3
10

,2
8

10
,4

2
10

,5
6

10
,9

5
11

,0
8

11
,3

6
11

,4
5

11
,4

8
11

,4
6

11
,3

1
11

,4
4

2
10

,2
3

9,
99

10
,0

6
10

,5
3

10
,6

7
11

,0
1

11
,1

4
11

,3
9

11
,4

1
11

,3
8

11
,3

5
11

,3
5

10
,9

2
1

12
,8

0
11

,4
2

10
,0

2
9,

79
9,

91
10

,4
3

10
,5

4
10

,8
8

11
,0

9
11

,3
4

11
,3

5
11

,3
1

11
,2

4
11

,2
4

11
,1

5

Table 5.2: Execution times for the benchmarks considered (B,C,part 1). Time in milliseconds.
Maximum Occupancy with dark-gray background in Fermi architecture.

5.2. Experimental study 71

(E
)R

eg
ul

ar
ly

-s
ca

tte
re

d
w

ith
ou

tL
1

ca
ch

e:
E

xe
cu

tio
n

Ti
m

es
C

ol
um

ns
R

ow
s

8
12

16
24

32
48

64
96

12
8

19
2

25
6

38
4

51
2

76
8

1
02

4
12

8
10

,4
9

96
10

,3
8

64
10

,2
7

10
,0

4
10

,2
2

48
10

,0
9

9,
78

10
,0

7
32

9,
90

9,
73

9,
86

9,
89

9,
68

24
9,

61
9,

48
9,

58
9,

59
9,

52
16

9,
13

9,
20

9,
33

9,
38

9,
27

9,
36

9,
06

12
8,

57
8,

88
9,

06
9,

12
9,

05
8,

96
9,

02
8

7,
79

8,
02

8,
42

8,
89

8,
85

8,
90

8,
80

8,
85

8,
63

6
7,

10
7,

50
7,

79
8,

41
8,

65
8,

70
8,

63
8,

44
8,

69
4

8,
29

8,
30

8,
31

7,
60

7,
85

8,
29

8,
37

8,
34

8,
34

8,
30

7,
83

3
6,

97
6,

58
6,

63
7,

21
7,

25
8,

02
8,

14
8,

14
8,

16
7,

84
8,

05
2

7,
94

6,
79

6,
44

6,
61

6,
59

7,
17

7,
22

7,
84

7,
86

7,
82

7,
80

7,
86

7,
30

1
10

,9
1

8,
78

7,
64

6,
64

6,
29

6,
42

6,
42

6,
73

7,
13

7,
74

7,
69

7,
67

7,
48

7,
62

7,
34

Table 5.3: Execution times for the benchmarks considered (E,part 1). Time in milliseconds.
Maximum Occupancy with dark-gray background in Fermi architecture.

72 Chapter 5. Study of GPU Configuration Parameters

(A) Vector reduction
Columns

Rows 32 48 64 96 128 192 256 384 512 768 1 024
1 1,1087 0,9048 0,7893 0,6852 0,6582 0,6268 0,6358 0,6312 0,6330 0,6635 0,7885

(B) Naïve Matrix Multiplication
Columns

Rows 32 48 64 96 128 192 256 384 512 768 1 024
32 6441
24 5842
16 5218 6094 6579
12 5121 6478 5979

8 4982 5862 5265 5479 6470
6 4860 5775 5293 5940 5457
4 6177 4746 4855 4898 4915 4743 6066
3 7960 5918 4653 4928 4649 5421 4520
2 11890 8121 6103 4415 4339 4325 4450 4288 6172
1 23730 16086 12073 8399 6967 5855 5866 5909 6120 5951 7223

(C) Random access
Columns

Rows 32 48 64 96 128 192 256 384 512 768 1 024
32 *
24 347,27
16 388,41 345,63 *
12 334,81 367,85 347,79

8 330,47 332,90 388,28 347,56 *
6 324,86 325,46 334,77 369,78 347,23
4 325,50 347,18 330,47 334,99 388,41 347,18 *
3 328,07 357,41 324,82 327,35 334,75 369,59 347,30
2 370,40 326,11 325,48 324,88 330,43 334,72 388,42 347,17 *
1 634,43 490,32 370,41 328,04 325,47 324,82 330,43 334,80 388,49 347,45 *

Table 5.4: Execution times for the benchmarks considered (part 2). Time in milliseconds. Maxi-
mum Occupancy with dark-gray background in Fermi architecture.

the warps of a block.

Hiding global memory latencies: Table 5.2(C) shows the execution times of the over-
lapped memory accesses kernel. Recall that this benchmark code ensures that the latencies
of global-memory loads on any warp are completely overlapped with the computation of
other warps in the block. We observe that the best performance is obtained for blocks
with less than 192 threads. As expected, in this type of code maximum Occupancy is not
needed to hide latencies, because they are hidden by the computation overlap.

Intensive data reutilization: Table 5.4(B) shows the execution times of the naïve ma-
trix multiplication code. The tables for this benchmark skip all the columns where the
warps have idle threads and the execution time explodes. Due to the high reutilization
of data, bigger block sizes have more opportunities to reuse the cache lines. Thus, the
best performance results are for the biggest block size that maximizes Occupancy (768).
For a given block size, we also observe a trend that leads to obtain better performance
results when using a shape with more columns and less rows. Blocks with more columns,

5.2. Experimental study 73

Columns
Rows 32 48 64 96 128 192 256 384 512 768 1 024

32 30
24 344
16 352 568 38
12 362 257 342

8 357 625 366 331 64
6 357 580 372 196 306
4 201 610 334 354 300 256 124
3 177 379 291 313 264 166 190
2 200 343 253 277 255 250 249 246 245
1 366 603 437 490 513 529 520 509 504 496 488

Table 5.5: Naïve matrix multiplication. L1 Cache misses.

up to 384 (due to the 6 global memory banks on our device) reduce the number of bank
conflicts. It also impacts on the reutilization and trashing of the L1 cache due to the al-
gorithm properties. Table 5.5 shows the number of L1 cache misses as reported by the
visual profiler included in the CUDA toolkit.

For maximum Occupancy we observe a clear correlation between performance and
the number of L1 and L2 cache misses. Blocks with one row have no opportunity to
exploit any reutilization of data on the second matrix. Thus, they produce many more
cache misses and their performance is degraded. The best performance is found for the
shape 2×384. With this block shape a proper cache misses balance between A-B matrices
is reached and then, the global memory accesses are reduced.

Increasing the L1 cache size to 48 KB, reduces cache misses and produces an improve-
ment of performance between 0.3 % to 7.5 % for block sizes with maximum Occupancy.

Matrix multiplication by block products performs worse than the naïve implementa-
tion for the same shapes. The naïve version achieves better reutilization of data, as all
warps work on the same parts of the first matrix during the dot product evolution. Naïve
multiplication algorithm is more suitable for multi- or many-cores architectures with
cache hierarchies, while block is more appropriate for distributed-memory with higher
communication latencies.

Non-coalesced accesses

Regularly-scattered accesses: Table 5.2(D) shows the execution times of the regularly
scattered accesses benchmark. As discussed in Sect. 5.1.1, we expect that this type of code
does not need to maximize Occupancy, due to the big amount of simultaneous memory
requests whose latencies cannot be hidden. Moreover, reducing the number of threads
per block also alleviates the global memory bandwidth bottleneck. We observe that the
best performance is obtained for blocks with only 24 threads (shapes with 1×24, or 2×12
threads). As reasoned in Sect. 5.1.1, having even some idle SPs per warp is compensated

74 Chapter 5. Study of GPU Configuration Parameters

by the reduction of the memory bandwidth bottleneck, and the bank conflicts.
Table 5.3(E) shows the execution of this benchmark with L1 cache deactivated. As

expected, reducing the transfer segments alleviates the global memory bandwidth problem
up to the point that it is not needed to have idle SPs, and the best block size moves from
24 to 32 threads per block (warps with all threads active). The performance improvements
are in the range of 20 % to 40 % for block sizes of 16 or more threads.

Random accesses: Table 5.4(C) shows the execution times of the random accesses
code. This program uses many registers for the computation of the random indexes. Thus,
the Occupancy level is reduced for any shape. The cells with a star indicate block sizes
that cannot be executed due to the exhaustion of resources, leading to zero Occupancy.

This program has a medium ratio of global memory accesses per arithmetic operations
(2 global memory accesses vs. 20 arithmetic operations). This ratio is not small enough
to eliminate the effect of improving performance when reducing the block size, up to 192
for maximum Occupancy. For this type of codes, the block size is the key decision. The
shape is not relevant due to the random access pattern used on each thread, that distributes
global memory accesses across global memory banks, and no coalescing can be exploited.

The medium workload on the threads helps to hide the global memory access latencies
when the L1 is active. Although this code has a non-coalescent pattern, the deactivation
of L1 cache only improves the performance slightly (less than 1 % for any shape).

OpenCL results

All the results obtained with OpenCL 1.0 and 1.1 consistently show the same effects
discussed for CUDA. The versions of OpenCL tested introduces a performance penalty
on the Fermi architecture used for the experimentation, due to the OpenCL abstraction
layer.

We have tested the mechanism provided by OpenCL to automatically select the block
size and shape. For all our benchmarks, the results indicate that this mechanism system-
atically chooses threadblock sizes of 1024 threads, maximizing the number of threads per
block. However, due to the Fermi architecture particular features, this block size does
not maximize Occupancy. Thus, the performance obtained with this mechanism is always
far from the optimum, with performance degradations between 28 % and 65 % in our
benchmarks.

This technique can easily be improved using a simple and conservative strategy, se-
lecting blocks of 768 threads for big kernels, and 192 for small ones. More sophisticated
techniques can be devised using code analysis to detect other code features, such as co-
alescing vs. scattered accesses, ratio of global memory accesses, total workload, etc. as
we will present in Sect. 5.3.

5.3. Micro-benchmarks (uBench) 75

5.2.5 Limitations of this experimental study

One of the most important decisions when programming a GPU is to choose specific
values for global programming parameters, such as the threadblock size and shape, in
order to achieve the highest performance. However, these parameters are usually chosen
by a trial-and-error process.

The choice of global parameters are closely related to the particular parallel problem
implementation. We have shown that a combined analysis of the knowledge of a specific
GPU card architecture, code features such as the type of global memory access pattern
(coalesced vs. scatter), the total workload per thread, and the ratio of global memory read-
write operations, can significantly affect the choice of important programming parameters,
such as threadblock shape, and the L1 cache memory configuration. Nevertheless, there
are some significant gaps in this study that will be considered in the following section.

The most important gaps that have not been considered so far are:

• More types of global-memory access patterns.

• Ratio of L1 cache memory lines evictions compared to the size of this memory.

• Ratio of global memory data reutilization across threads in the same block, and
across blocks, compared to the number of global memory accesses per thread.

• The use of more GPU architectures.

5.3 Micro-benchmarks (uBench)

This section describes a suit of micro-benchmarks, that we named uBench [116, 117,
120], in order to overcome the limitations of our previous study, described above. To
do so, we will explore the impact on performance of (1) the thread-block size and shape
choice criteria, and (2) the GPU hardware resources and configurations, with the help of
a tailored micro-benchmark suite designed to explore the performance impact of the GPU
configuration parameters. The knowledge gained thanks to the uBench suite will be used
as a guideline to help the programmer to choose good values for the GPU configuration
parameters.

5.3.1 The uBench suite

uBench design principles

We first discuss the design principles of the uBench micro-benchmark suite. To better
understand the effects produced in the L1 cache, and to isolate effects derived from the

76 Chapter 5. Study of GPU Configuration Parameters

global memory access patterns, all benchmarks use as input/output parameter a single
array structure. Some benchmarks logically access it as a two dimensional matrix, while
others access it as a vector.

• Data sizes and storage order: We have decided to simplify communications and
data transfers between the main programs written in C and the CUDA GPU ker-
nel. Matrices are stored in row-major order. All benchmarks work with integer
elements. Float elements use the same memory space as integers, and each SP has
one unit for integer and one unit for single precision arithmetic operations. This
kernels working with single-precision float elements have a similar behavior as in-
teger computations. On the other hand, double precision numbers require double
memory space, and there are not as many double precision arithmetic units as SPs.
Instead, two SPs are coordinated to issue one single double precision operation.
Thus, considering one double precision number as two floats, most performance
effects can be extrapolated.

The number of threads launched by the uBench kernels is equal to the number of
matrix elements. We have designed micro-benchmarks so that each one fulfills
the following guidelines: (a) Each thread access only one global memory location,
a different one for each thread, and (b) each thread access several global memory
locations with a given pattern, exploring effects that appear in scenarios where there
are more input data elements than the number of kernel threads.

Coalescing is one of the most important issues that affect the code performance, as
it is mentioned in Chapter 2 and Appendix A. Different micro-benchmarks explore
different classes of coalescing patterns. Nevertheless, negative performance effects
can also appear due to conflicts in global memory banks (this effect is known as Par-
tition Camping [4, 47]). Due to the introduction of L2 cache memory in Fermi and
Kepler architectures, the global-memory bank conflicts are significantly reduced on
applications with high transaction-segment reutilization. However, with low data
reutilization, the L2 cache has a limited beneficial effect, and the global-memory
bank conflicts can appear. We design micro-benchmarks with different data reuti-
lization degrees to test this effect.

• Data sizes and alignment: Threads accessing out of the bounds of data structures
should be avoided in kernels. In codes that correlate thread indexes with data-
structure indexes, CUDA programmers tackle this problem in two different ways.
Either the kernels include divergent branches to skip processing for out-of-bounds
threads, or data padding is added to the data structures to align them with the cho-
sen threadblock shape. In both cases the performance impact is very small. More
irregular applications may need more sophisticated codes to deal with the align-

5.3. Micro-benchmarks (uBench) 77

ment of threads and data structures. Their behavior can be extrapolated from results
of micro-kernels that test access patterns not correlated to thread indexes in array
structures.

Alignment of data structures to threadblock sizes. To keep the micro-kernel and the
launcher codes simple, we select matrix sizes with dimensional cardinalities which
are multiples of any of the threadblock dimension cardinalities to be considered in
the study. In this way, we can avoid data padding, or trivial divergent branches,
without losing generality.

Memory bank alignment. In order to selectively introduce memory access patterns
that reproduce or skip the effects of the global-memory bank conflicts described
above, the cardinalities should also include multiples of (a) the number of memory
banks, and (b) the width of the memory-bank, for any CUDA architecture.

Choosing the order of magnitude of array sizes. Coalescing patterns can effectively
hide global memory latencies when there are enough warps scheduled in the SM
during the computation. If the total amount of threads is not enough to fill all the
SMs in the GPU device, there are not enough active warps to hide global memory
latencies. In our study, the Total Amount of Threads in the whole computation (TT)
has been forced to be the same as the total size of the data set. The maximum
number of active threads in the whole device (MT) is the product of the maximum
of active threads per SM by the number of SMs (recall that in Fermi MT = 1 536×
[14, 16], while in current Kepler release MT = 2 048 × 8). We choose different
matrix sizes with the following criteria: (1) TT less than MT; (2) TT slightly higher
than MT (latency hiding may start to happen); and (3) TT much higher than MT
(latency hiding can be fully exploited). To keep execution times bounded, for this
last category we select two different matrix sizes: The first one, for the kernels with
high computational load, is 1 024 times bigger than the size in category (2); the
second one, for those kernels with low computational load, is 9×1024 times bigger
than the size in category (2) (to generate an array that is near to fill up the global
memory of the devices).

The matrix sizes chosen to achieve all the previous criteria in the different CUDA
architectures considered are:

– Category-1 N=96×96

– Category-2 N=192×192

– Category-3 N=6 144×6 144 or N=18 432×18 432

• Computational load and independence of L1 cache configuration: The micro-
kernels are designed to execute at most one basic arithmetic operation for each

78 Chapter 5. Study of GPU Configuration Parameters

data element accessed. Some of them include an extra loop with dummy compu-
tations with constant values, or with a value already read before the dummy loop.
In this way, we generate a configurable load by changing the number of iterations.
Additionally, overload can be added to ensure that the computation times between
memory accesses are higher than the global-memory latencies. This allows to test
the impact of hiding global-memory latencies by coalescing, and/or by overlapping
computation with communication.

All uBenchs are designed to correctly work regardless of the L1 cache configura-
tion. In this way the performance behaviors can be tested using the different cache
configurations (enabled with 16K, enabled with 48K, or disabled).

• Access patterns: We have designed a first subset of uBench micro-kernels with
only one global memory access access per thread, in order to isolate the effects
produced by single global-memory access patterns. These kernels do not read data.
Instead, they use constant values or computed data to write in global memory. To
study the interaction of read-write patterns, we have developed a second set of
micro-kernels combining more sophisticated read patterns with a simple writing
pattern.

These read/write patterns do not intend to represent the whole space of access pat-
terns that can appear in an application. Instead, we focus on pattern classes that can
produce different performance trends due to hardware effects. The selected patterns
cover: The main categories of coalesced patterns; patterns that spread concurrent
accesses across the global memory banks vs. patterns that stress the bank-conflicts;
and patterns that interleave accesses across threadblocks vs. patterns that make
threads in different blocks traverse data structures simultaneously.

Regarding writing patterns, we have chosen first two basic types of coalesced pat-
terns. Both represent patterns where each thread accesses only one data element.
Then, we also add three more types, to study non-coalesced patterns and other spe-
cial situations.

– Pattern I: Each thread accesses one matrix element using the thread global
coordinates (y index indicates the row, and x index indicates the column):

row ← blockIdx.y × blockDim.y + threadIdx.y

column ← blockIdx.x× blockDim.x + threadIdx.x

5.3. Micro-benchmarks (uBench) 79

– Pattern II: Each thread is assigned to a single uni-dimensional coordinate used
to access the array as a vector. For a given grid, independently of the thread-
blocks shape and size, each thread always accesses to the same data position.

index ← (blockIdx.y × gridDim.x + blockIdx.x)× blockSize

+(threadIdx.y × blockDim.x + threadIdx.x)

– Pattern III: The threads use their local block indexes to compute a flattened
index: threadIdx.y × blockDim.x+ threadIdx.x. Then, each thread writes
in the matrix element corresponding to element of the main diagonal with
the thread index on both dimensions. This completely non-coalesced pattern
ensures that all threads in the block access to a different transaction segment.
But all blocks access to the same small set of transaction segments. Thus, there
are not cache trashing effects, and there is high reutilization across blocks.

– Pattern IV: Only one thread per block (the one with threadIdx.x = threadIdx
.y = 0) writes in a matrix position selected as in Pattern I. The remaining
threads do not perform any access. This pattern recreates the effect of sparse
patterns but, due to minimum number of accesses per block, there are no cache
thrashing effects involved.

– Pattern V: All threads access to the first position of the array (vector[0] =

value). This pattern has been designed to produce a high degree of memory
bottleneck.

Finally, reading patterns include different types of coalescing and memory align-
ment techniques, including examples in which threads read many data elements.
They produce different degrees of data reutilization.

– Pattern A: Each thread reads the full column of the matrix with its global x
index. It is a perfectly coalesced pattern with reutilization of the data by other
threads of the same column in different iterations. Thus, reutilization inside
the block is dependent on the exact shape. In different iterations the same
memory banks are accessed.

– Pattern B: Each thread reads the full row of the matrix with its global y index.
Data that are in consecutive positions in global memory are read in different
loop iterations. This pattern can be considered coalesced in the sense that on
each read operation, threads in the same warp are accessing to data in the same
transaction segment. There is reutilization of the transaction segments on the
cache across iterations, and also by threads in the same row. Reutilization

80 Chapter 5. Study of GPU Configuration Parameters

inside the block is dependent on the exact shape. The accesses of all the
threads from the same block are concentrated in the same memory bank on
each iteration, cyclically changing the bank as the loop advances.

– Pattern C: The threads compute a starting position in the array using the block
global indexes and the block size. All the threads in the same block obtain
the same position. Threads from different blocks obtain positions which differ
in a multiple of the block size. The threads execute the same loop to read all
the array positions corresponding to the block. All threads in the same block
reuse the same data independently of the shape.

– Pattern D(s): All threads traverse once the whole array structure as a vector.
However, threads from different blocks start at a different position, travers-
ing the vector cyclically. The position is computed using the global block
identification: blockIdx.y × gridDim.x+ blockIdx.x, multiplied by a stride
parameter (s). When s = 1, there is a high overlapping of blocks accessing
to the same transaction segments, producing bank conflicts, but there is also
a very high reutilization of L1 and L2 caches. When s = 32, we ensure that
each block is accessing to different transaction segments, and the accesses are
balanced across memory banks. Bank conflicts are reduced but reutilization
of caches, specially L2, also decreases. Note that L1 caching in Kepler archi-
tectures is reserved only for local memory accesses, such as register spills and
stack data. Thus, in Kepler, global loads are cached in L2 only (see Sect. A.5
of Appendix A.1).

uBench suite description

This section include an enumeration and short description of the benchmarks included in
the uBench suite.

uBench-0 This kernel is designed to test the performance impact of the device schedulers
when facing different threadblock shapes, without memory access interferences. It
does not do computation, and neither do the threads access any data.

uBench-1 No reads. Each thread copies the same constant value in its position using
Pattern I.

uBench-2 No reads. Each thread copies the same constant value in its position using
Pattern II.

uBench-3 No reads. The same as uBench-1 but with an overload loop with one thousand
iterations.

5.3. Micro-benchmarks (uBench) 81

uBench-4 No reads. The same as uBench-2 but with an overload loop with one thousand
iterations.

uBench-5 No reads. Each thread copies the same constant value in a position using
Pattern III.

uBench-6 No reads. Only the thread with threadId.x = 0 and threadId.y = 0 of each
block stores in its global matrix position the same constant value.

uBench-7 No reads. Each thread copies a calculated value to the first vector position.
The values are calculated using a loop of one thousand iterations.

uBench-8 Each thread copies in its position the sum of the matrix values in the column
with its global x index.

uBench-9 Each thread copies in its position the sum of the matrix values in the row with
its global y index.

uBench-10 Similar to uBench-8 but with an overload loop with one thousand iterations.

uBench-11 Similar to uBench-9 but with an overload loop with one thousand iterations.

uBench-12 Each thread sums the values of a matrix block selected with Pattern C, and
stores the result in a position selected using Pattern II.

uBench-13 Each thread stores in its position the sum of all the elements of the whole data
structure. Each thread starts to cyclically traverse the array at a different position
with stride 1.

uBench-14 The same as uBench-13 but using stride 32 to compute the starting position.

uBench classification criteria

The uBench benchmarks have been classified according to the following criteria (summa-
rized in Table 5.6):

1. Types of global-memory access patterns.

2. Ratio of arithmetic instruction per thread compared to the number of global memory
access (high, low, or none).

3. Ratio of L1 cache memory lines evictions compared to the size of this memory (low,
medium, or high).

82 Chapter 5. Study of GPU Configuration Parameters

(1) (2) (3) L1 (4) Data
uBench Access Load eviction reutilization

patterns ratio ratio in/across blocks
uBench-0 -.- None None None
uBench-1 -.I Low Low Low
uBench-2 -.II Low Low Low
uBench-3 -.I High Low Low
uBench-4 -.II High Low Low
uBench-5 -.III Low Low Low/High
uBench-6 -.IV Low Low Low/High
uBench-7 -.V High Low High/High
uBench-8 A.I Low High Shape/Medium
uBench-9 B.I Low Medium Shape/Medium

uBench-10 A.I High High Shape/Medium
uBench-11 B.I High Medium Shape/Medium
uBench-12 C.II Low Medium High/Low
uBench-13 D(1).I Low Medium High/High
uBench-14 D(32).I Low Medium High/Medium

Table 5.6: uBench classification, according to the criteria proposed.

4. Ratio of global memory data reutilization across threads in the same block, and
across blocks, compared to the number of global memory accesses per thread (low,
medium, or high). We also consider a special class (Shape) for those benchmarks
in which in-block reutilization is dependent on the exact shape of the block.

5.3.2 uBench evaluation

Experiments have been conducted for all the benchmarks described using both Fermi and
Kepler architectures. Due to the maximum number of threads per threadblock supported
by Fermi and Kepler architectures (1 024 threads) the threadblock shapes should fulfill
the following criteria: (1) (#rows and #columns) ∈ [1, 1 024]; (2) (#rows × #columns)
≤ 1 024. To reduce the search space, we only use threadblock geometries where (3)
#rows and #columns are multiple of two and/or three. This ensures that we include in
the tests all possible combinations that can derive in maximum Occupancy in any current
CUDA architecture. Recall that the maximum number of concurrent threads per SM in
Fermi is 1 536, which is a multiple of three. We have explored, in terms of execution
time, all the combinations of sizes for each threadblock dimension that complies with
the previous shape restrictions. (1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
256, 384, 512, 768, 1 024), of L1 configurations (enabled, disabled, increased), and of
input data sizes (input_data_size=idsi/i ∈ [1, 2, 3A, 3B]; ids1= N×M= 96×96= 9 216,

5.3. Micro-benchmarks (uBench) 83

ids2= N×M= 192×192= 36 864, and ids3A= N×M= 6 144×6 144= 37 748 736 or ids3B=
N×M= 18 432×18 432= 339 738 624).

To show an example of how the results obtained with uBench can be extrapolated
to real life applications, we have tested two different CUDA implementations, of one
real-world application: Cannon’s algorithm for matrix-matrix multiplication (see Ap-
pendix B). The first implementation is a direct translation of the original algorithm, and
the second one modifies the order in which matrix blocks are accessed to force each
threadblock to start reading from a different global memory bank. The codes are included
in the uBench release.

The experiments have been run on a GeForce GTX 480 (Fermi) and a GForce GTX
680 (Kepler) NVIDIA GPU devices. The uBenchs have been developed using CUDA 4.2
toolkit and the 295.41 64-bit driver.

All the numerical results are compiled into 270 tables for the uBench kernels, and 36
tables for the Cannon’s algorithm implementations. The tables are presented in a technical
report publicly available [117]. The tables are accompanied by graphical diagrams. We
include two example diagrams in Fig. 5.2 to help the reader to understand how we used
them in the following discussion of results. During the following discussion, we consider
good choices for threadblock geometry those that lead to execution times with less than
5 % difference with the best execution time obtained with any geometry.

.

1 2 3 4 6 8 1
2

1
6

2
4

3
2

4
8

6
4

9
6

1
2
8

1
9
2

2
5
6

3
8
4

5
1
2

7
6
8

1
0
2
4

1 · · · · · · · · · · · · ◦ • • • • • ◦ ·
2 · · · · · · · · · · · • • • • • ◦ ·
3 · · · · · · · · · ◦ ◦ � • • ◦ ◦
4 · · · · · · · · · • • • • • ◦ ·
6 · · · · · · · · ◦ � • • ◦ ◦
8 · · · · · · · ◦ • • • • ◦ ·

12 · · · · · · · • ◦ • · ◦
16 · · · · · ◦ ◦ ◦ ◦ • ◦ ·
24 · · · · · ◦ ◦ • · ◦
32 · · · · · ◦ ◦ ◦ ◦ ·
48 · · · · · ◦ · ◦
64 · · · · · ◦ · ·
96 · · · · · ·

128 · · · · · ·
192 · · · ·
256 · · · ·
384 · ·
512 · ·
768 ·

1024 ·

1 2 3 4 6 8 1
2

1
6

2
4

3
2

4
8

6
4

9
6

1
2
8

1
9
2

2
5
6

3
8
4

5
1
2

7
6
8

1
0
2
4

1 · · · · · · · · · · · · ◦ • • ◦ · · · ·
2 · · · · · · · · · · · � • ◦ · · · ·
3 · · · · · · · · · ◦ ◦ • ◦ · · ·
4 · · · · · · · · · • ◦ ◦ · · · ·
6 · · · · · · · · · • ◦ · · ·
8 · · · · · · · ◦ ◦ ◦ · · · ·

12 · · · · · · · ◦ · · · ·
16 · · · · · ◦ · ◦ · · · ·
24 · · · · · · · · · ·
32 · · · · · · · · · ·
48 · · · · · · · ·
64 · · · · · · · ·
96 · · · · · ·

128 · · · · · ·
192 · · · ·
256 · · · ·
384 · ·
512 · ·
768 ·

1024 ·

(a) (b)

Figure 5.2: Example of diagrams for results tables for uBench-1, with default L1 configuration,
matrix size 6144 × 6144 (TT >> MT), in (a) Fermi, and (b) Kepler architectures. Grey shaded
cells indicate block geometries that lead to maximum occupancy (recommended block geome-
tries). Symbols used: � for best performance results; • for execution times up to 5 % more than
the optimum; ◦ for execution times up to 25 % more than the optimum.

84 Chapter 5. Study of GPU Configuration Parameters

ThreadBlock geometry and the scheduling system

The scheduling system of both Fermi and Kepler architectures works faster with blocks
of medium size. The results of uBench-0, with no memory accesses and no computation
on any thread, show this effect. As the total number of threads and blocks increases the
threadblock sizes that are close to the optimal value, that we name good blocks, concen-
trate more and more in the geometries with a medium size (384 in Fermi, 256 in Kepler),
independently of the shape. Compared with Fermi, Kepler presents a performance degra-
dation of up to 20 % for the good threadblock geometries. The reason is that Kepler’s
block/warp scheduling system has more complex units and it is slower than Fermis’s. The
impact of this effect can also be partially seen in kernels with scarce data accesses and
low computation, like uBench-6.

Coalesced patterns for simple writing operations

The threadblock geometry choice has a great impact in the performance of typical co-
alesced patterns. Results for uBench-1 to uBench-4 show the key trends. uBench-1 ex-
plores a classical coalesced pattern, with low ratio of arithmetic operations per thread, and
reutilization of the same transaction line only due to coalescence. Not only the size, but
the shape of the threadblock, highly influences the performance (see Fig 5.2). Good re-
sults are obtained for the smallest block sizes that lead to near maximum occupancy (more
than 90 % of Occupancy), and shapes with a number of columns equal to, or greater than,
the size of the SM’s scheduling unit: Half a warp in Fermi (16 threads); a whole warp in
Kepler (32 threads). Smaller blocks derive in faster replacement of the blocks that finish
by new blocks in the SM queues. While in Fermi similar good results are obtained for
sizes from 192 to 512, the trend to obtain better results for smaller blocks is more clear
in Kepler, where good candidates are those with 128 and 192 threads. In Fermi archi-
tecture, even blocks with 128 threads (leading to occupancy of 67 %) also derive in good
performance. These results confirm and generalize the observations discussed in Sect. 5.1.

uBench-2 results also confirm that the performance obtained for good candidates in
uBench-1, can be obtained for any shape of the same size if the proper pattern can be
devised for the specific application.

For a very small number of total threads there are not enough warps to hide latencies
due to coalescing. Thus, the restrictions on the threadblock shape, and the policy of trying
to achieve maximum occupancy of the SMs become less relevant. This is confirmed by
the results of all the benchmarks with small input sets (TT < MT).

When there is a high ratio of arithmetic operations per data access, the global-memory
latencies are overlapped with computation, obtaining good performance for all sizes and
shapes that lead to near maximum occupancy. uBench-3 and 4 are versions of 1 and 2
with extra computational load. Their results for enough number of threads TT >> MT ,

5.3. Micro-benchmarks (uBench) 85

show this effect. The same effect is also noticeable in the results of uBench-7, that also
includes an overloaded loop that allows to hide memory latencies.

For these benchmarks, when TT >> MT , performance for the best threadblock
geometry choices is not affected by changing the L1 cache configuration.

Non-Coalesced and scarce patterns

Non-coalesced patterns can not benefit from the previous global-memory latency hiding
effects. We do not find shape restrictions, and for certain applications the best perfor-
mance results are found with small threadblock sizes that lead to medium occupancy
factors. This effect is more noticeable in Fermi due to the faster scheduling system. For
example, uBench-5 results for Fermi show that the best choices are blocks with 64 threads,
while in Kepler the best choices are blocks with 128 to 192 threads. uBench-6 uses a pat-
tern where only one thread per block writes, but each block writes in a different position.
The amount of writing operations is very small and there is no memory bottleneck. Due to
the small amount or writing operations, the good block sizes are bigger than for uBench-5:
256 to 768 threads in Fermi, and 256 to 512 in Kepler.

Changing the configuration or the L1 cache does not significantly change the perfor-
mance results for the best threadblock geometry choices.

Reading multiple data elements with coalesced patterns

Each thread accessing to all elements of the data structure: When each thread traverses
whole parts of a data structure, the amount of data reutilization across the threads of the
same block depends on the form of the shape. For example, uBench-8 presents different
types of coalesced patterns, while traversing a complete row or column of a matrix. This
uBench has the classical coalesced pattern with consecutive threads in a warp reading
consecutive data elements from the same transaction segment. Good results are obtained
for the smallest block sizes that lead to near maximum occupancy, and shapes with a
number of columns equal to or greater than the size of the SM’s scheduling unit. The
same conclusions as presented for uBench-1, which have a similar pattern for writing.

Warp threads accessing to the same data: uBench-9 presents a complete different type
of coalescence, where consecutive threads in the warp access to the same data element in
the same loop iteration, and to consecutive data elements across loop steps. There is only
one transaction segment required per block row simultaneously. Results indicate that, in
this case, the columns limitation due to the scheduling unit also appears, but any block
size that achieves a near to maximum occupancy produces good performance. uBench-10
and 11 are versions of uBench-8 and 9 with a loop that introduces extra computational
load between consecutive accesses. As expected, the exact shape becomes irrelevant and

86 Chapter 5. Study of GPU Configuration Parameters

any block with a size that produces near maximum occupancy obtains good performance
results.

Data reutilization in the same block: A different scenario appears when threads in
the same block highly reuse the same data, and there is no reutilization across blocks. In
this case, the good choices for block size are related to the transaction segments size.For
example, the results of uBench-12 show that the good block sizes are between 24 and 32
for both architectures.

L1 cache for Kepler and Fermi: The impact of L1 cache configurations (enabled or
disabled) is much more noticeable in Kepler than in Fermi. Kepler supports twice the
same blocks and threads in an SM than Fermi, while the L1 size is the same.

Memory bottlenecks: There are several techniques to alleviate memory bottlenecks
that lead to performance improvements. In general, these techniques improve perfor-
mance without changing significantly the conclusions about the threadblock geometry
choice. For example, uBench-13 overlaps the accesses of consecutive blocks of the grid.
Results show similar behavior as the reading coalescing pattern in uBench-8, with L2
cache alleviating the bank conflicts to obtain better performance. uBench-14 tries to al-
leviate memory bottlenecks distributing the accesses of consecutive blocks across banks,
like it is explained in [47]. For uBench-14 the good threadblock geometries are those with
384 threads, independently of the shape.

Extrapolation to non-synthetic applications

Observation of the main loop in the threads of the CUDA implementation of Cannon’s
algorithm easily reveals the access patterns for the two input matrices (Pattern A, and
Pattern B, respectively), and for the output matrix (Pattern I). The results show that the
choice of the threadblock geometry is influenced mainly by Pattern A and Pattern I (small-
est block sizes that lead to near maximum occupancy, and shapes with columns equal to or
greater than the size of the SM’s scheduling unit). But the influence of the writing Pattern
B also relaxes the first condition, leading to similar performance in blocks with slightly
bigger or smaller sizes than the previously proposed good candidates.

For the modified version, we apply the technique discussed in [47] to alleviate bank
conflicts spreading accesses from consecutive blocks to different banks. As expected, the
results show performance improvements for the same, good threadblock geometries. For
the best threadblock choices we observe a reduction in execution times of 23 % in Fermi,
and 18 % in Kepler. It is more noticeable in Fermi due to its higher number of banks. See
the complete results in [117].

5.4. Conclusions 87

5.3.3 Summary

Our results show that uBench can be used to gain insight of the performance impact of the
threadblock geometry and L1 cache configuration choices for different architectures and
applications. This understanding improves the ability of a programmer to develop better
policies for threadblock selection, and also to apply code tuning techniques. Finally,
uBench could be used as a test bed for auto-tuning techniques that automatically select
the threadblock geometry.

5.4 Conclusions

This chapter discusses how configuration parameters and their relationship with the un-
derlying GPU architecture affects GPU performance. We started with a number of hy-
potheses that describe the expected effects of different set of configuration choices. Later,
we conducted a study to validate the main effects described. This study revealed that sev-
eral combinations of kernel characteristics were not yet covered. To solve it, we designed
uBench, a more exhaustive benchmark suite used to study in more depth the relation-
ship between configuration parameters and performance. Finally, we have applied the
knowledge obtained to the execution of two real-world problems to verify the proposed
hypotheses.

This study has produced the knowledge needed to design the mapping and configura-
tion policies needed to develop a version of Hitmap suitable for heterogeneous environ-
ments. The following chapter presents an experimental study on how the new Heteroge-
neous Hitmap fulfills the requirements imposed by our research question.

88 Chapter 5. Study of GPU Configuration Parameters

Chapter 6
Experimental Evaluation of an
Heterogeneous Hitmap

After designing the solution needed to adapt Hitmap for its use on heterogeneous envi-
ronments, in this chapter we show how the new Heterogeneous Hitmap performs when
executing different benchmarks.

6.1 Mapping and synchronization issues

In this section we show with an example how Hitmap abstractions lead to codes which
are independent of the encapsulated mapping techniques.

6.1.1 Case study

We have chosen as study-case the Cannon’s algorithm for matrix multiplication (see
Sect. B.1 in Appendix B). It is a task-parallel algorithm focused on reducing local memory
usage for distributed systems.

Figure 6.1 shows the Cannon’s matrix multiplication algorithm implemented with the
Hitmap library for heterogeneous systems. We use float base elements to allow better
exploitation of parallel resources of involved GPU devices. The code is the same used
in previous versions of Hitmap for distributed-memory systems except lines 40–41 (that
encapsulate the low-level partition for the assigned device), and lines 47 and 50, that
encapsulates the coordination between the CPU and the accelerators.

Lines 3–6 declare the full domain of the three matrices with a global-view approach.
Memory is not yet allocated. Line 9 builds a virtual topology enforcing a perfect square of
processes, as required by the algorithm. Lines 12–14 create layout objects that distribute
the matrices domains across the virtual topology. The layout plug-in modules used are
different for the three matrices. Figure 6.2 shows a diagram of the resulting layouts for 4

89

90 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

1 void cannonsMM (i n t n , i n t m, i n t p) {
2 / * 1 . DECLARE FULL MATRICES WITHOUT MEMORY * /
3 H i t T i l e _ d o u b l e A, B , C ;
4 h i t _ t i l e D o m a i n (&A, f l o a t , 2 , n , m) ;
5 h i t _ t i l e D o m a i n (&B , f l o a t , 2 , m, p) ;
6 h i t _ t i l e D o m a i n (&C , f l o a t , 2 , n , p) ;
7

8 / * 2 . CREATE VIRTUAL TOPOLOGY * /
9 Hi tTopo logy topo = h i t _ t o p o l o g y (p l u g _ t o p S q u a r e) ;

10

11 / * 3 . COMPUTE PARTITIONS * /
12 H i t L a y o u t layC = h i t _ l a y o u t (p lug_ layBlocksLB , topo , C , 0) ;
13 H i t L a y o u t layA = h i t _ l a y o u t W r a p (p lug_layBlocksLB , topo , A, 0) ;
14 H i t L a y o u t layB = h i t _ l a y o u t W r a p (p l u g _ l a y B l o c k s , topo , B) ;
15

16 / * 4 . CREATE AND ALLOCATE TILES * /
17 H i t T i l e _ d o u b l e t i l e A , t i l e B , t i l e C ;
18 h i t _ t i l e S e l e c t N o B o u n d a r y (&t i l e A , &A, h i t_ l ayMaxShape (layA , 1)) ;
19 h i t _ t i l e S e l e c t N o B o u n d a r y (&t i l e B , &B , h i t_ l ayMaxShape (layB , 0)) ;
20 h i t _ t i l e S e l e c t (&t i l e C , &C , h i t _ l a y S h a p e (layC)) ;
21 h i t _ t i l e A l l o c (&t i l e A) ; h i t _ t i l e A l l o c (&t i l e B) ; h i t _ t i l e A l l o c (&t i l e C) ;
22

23 / * 5 . INITIALIZE MATRICES * /
24 h i t _ t i l e F i l e R e a d (&t i l e A , "matrixA.dat") ;
25 h i t _ t i l e F i l e R e a d (&t i l e B , "matrixB.dat") ;
26 f l o a t aux =0; h i t _ t i l e F i l l (&t i l e C , &aux) ;
27

28 / * 6 . INITIAL ALIGNMENT PHASE * /
29 HitComm commRow = hi t_comSh i f tD im (layA , 1 , −h i t _ l a y R a n k (layA , 0) , &t i l e A) ;
30 HitComm commCol = h i t_comSh i f tD im (layB , 0 , −h i t _ l a y R a n k (layB , 1) , &t i l e B) ;
31 hit_comDo (commRow) ; hit_comDo (commCol) ;
32 h i t _ c o m F r e e (commRow) ; h i t _ c o m F r e e (commCol) ;
33

34 / * 7 . REUSABLE COMM PATTERN * /
35 H i t P a t t e r n s h i f t = h i t _ p a t t e r n (HIT_PAT_UNORDERED) ;
36 h i t _ p a t t e r n A d d (&s h i f t , h i t _comSh i f tD im (layA , 1 , 1 , &t i l e A)) ;
37 h i t _ p a t t e r n A d d (&s h i f t , h i t _comSh i f tD im (layB , 0 , 1 , &t i l e B)) ;
38

39 / * 8 . COMPUTE DEVICE PARTITION USING ACCESS PATTERN INFO * /
40 H i t P a r t i t i o n p a r t s = h i t _ p a r t i t i o n (p l u g _ p a r t B l o c k s , h i t _ l a y S h a p e (layC) ,
41 2 , h i t _ s h a p e (2 , ALL, THIS) , h i t _ s h a p e (2 , THIS , ALL)) ;
42

43 / * 9 . DO COMPUTATION * /
44 i n t l o o p I n d e x ;
45 i n t l o o p L i m i t = max (h i t _ l a y N u m A c t i v e s (layA , 0) , h i t _ l a y N u m A c t i v e s (layB , 1)) ;
46 f o r (l o o p I n d e x = 0 ; l o o p I n d e x < l o o p L i m i t −1; l o o p I n d e x ++) {
47 h i t _ k e r n e l L a u n c h (mmult , p a r t s , 3 , IN , t i l e A , IN , t i l e B , INOUT , t i l e C) ;
48 h i t _ p a t t e r n D o (s h i f t) ;
49 }
50 h i t _ k e r n e l L a u n c h (mmult , p a r t s , 3 , IN , t i l e A , IN , t i l e B , INOUT , t i l e C) ;
51

52 / * 1 1 . WRITE RESULT * /
53 h i t _ t i l e F i l e W r i t e (&t i l e C , "matrixC.dat") ;
54

55 / * 1 2 . FREE RESOURCES * /
56 h i t _ p a r t i t i o n F r e e (p a r t s) ;
57 h i t _ l a y F r e e (layA) ; h i t _ l a y F r e e (layB) ; h i t _ l a y F r e e (layC) ;
58 h i t _ p a t t e r n F r e e (&s h i f t) ;
59 h i t _ t o p F r e e (topo) ;
60 }

Figure 6.1: Heterogeneous Hitmap implementation of Cannon’s matrix multiplication.

6.1. Mapping and synchronization issues 91

processes. Matrix B uses a classical block data partition, with evenly sized parts. Matrices
C and A use a load-balancing technique inserted in the library as a plug-in. The rows
dimension is split unevenly according to a Balance factor, decided in terms of the relative
computing power of the device types as recorded in the low-level topology description, a
value experimentally determined previously. In lines 17–21 each logical process creates
and allocates the local part of the matrices.

A

B

m1 m2k1 k2

k1

k2

=

C

m1 m2

n1 n1

n2 n2
x

Balance factor = n1 / (n1+n2)

Figure 6.2: Load balancing layout scheme in the Cannon’s matrix multiplication example for 4
processes.

Thanks to the maxShape padding function, n and m do not need to be exact multiples
of the number of processes in a given axis. Lines 24–26 read in parallel the tiles of the
input matrices. The C matrix is initialized with zeros.

Lines 29–32 perform the initial relocating stage prescribed by the Cannon’s algo-
rithm, shifting A and B tiles. Lines 35–37 build the shifting communication pattern that
will be used between the computation stages. The layout objects and the tiles provide all
the information needed to internally find neighbors and build MPI derived data types to
optimize the communications. Thus, communications are adapted to the partition trans-
parently. For this example we choose synchronous communication to avoid the need of
double buffers, exploiting our full system memory to do larger computations.

Lines 40–41 generate a partition object tailored to the device assigned to the logical
process. Line 41 is a shape expression that represents the global memory access pattern;
indicating, in relative coordinates, which elements are accessed by a thread. Lines 44–50
implement the main loop of the algorithm. The computation stage of the last iteration
has been unrolled to avoid the last unneeded communication stage. The computation
is launched by the hit_kernelLaunch primitive, independently of the actual device. The
shifting communication pattern is activated by the hit_patterDo primitive. Line 53 writes
the output matrix tiles to a file in parallel. Lines 56–59 free all the Hitmap resources
before finishing.

92 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

6.1.2 Experimental work

We have designed experimental work to show that: (1) Our new abstractions do not im-
pose a significant overhead on the computation; and (2) this framework allows to easily
exploit different devices to obtain performance benefits.

In order to show the efficiency of the Hitmap codes, we have manually developed and
optimized reference codes for matrix multiplication: (a) A direct MPI implementation of
the Cannon’s algorithm (see Appendix B); and (b) a direct CUDA implementation that
may also split and multiply the matrices block by block if they are too big to fit into the
GPU device memory.

For our experiments we have used two different platforms. The first one is a Beowulf
cluster with up to 18 dual-core PC computers. The second one is an Intel(R) Core(TM) i7
CPU 960, 3.20GHz with active hyper-threading. This system has two GPUs: a GeForce
8500 GT, and a GerForce 9600 GT, both managed by the CUDA driver included in the 4.0
toolkit. From now on, we identify the different available devices in this machine with the
following letters: (A) GeForce 9600 GT; (B) GeForce 8500 GT; (C) Cores of the CPU.

We use three square matrices of 2 048, 8 192, and 12 288 rows/columns. The first size
is small enough to allocate the three matrices in any of the devices of both systems. The
second size cannot be fully allocated on the second GPU (device B) of the mixed CPU-
GPU machine. The last size cannot be allocated in any of the GPUs. We also test that
our automatic padding mechanisms do not impose a significant performance effect on the
results using modified sizes (e.g. 2 039 or 2 057 rows/columns).

Figures 6.3 and 6.4 present execution times obtained in different scenarios. Note that
all y-axis are in logarithmic scale. The experiments in the Beowulf cluster show that, even
for the small matrix size, Hitmap implementations have the same scalability and overall
performance than the manually optimized MPI code. A minimal Hitmap performance
overhead is observed in all our experimental work.

In the heterogeneous machine the best performance results are obtained for a small
number of processes. Remind that Cannon’s algorithm forces more synchronization stages
when the number of processes increase. Thus, for Cannon’s algorithm, more MPI pro-
cesses lead to bigger communication overhead, while reducing the computation load of
each task. In this machine, our experiments show the best results for four MPI processes.
We show results for the following scenarios.

• Reference code (manually developed):

1. (A) CUDA code executing the whole computation with only one kernel launch
in device A, the fastest GPU;

2. (A4) For matrices that do not fit in the GPU device memory. The reference
code parts the matrices in four even parts and executes the computation in

6.1. Mapping and synchronization issues 93

 3

 10

 30

 100

 300

 1 4 9 16 25 36

E
xe

cu
tio

n
tim

e
(s

ec
.)

Processors

Beowulf cluster (2048x2048)

Hitmap
Manual

 8

 11

 16

 22

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance factor

Mixed CPU-GPU platform (2048x2048)

Manual - A
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

Figure 6.3: Hitmap abstraction results (1st part).

several kernel launches.

• Hitmap code:

Changing the topology module we can easily experiment with different assignments
of devices to logical processes.

1. (A3-B1) Mixed GPUs: 3 processes mapped to device A, and 1 process to
device B;

2. (A2-B2) Mixed GPUs: 2 processes mapped to device A, and 2 process to
device B;

3. (A3-C1) GPU and core: 3 processes mapped to device A, and 1 process to one
CPU-core;

4. (A2-C2) GPU and cores: 2 processes mapped to device A, and 2 more pro-
cesses, each one mapped to a different CPU-core.

94 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

 400

 800

 1600

 3200

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance factor

Mixed CPU-GPU platform (8192x8192)

Manual - A
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

 1400

 3000

 6000

 12000

 0.5 0.6 0.7 0.8 0.9 1

E
xe

cu
tio

n
tim

e
(s

ec
.)

Balance factor

Mixed CPU-GPU platform (12288x12288)

Manual - A4
Hitmap - A3 B1
Hitmap - A2 B2
Hitmap - A3 C1
Hitmap - A2 C2

Figure 6.4: Hitmap abstraction results (2nd part).

For all the experiments with GPUs and Hitmap we have manipulated the partition plug-in
to experiment with different load-balance factors, between 0.5 and 0.975.

Let us consider the execution time of the reference CUDA code (A and A4). The
results show that it was always possible to improve these performance results with the
Hitmap code, exploiting heterogeneity with more than one device. The results for the
small matrix size are more unstable, and affected by the kernel initialization times, includ-
ing the communication between CPU and GPU. However, as the matrix size increases,
the results are more stable, and show exactly the same trends. We obtain performance
improvements of up to 10 % for the small matrices, and a consistent best improvement of
20.5 % for medium and big input data sizes. Traces of the executions show that the MPI
communication times are always less than 10 % of the total execution time for the small
matrix size, and their impact quickly decreases as the data input size grows.

On the left part of the plots (load-balance factor of approximately 0.5), the load is
evenly distributed, not taking into account the different computing powers of the devices.
The critical path is dominated by the slower devices. As the load-balance factor grows, the

6.2. Memory size restrictions 95

balance is improved proportionally, reducing the total execution time. After the optimum
balance point is found, an increase of the factor leads to too few computation on the slower
devices. Thus, the critical path is dominated by the fastest device, proportionally reducing
performance again.

An important question is: Is it possible to predict the best load-balance factor for
a given set of devices? Profiling tests with simple benchmarks show that the relative
computing power between devices A and B is approximately r = 3.826; and between
device A and a core (device C) it is r = 14.153. In order to assign to each device a
computation proportional to its relative computing power, the load-balance factor may be
calculated as LB = r/(r+ 1) for the A2 scenarios, and LB = (r− 1)/(r+ 1) for the A3
scenarios.

The experimental results show that, for big enough matrices, this estimation is al-
ways too conservative with respect to the value that leads to the best performance: 10 %
less than the best performance in both A3 scenarios, 2 % and 6 % on A2 scenarios. A
more sophisticated model, taking into account the synchronization stages, is needed to
automatically predict the best factor in the Layout plug-ins.

6.1.3 Synchronization issues: Conclusions

The framework presented in Sect. 4 encapsulates the mapping techniques into plug-ins
at two different layers of abstraction: One related to logical processes coordination, and
another related to adapting the computations to the inherent parallelism and architecture
details of the actual device associated to each logical process. Thereby, the proposed high-
level API transparently deals with all the details of communication and synchronization
between logical processes and accelerator devices, such as GPUs. Finally, this frame-
work allows to generate codes which are transparently adapted to heterogeneous systems
with mixed types of accelerator devices, taking into account different computational pow-
ers, and with a minimal performance degradation due to abstractions or synchronization
overheads.

6.2 Memory size restrictions

Our prototype layer implements the technique described in Sect. 4.2 for automatic map-
ping of computations to accelerators with memory size restrictions. It computes the best
partition, issues the transparent movement of the required portions of the data structures
to/from the target device memory, and forces the sequential execution of each part as a
different kernel. This hidden layer is integrated in a new kernel launching function, that
receives one access pattern specification along with each tile parameter.

96 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

 0

 50

 100

 150

 200

 250

16 32 64 128 256 512 1024

M
il

is
ec

o
n

d
s

VecAdd N = 67107840

Total
Comp.

 0

 5000

 10000

 15000

 20000

 25000

16 32 64 128 256 512 1024

M
il

is
ec

o
n

d
s

CellularAutomata; 100 Iter; N = 8192

Total
Comp.

 0

 2000

 4000

 6000

 8000

4 8 16 32 64 128 256

M
il

is
ec

o
n

d
s

MatrixMult N = M = 4096

Total
Comp.

Vector Addition
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels 49 25 13 7 3 2 1
Kernel size 16 32 64 128 256 512 767
Cellular Automata
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels 48 24 13 7 4 2 1
Kernel size 11 21 43 85 170 241 512
MM Multiplication
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels . . 1103 433 128 43 19 9 1 . .
Kernel size . . 0.4 1.2 4 12 28 60 192 . .

Figure 6.5: Execution times for: (a) Vector addition; (c) Stencil computation; (d) Matrix-matrix
multiplication. The tics in the x-axis indicate the value of the memory-size-limit parameter. The
table shows for each program and each memory-size-limit value, the number of sub-kernels gen-
erated by our system for this case, and the memory size actually used.

6.2. Memory size restrictions 97

We have implemented the three study cases presented in Sect. 4.2.2 using the new
tools. The codes are similar to the original ones, with expressions of the access patterns
for each data structure involved in the computation. We have tested this prototype imple-
mentation with a GPU target device, manually changing the memory-size-limit parameter
to simulate different scenarios.

Our experimental platform is a GForce GTX 680 (Kepler, 2048MB GDDR5) NVIDIA
GPU device. The host machine is a 64-bits Intel(R) Core(TM) i7 CPU 960 3.20GHz, with
a global memory of 6 GB DDR3. It runs an UBUNTU desktop 10.10 (64 bits) operating
system. The applications have been developed using CUDA 4.2 toolkit and the 295.41
64-bit driver.

The use of integer or float data element lead to practically the same execution time
in CUDA. Thus, we select integer as data type. The data structures size chosen for each
benchmark are different, in order to obtain stable execution time values. The number
of items are the following: (1) Vector addition, n = 67 107 840; (2) cellular automata,
n = m =8 192, and (3) matrix multiplication, n = m = 4 096. These sizes are multiple
of the selected threadblock size to avoid any padding operation.

To simulate results for different kinds of devices, we decided to manually change the
memory-size-limit parameter. We have selected values that are powers of two in the range
of 1 to 1024 Mbytes. For each kernel there is a different range of this parameter that leads
to a feasible number of sub-kernels with a reasonable kernel size. Figure 6.5 shows the
execution times (in milliseconds) obtained for some memory-size-limit parameter values.
The first bar indicates the total execution time, while the second bar indicates the time
devoted to real computation. The rest of the time is spent in host-device communications.

The results show that, as expected, for the kernels with low computational load per
thread (vector addition and cellular automata), the ratio of communication vs. computa-
tion is very high, being very small in the remaining cases. When communication times
dominate the total execution time, we observe a trend to reduce the communication times
for particular memory restrictions. This effect can be explained by the fact that the PCI
Express bus works faster for memory transactions of particular sizes. Thus, when the sub-
kernels generated require memory sizes that fit well in the PCI bus, the communication
times are reduced. This information can be exploited by a library to split the communica-
tion in proper block sizes [106].

For the unidimensional example, vector addition, we can see that the algorithm gen-
erates kernels that fit the memory limit almost perfectly. However, this is not the case for
2-dimensional problems. In the current implementation, the stage 5 of the 2-dimensional
partition algorithm shown in Sect. 4.2.2 has not been yet implemented, leading to sub-
optimal partition results. However, the performance results show the same trends when
manually selecting the best candidate.

The intensive reutilization of caches by the concurrent dot products in matrix multi-

98 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

plication application, leads to reduced total execution times when the kernels have bigger
sizes.

The results show that the hidden layer does not impose a substantial overhead on
the execution of the whole computation, and it can take away the burden of consider-
ing memory-size restrictions at upper mapping layers. Moreover, a deeper research on
the information provided by the access patterns may also lead to detect situations where
the system can take profit of the artificial automatic partition of the kernels to improve
performance results.

6.2.1 Memory size-restrictions: Conclusions

The proposed layer requires the programmer to specify the access patterns of the compu-
tation threads in a simple abstract form. This information is used at run-time to compute
the pieces of data-structures required by a generic partition to determine the best partition
that ensures that each subpart fits in the device memory.

We have discussed an implementation of this concept into an automatic mapping tool
that allows to apply high-level distributions in heterogeneous devices without the need to
take into account the memory limitations of the target devices. Our experimental results
show the feasibility of the solution proposed.

6.3 A real-world benchmark: The SSSP problem

We have selected the Dijkstra’s algorithm (see Sect. B.2 of Appendix B) to solve the
SSSP problem. In this section, we will adapt this algorithm to be exploited on GPU
devices efficiently. In the following section 6.4, the implemented code will be used to
test the hypotheses enumerated in Sect. 5.1 on applications with similar characteristics.
This problem meets the specifications listed in Sect. 2.3.2, since it is a benchmark with
data reutilization, and a different memory access pattern for each input data structure. It
is an embarrassingly-parallel application where the computation shares data in a common
sparse data structure.

6.3.1 Parallel Dijkstra for GPUs

This section describes how our implementation parallelizes the Dijkstra algorithm focus-
ing on the outer loop, and following the ideas of Crauser et al. [28]. As we have explained
in Appendix B, the main problem of this kind of parallelization is to identify as many
nodes as possible that can be inserted in the following frontier set.

6.3. A real-world benchmark: The SSSP problem 99

Defining the frontier set

Dijkstra’s algorithm calculates in each iteration i the minimum tentative distance of the
nodes belonging to the unsettled set, Ui. The node whose tentative distance is equal to
this minimum value can be settled and becomes the frontier node. Its outgoing edges are
traversed to relax the distances of the adjacent nodes.

In order to parallelize the Dijkstra algorithm, it is needed to identify which nodes can
be settled and used as frontier nodes at the same time. Martín et al. [72] inserts into the
frontier set, Fi+1, all nodes with this minimum tentative distance with the aim to process
them simultaneously. Crauser et al. [28] introduces a more aggressive enhancement,
augmenting the frontier set with nodes with bigger tentative distance. The algorithm
computes in each iteration i, for each node of the unsettled set, u ∈ Ui, the sum of: (1)
Its tentative distance, and (2) the cost of its outgoing edges. Afterwards, it calculates the
minimum of these computed values. Finally, those nodes whose tentative distance are
lower or equal than this minimum value can be settled becoming the frontier set.

We define the concept of ∆i as the limit value computed in each iteration i that holds
that any unsettled node u with δ(u) ≤ ∆i can be safely settled. The bigger the ∆i value,
the more parallelism is exploited. However, depending on the particular graph being
processed, the use of a very ambitious ∆i may induce overheads that destroys any perfor-
mance gain with respect to sequential execution.

Our implementation of Dijkstra’s algorithm follows the idea proposed by Crauser et
al. [28] for incrementing each ∆i. For every node v ∈ V , the minimum weight of its
outgoing edges, that is, ∆node v = min{w(v, z) : (v, z) ∈ E}, is calculated in a precom-
putation phase. For each iteration i of the external loop, having all tentative distances of
the nodes in the unsettled set, we define

∆i = min{(δ(u) + ∆node u) : u ∈ Ui} (6.1)

Thus, it is possible to put into the frontier set Fi+1 every node v whose δ(v) ≤ ∆i.

Our GPU implementation: The general variant

The four Dijkstra’s algorithm steps described in Apendix B can be easily transformed
into a GPU general algorithm (see Alg. 1). It is composed of three kernels that executes
the internal operations of the Dijkstra vertex outer loop.

The relax kernel (Alg. 2, invoked in line 3 of Alg. 1) decreases the tentative distances
for the remaining unsettled nodes of the current iteration i through the outgoing edges of
the frontier nodes f ∈ Fi. A GPU thread is associated to each node in the graph. Those
threads assigned to frontier nodes, f ∈ Fi, traverse their outgoing edges, relaxing the
distances of their unsettled adjacent nodes.

100 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

Algorithm 1 GPU implementation of Dijkstra’s algorithm. CUDA kernels are delimited
by <<< ... >>> ..

1: <<<initialize>>> (U, F, δ); //Initialization
2: while (∆ 6=∞) do
3: <<<relax>>> (U, F, δ); //Edge relaxation
4: ∆ =<<<minimum>>> (U, δ); //Settlement step_1
5: <<<update>>> (U, F, δ,∆); //Settlement step_2
6: end while

Algorithm 2 Pseudo-code of a CUDA thread in relax kernel.

1: tid = thread.Id;
2: if (F[tid] == TRUE) then
3: for all j successor of tid do
4: if (U[j] == TRUE) then
5: BEGIN ATOMIC REGION
6: δ[j] = min{δ[j], δ[tid] + w(tid, j)};
7: END ATOMIC REGION
8: end if
9: end for

10: end if

The minimum kernel (invoked in line 4 of Alg. 1) computes the minimum tentative
distance of the nodes that belongs to the Ui set. To do so, the advanced reduce3 method
of the CUDA SDK [52] has been modified to accomplish this task. Our minimum kernel
is adapted in order to: (1) Add the corresponding ∆node v value to δ(v), and (2) compare
its new assigned values to obtain the minimum one. The resulting value of the minimum
kernel is the ∆i.

The update kernel (Alg. 3, invoked in line 5 of Alg. 1) settles those nodes from Ui

whose tentative distances are lower or equal to ∆i. This task is carried out extracting
them from the following-iteration unsettled set, Ui+1, and putting them to the following-
iteration frontier set Fi+1. Each single GPU thread checks, for its corresponding node v,
whether U(v) ∧ δ(v) ≤ ∆i. If so, the thread assigns v to Fi+1 and deletes v from Ui+1.

Our implementation supports two types of graph representations, both adjacency lists
and matrices. The nodes are numbered from 0 . . . n − 1. Besides the basic structures to
hold nodes, vertices, and their weights, three vectors are defined:

• Vector U , that stores in U [v] whether node v is an unsettled node.

• Vector F , that stores in F [v] whether node v is a frontier node.

• Vector δ, that stores in δ[v] the tentative distance from source to node v.

6.3. A real-world benchmark: The SSSP problem 101

Algorithm 3 Pseudo-code of a CUDA thread in update kernel.

1: tid = thread.Id;
2: F[tid]= FALSE;
3: if (U[tid]==TRUE and δ[tid] <= ∆) then
4: U[tid]= FALSE;
5: F[tid]= TRUE;
6: end if

An economic variant

We have developed an additional version (we named economic variant) that needs less
memory space at the cost of being less powerful than the previous variant already de-
scribed.

Our general variant uses a vector of size n to store the ∆node v value of each node
v. Instead, the economic variant uses a single value, ∆base, that is a lower bound for
every ∆node v. This value is the minimum weight associated to any edge e of the graph,
∆base = min{w(e) : e ∈ E}. Then, for each iteration i of the external loop having the
tentative distance of the following node to be settled, we define

∆i = min{δ(u) : u ∈ Ui}+ ∆base (6.2)

For the development of this approach we need to calculate ∆base in a precomputation
phase. Note that the computation of the minimum value in the minimum kernel is simpli-
fied because every thread does not need to add ∆node v to the tentative distance. Now, the
∆base is added to the value returned by the minimum kernel.

Regarding the exploited parallelism degree, this economic variant cannot include as
many nodes into frontier set as the general variant, leading to more iterations of the
external loop. Thus, in spite of consuming less space, the exploited parallelism degree is
lower than for the general variant.

Martín et al. successor variant

In this subsection we will describe the first GPU approach of Dijkstra’s algorithm de-
veloped by Martín et al. [72]. They have presented some parallel implementations of
Dijkstra’s algorithm executed on the first CUDA architecture (now called pre-Fermi).

In order to parallelize the Dijkstra algorithm, they have introduced a conservative en-
hancement to increase the frontier set, inserting all nodes with the same minimum tenta-
tive distance. According to our notation presented above, their frontier set at any iteration
i, Fi+1, is composed by every node x ∈ Ui with equal tentative distance δ(x) than ∆i

102 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

being
∆i = min{δ(u) : u ∈ Ui} (6.3)

Their update kernel also differs from ours in the frontier-set check condition, U(v) ∧
δ(v) = ∆i.

Martín et al. predecessor variant

The same authors have presented a different variant of Dijkstra’s algorithm, called the
predecessor variant. They have implemented both a sequential version for CPU, and a
parallel one for GPU devices.

This variant differs from the previous one, in the way that it relaxes the tentative
distances of the unsettled nodes. That is, for every unsettled node, the algorithm checks if
any of its predecessor nodes belongs to the current frontier set. In that case, the tentative
distance is relaxed if the new distance through this frontier node is lower than the previous
one.

The GPU predecessor implementation assigns a single thread for each node in the
graph. The relax kernel only computes those threads assigned to unsettled nodes u ∈ Ui.
Every thread traverses back the incoming edges of its associated node looking for frontier
nodes.

6.3.2 Experimental setup

We will first describe the methodology used for our experiments, in order to test the
Dijkstra’s algorithm implementation for GPU devices and check the hypotheses of GPU
configuration parameters.

Methodology

We have compared our GPU algorithm implementation, the general approach, with: (a)
The CPU successor variant, and (b) the GPU successor variant of Martín et al.. We have
adapted our algorithm to also support the predecessor variant in order to compare with
(c) the CPU predecessor variant, and (d) the GPU predecessor variant of Martín et al..
To fairly compare the performance improvement of our algorithms, we also use the same
run-time configuration of the grid (threadblock size and geometry) as Martín et al..

Moreover, in order to check the performance degradation due to reduction the memory
space, both general and economic variant are also compared. This experiment is also
carried out with the same kernel configuration described before.

After checking that results were consistent, we repeat the experiments using a GeForce
GTX 680 (Kepler) NVIDIA GPU device. The following discuss compares results ob-
tained with Fermi platform.

6.3. A real-world benchmark: The SSSP problem 103

In order to compare the results of our approach with the implementation of Martín et
al., we have replicated the experimental examples using their graph creation tools.

Divergent branch and dummy computation

The threads of the relax kernel for both, predecessor and successor variants, have a diver-
gent branch. Two different kinds of threads are identified due to this divergent branch: (1)
dummy threads, that do not make any computation for its assigned node, and (2) working
threads, that carry out the relax operation from the assigned node.

Usually, the effect of the divergent branch is negative for the performance application
due to the serialization of the work-flow. Thus, in order to discuss if its presence causes
a significant performance degradation, we have carried out an experiment to measure the
efficiency ratio of divergent branch. (This efficiency tries to show how many branches
diverged. 100 % means no branches diverged. When a branch diverges the warp thread
active mask is reduce to be less than 32 so the execution is not as efficient. In addition
the branch may have to be executed multiple times based upon the number of ways the
branch diverged). See cite [89]). With the aim of knowing if it is possible to compute this
kernel more efficiently, we have measured both the total number of executed threads and
the number of working threads.

Target architecture

The performance results described by Martín et al. were obtained using a pre-Fermi
architecture release. We started by replicating these results, in our case using a GeForce
GT 9600 with a Fermi.

Regarding the host machine, we used an Intel(R) Core(TM) i7 CPU 960 3.20GHz,
64-bits compatible, with a global memory of 6 GB DDR3. It runs an UBUNTU Desktop
10.10 (64 bits) operative system. The experiments have been launched using CUDA 4.2
toolkit and the 295.41 64-bit driver.

Input set characteristics

Due to the different efficiency of the two storage methods (adjacency matrices and ad-
jacency lists), the input set for each implementation should be different. Adjacency list
allows to use much bigger graphs for the same memory footprint. For both storage meth-
ods we have generated 25 different graphs instances for each size with the same random
graphs generator used by Martín et al.. We have maintained seven as graph degree.

• Adjacency Matrices: The example graphs we have chosen to be stored as adjacency
matrices have sizes that range from 1 · 210 to 15 · 210 vertices. The edge weights are
integers that randomly range from 1 to 10.

104 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^20)

Adjacency lists

Pred-CPU, Martin
Succ-CPU, Martin

Pred-GPU, Crauser-based
Succ-GPU, Crauser-based

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^10)

Adjacency matrices

Pred-CPU, Martin
Succ-CPU, Martin

Pred-GPU, Craused-based
Succ-GPU, Craused-based

Figure 6.6: CPU-Martín vs. our Crauser-based GPU implementation execution times for both
input sets considered (1st part).

• Adjacency Lists: The example graphs we have chosen to be stored in adjacency
list have sizes that range from 1 · 220 to 11 · 220 vertices. Martín et al. had also
inverted the generated graphs in order to study approaches based on the successor
version. Note that the degree seven cannot be kept for these inverted graphs. The
edge weights are integers that randomly range from 1 to 10.

Code Versions Evaluated

From the suite of different implementations described in [72], we have taken the fastest
ones that use a CPU and a GPU computation. That means we have left out the hybrid
approaches that mix the execution of some phases in the CPU and others in the GPU.
We denominated implementations as: (1) “Pred-CPU and Pred-GPU” for the predecessor
variants for CPU and GPU, and (2) “Succ-CPU and Succ-GPU” for the successor variants
for CPU and GPU.

6.3. A real-world benchmark: The SSSP problem 105

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^20)

Adjacency lists

Pred-GPU, Martin
Succ-GPU, Martin

Pred-GPU, Crauser-based
Succ-GPU, Crauser-based

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

m
s
)

Number of nodes (multiples of 2^10)

Adjacency matrices

Pred-GPU, Martin
Succ-GPU, Martin

Pred-GPU, Crauser-based
Succ-GPU, Crauser-based

Figure 6.7: GPU-Martín vs. our Crauser-based GPU implementation execution times for both
input sets considered (2st part).

6.3.3 Experimental results

This section discusses the results of the experimental work.

Data structure successors predecessors
Adjacency Lists CPU vs. GPU 20.65× 13.17×
Adjacency Matrices CPU vs. GPU 17.43× 219.79×

Table 6.1: Speedup obtained by our GPU implementation considering Martín et al. CPU version
as reference.

Performance improvement

Figure 6.6 shows the execution time of predecessor and successor variants for CPU
Martín et al. and our GPU implementation in Kepler’s architecture for adjacency lists
(top) and for adjacency matrices (bottom). We can observe in Table 6.1 a performance
speed-up from 13× to 220× with respect to the CPU times (in the predecessor variant for

106 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

Data structure successors predecessors
Adjacency Lists GPU vs. GPU 1.07% 8.14%
Adjacency Matrices GPU vs. GPU 7.51% 16.97%

Table 6.2: Performance improvement of our GPU Implementations vs. Martín et al. GPU ver-
sions.

 1e+06

 1e+07

 1e+08

 1e+09

 0 1 2 3 4 5 6 7 8 9 10 11 12

#
T

h
re

a
d

s
 (

lo
g

s
c
a

le
)

Number of nodes (multiples of 2^20)

Adjacency lists dummy computations

Total threads
Working threads, Pred
Working threads, Suc

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
T

h
re

a
d

s
 (

lo
g

s
c
a

le
)

Number of nodes (multiples of 2^10)

Adjacency matrices dummy computation

Total threads
Working threads, Pred
Working threads, Suc

Figure 6.8: Total vs. Number of Working Threads in the relax kernel for Adjacency List (top) and
Matrices (down).

1 × 210 and 15 × 210 graph sizes respectively). We have always better performance than
the obtained by Martín et al.

Figure 6.7 shows the execution time of predecessor and successor variants in Kepler’s
architecture for both GPU implementations, Martín et al. and ours, for adjacency lists
(top) and for adjacency matrices (bottom). The Table 6.2 shows a performance gain up to
17 % with respect to the GPU-Martín algorithm.

6.3. A real-world benchmark: The SSSP problem 107

Economic vs. general

For the input sets used in the experiments, the economic variant has a similar performance
compared with the general variant. The used graphs for this experimental work have
seven outgoing adjacent nodes on average, with integer weights that range from 1..10.
Therefore, there is a high probability that for every node v the values ∆node v = ∆base,
leading to an analogous behavior. With graphs with less outgoing adjacent nodes and a
bigger range of weights, this probability is decreased. In such cases, the general variant
will take more advantage of its precomputed data with respect to the economic variant.

Divergent branch and dummy Computations

Figure 6.8 shows the total number of executed threads and the number of working threads
in relax kernel. In this case, the number of working threads is significantly lower than
the total number of launched threads. The percentage of dummy threads vs. total threads
goes from 42 %, for the predecessor variant with adjacency matrices, to 96 %, for the
successor variant with adjacency lists.

The results of the CUDA VisualProfiler have shown that the efficiency ratio of the
divergent branch in the relax kernel is good, from 94.3 % to 99.5 %. Thus, the serialized
work-flows, due to the divergent branch, hardly have affected the performance of this
kernel.

The execution of dummy warps, that are warps of 32 dummy threads, do not lead
to serialize different work-flows, because all threads of these warps processes the same
dummy instruction. Therefore, the fact of having much more dummy warps than mixed
warps, warps filled with both dummy and working threads, is the reason because the
performance is hardly affected by the divergent branch.

6.3.4 The SSSP problem: Conclusions

Our implementations obtain up to 220× speed-up with respect to the CPU version and a
performance improvement up to 17 % with respect to other GPU versions, as Martín et
al. selecting a good threadblock geometry.

We have also shown that, although the relax kernel has divergent branches, they do
not affect significantly the performance. In spite of the good performance improvements
obtained, we have detected that there is a high amount of dummy instructions executed
in relax kernel, up to 96 %. Thus, we expect that modifying the kernel to reduce the the
dummy computational load for the same inputs could lead to better performance times.

108 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

6.4 APSP problem

In this section we face the APSP problem (see Sect. B.2.5 in Appendix B) for sparse
graphs using the parallelized version of Dijkstra’s algorithm for GPUs discussed in Sect. 6.3
combined with optimization methods. These methods include the selection of a good cri-
teria for the threadblock size (as we introduced in sections 5.1 and 5.3), and the deploy-
ment of concurrent kernels in the same application context on a single GPU device to
better exploit the underlying hardware resources (see Appendix A).

The experimental results obtained aim to verify, through another real-world bench-
mark, the conclusions presented in Sect. 5.1 and 5.3 regarding the best values of CUDA
configuration parameters.

6.4.1 Experimental setup

Methodology

We have compared the performance of the GPU solution proposed in Sect. 6.3 with dif-
ferent configurations of the threadblock size and the number of concurrent kernels for the
relax kernel. Both techniques are closely related to the use of the hardware resources,
and therefore, we have considered to test them together to efficiently squeeze the GPU
capabilities.

Additionally, for our experiments we have used sparse graphs whose number of nodes
is 1 049 088. This size has been chosen because it is a multiple of all recommended values
for the threadblock size. With the aim to reduce the total experimental workload, we have
randomly execute reduced set of tasks for each graph, with each task starting at a different
source node, randomly chosen following an uniform distribution.

Target architectures

The GPU device used for our experiments is the GeForce GTX 480 that has a FermiCUDA
architecture (GF 110 series). The experiments have been launched using CUDA 4.2
toolkit and the 195.36 64-bit driver. Regarding the host machine, we used an Intel(R)
Core(TM) i7 CPU 960 3.20GHz, 64-bits compatible, with a global memory of 6 GB
DDR3. It runs an UBUNTU Desktop 10.10 (64 bits) operating system.

Input set characteristics

The input set is composed by a collection of graphs randomly generated by a graph-
creation tool used the experiments presented in [72]. The graphs have been created adding
seven adjacent predecessors to each node of the graph. These graphs are represented

6.4. APSP problem 109

through adjacency lists, with the nodes numbered from 0 . . . |V | − 1, and integer weigh
for the edges randomly chosen with a uniform distribution between 1 an 10.

Tuning the threadblock and concurrent kernels

We have chosen the recommended threadblocks sizes that maximize the SM occupancy in
the Fermiarchitecture (192, 256, 384, 512 and 768), that are explained in [61]. Moreover,
following the recommendations described in Sect. 5.1 and 5.3 of this Thesis, we have
tested lower values for this threadblock size, that are 64, 96 and 128 threads per block,
with a medium ratio of SM occupancy (for no full-coalesced/scatter access patterns). Re-
garding the grid and the block shape, both have a single horizontal dimension to create a
direct relation between the thread indexes and the array storage.

We also wanted to check if the deployment of concurrent kernels will lead to better
performance times due to a good resource exploitation. In order to test this behavior, we
have evaluated the GPU solution for the APSP with the following number of concurrent
kernels: 1, 2, 4, 8, 16, 32 and 64. As long as Fermi architecture cannot support real
extension of more than 16 concurrent kernels, we suppose that the performance gain from
this point will not be significantly improved. The kernels launched after this limit are
stored in a queue to later be dispatched.

Since the threadblock size and the number of concurrent kernels are closely related to
the use of hardware resources, they should be evaluated testing all combinations of these
parameters. Due to the large amount of computational time involved to solve the APSP
problem we have only launched this first experiment by computing only the distance from
1 024, 2 048 and 8 192 source nodes to all nodes. These values are selected because they
are multiples of the chosen numbers for the concurrent kernels launched.

Second, we want to show the performance difference between the worst and the best
recommended configurations and to evaluate its scalability with bigger input sets. So, we
have also evaluated the performance for the 16 384 and 32 768 source-node to all.

6.4.2 Experimental results

In this section we present the experimental results obtained for the different parameter
configurations evaluated and the behavior of the worst and the best configurations for the
relax kernel.

Tuning the threadblock and concurrent kernels

Figure 6.9 shows the execution times for the different configurations for the 1 024-source-
node to all (left) and 8 192-source-node to all (right). The 4 096-source-node to all plot is
not shown because it presents a similar performance. In all cases, the best configuration

110 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

 16

 16.5

 17

 17.5

 18

 18.5

 1 2 4 8 16 32 64

T
im

e
 (

s
e
c
)

Number of concurrent kernels

1024 tasks with different threadBlock size

 128

 132

 136

 140

 144

 148

 1 2 4 8 16 32 64

Number of concurrent kernels

8192 tasks with different threadBlock size

Figure 6.9: Relax-kernel execution times for different input sets with different configurations
between the number of threads per block (ths) and number of multi-kernels.

 100

 200

 300

 400

 500

 1024 4096 8192 16384 32768

T
im

e
 (

s
e
c
)

Number of tasks

The best and the worst tuning/multi-kernel configurations

256 threads, 1 conc. kernels
96 threads, 4 conc. kernels

Figure 6.10: Execution times of the relax kernel for the best and the worst tuning/multi-kernel
configurations.

from the recommended values is reached with a block size of 96 threads and the execution
of 4 concurrent kernels.

The results show that there are performance improvements using from one kernel
to four (or eight, for bigger threadblock size) concurrent kernels due to the exploitation
of the data-caches and block/warp dispatchers. Through the CUDA VisualProfiler we
have observed that the use of concurrent kernels slightly reduces the number of L1 data-
caches misses for this kind of kernels. However, although the performance times from
this number of concurrent kernel are also good, the performance cannot be improved any
more by introducing new kernels, because the global memory bottlenecks and data-cache
trashing effects increase too much.

6.5. Load balancing techniques for the APSP problem 111

Total performance gain

From the previous experiments, the worst configuration is obtained with 256 threads per
block and 1 single concurrent kernel. On the other hand, the best results are reached with
96 threads per block and 4 concurrent kernels. Figure 6.10 shows the execution times for
the best and the worst recommended configurations for bigger problems such as 16 384
and 32 768-source-node to all. The global performance gain reached between the worst
configuration (256 threads + 1 kernel) and the best (96 threads + 4 concurrent kernels) is
an 11.5 %.

6.4.3 APSP-problem: Conclusions

The results of our experiments corroborate the conclusions of the work described in
Sect. 5.1 and 5.3. For kernels with the same features as our relax kernel, an optimal
performance is achieved if smaller threadblock sizes that do not reach the maximum oc-
cupancy are used.

6.5 Load balancing techniques for the APSP problem

We first describe briefly the equitable scheduling and numbered ticket load-balancing
techniques evaluated, and after, the methodology used for our experiments.

6.5.1 Load-balancing techniques evaluated

A simple way to apply load-balancing to a heterogeneous system is to equitably distribute
the work without taking into account the computational capabilities of the devices. This
kind of techniques usually lead to easy implementations, but at the expense of having a
temporal cost equal to the time that the worst device needs to compute its work. Equitable
Scheduling can be classified as a static load-balancing technique at compile time.

Our Equitable Scheduling (ES) approach statically divides the workspace between the
computing threads giving to each one the same quantity of tasks. If nc represents the
number of computing threads, id the thread identifier, and nt = |V |/nc the number of
tasks per thread, this approach makes each thread responsible for computing the tasks
from id · nt to id · nt + nt − 1. If this task division is not exact, each of the first threads
takes one of the remaining tasks until there is no more work to do.

Numbered Ticked Scheduling is commonly employed to accomplish a dynamic work
scheduling between any kind of hardware device. All hardware devices of the heteroge-
neous system can steal a task from the global task queue. Note that the access to the global
task queue must be implemented with some kind of synchronization in order to avoid that

112 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

two or more devices steal the same task. Usually, this synchronization involves a bot-
tleneck in the execution times. Work-Stealing scheduling can be classified as a dynamic
load-balancing technique at runtime.

Our Numbered Ticked Scheduling (NT or WS) approach lets to an idle thread that
has finished its previous work to steal the following task ti. This task is immediately
eliminated from the queue at the moment it is taken. Then, the thread computes the
corresponding NSSP problem with node i as source. Finally, when the thread ends its
work, it comes back to the global task queue in order to take another one, repeating the
process till there is no more pending work. The synchronization of the task stealing has
been implemented using an atomic region. That means that only one thread can be taking
the following work at any moment.

6.5.2 Methodology

We have compared our heterogeneous implementations against a single GPU implemen-
tation described in Sect. 6.4, that we have denominated baseline, in order to evaluate the
performance gain of using heterogeneous systems for the Crauser et al. APSP problem.
The algorithm implemented for GPU devices is an adaptation of [28] ideas for the CUDA
architecture presented in [92]. Moreover, the sequential version of this algorithm is used
for the CPU devices.

Several instances with different number of OpenMP threads, for both load-balancing
methods presented, have been executed in order to determine the best configuration. These
instances have been tested with graphs of 1 · 220 nodes solving the complete APSP prob-
lem. Additionally, we have used for our experiments bigger graphs whose number of
nodes is ranging from 1 · 220 to 11 · 220. However, due to the large amount of computa-
tional load needed to solve the APSP in these big graphs, we have bounded the problem
to a 512-source-nodes-to-all in order to reduce the global execution time. For the selec-
tion of these source nodes we have used the family of random functions srand48() from
standard C library.

6.5.3 Target architectures

For this experiments, the evaluated heterogeneous system is composed by different com-
putational units that are grouped in two categories:

• The shared-memory CPU system cores of the host machine. It is an Intel(R) Core(TM)
i7 CPU 960 3.20 GHz, 64-bits compatible, with a global memory of 6 GB DDR3.

• Two GPU devices of different architectures attached to the host machine:

– A GeForce GTX 680 (Kepler) NVIDIA GPU device, and

6.5. Load balancing techniques for the APSP problem 113

 0

 10

 20

 30

 40

 50

 60

 0 10000 20000 30000

T
im

e(
m

il
li

se
co

n
d

s)

Average time execution of groups of 32 NSSP

Figure 6.11: Temporal cost of the different source nodes in the graph for the Kepler GPU.

– A GeForce GTX 480 (Fermi) NVIDIA GPU device.

The baseline implementation is executed in the same shared memory host machine of
the previously described heterogeneous system, but it only uses the most powerful GPU
device as computational unit: The GeForce GTX 680 (Kepler) GPU device.

Regarding the software used, the host machine runs an UBUNTU Desktop 10.10 (64
bits) operating system, and the experiments have been launched using CUDA 4.2 toolkit
and the 295.41 64-bit driver.

6.5.4 Input set characteristics

The input set is composed by a collection of graphs randomly generated by a graph-
creation tool used by [72] in their experiments. They have been created adding seven
adjacent predecessors to each node of the graph. Afterwards, they have inverted the graphs
in order to store the node successors sequentially. These graphs are represented through
adjacency lists, the nodes are numbered from 0 . . . |V | − 1, and the edge weights are
integers that randomly range from 1 . . . 10.

The node distribution of this kind of graphs shows an irregular behavior for the com-
putational time of the APSP problem in terms of each NSSP subproblem. The iterations
of the first nodes of the graph need more computational time to solve its NSSP problem
than the final ones. Figure 6.11 shows, using intervals of 32 nodes, how the time needed is
considerably reduced when the baseline implementation executes with an starting node of
the second half of the nodes set. Due to the nature of the problem, there are no inter-NSSP
dependencies and communication in the complete APSP computation.

114 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

Legend Description
G1 Single GPU thread (Kepler)
E2 / W2 2 GPU threads (Fermi & Kepler)
E3 / W3 2 GPU threads + 1 CPU threads
E4 / W4 2 GPU threads + 2 CPU threads
E6 / W6 2 GPU threads + 4 CPU threads
E8 / W8 2 GPU threads + 6 CPU threads
E14 / W14 2 GPU threads + 12 CPU threads
E16 / W16 2 GPU threads + 14 CPU threads

Table 6.3: Experimental instances.

6.5.5 Load-balancing techniques evaluated

Both load-balancing techniques described, Equitable Scheduling and Numbered Ticket,
have been implemented with support to different number of OpenMP threads. Several
instances with different number of threads have been evaluated against the baseline im-
plementation.

On our results tables and plots we have tagged each instance, depending on which
load-balancing technique implements, with the label “E” for Equitable Scheduling, and
“W” for Numbered Ticket scheduling instances, followed by a number that represents the
number of OpenMP threads used (see Table 6.3). Thus, the evaluated instances “E3” and
“W8” are a implementation of equitable scheduling with 3 threads, and a implementation
of numbered ticket scheduling with 8 threads respectively.

The first two threads are always assigned to the two GPU devices, one for each graphic
accelerator. The rest of the threads are executed in the CPU-cores. Therefore, the in-
stances “E2” and “W2” only use the GPUs resources.

6.5.6 Experimental results

In this section we present the experimental results obtained for the execution of the com-
plete APSP with |V | = 1 · 220, and the 512-source-to-all for graphs which number of
nodes ranges from 1 · 220 to 11 · 220.

Complete APSP

• Equitable Scheduling: Figure 6.12(a) presents the execution times of equitable
scheduling technique for instances with different number of OpenMP threads. The
performance of the baseline approach (G1) is significantly improved when a second
GPU device is used (E2). However, a 2× speed-up is not reached because the
architectures of the used GPUs are different. This means that the total execution

6.5. Load balancing techniques for the APSP problem 115

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

G1 E2 E3 E4 E6 E8 E14 E16

T
im

e(
se
co
n
d
s)

Techniques

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

G1 W2 W3 W4 W6 W8 W14 W16

T
im

e(
se
co
n
d
s)

Techniques

Figure 6.12: Execution times of (a) Equitable and (b) Numbered Ticket Scheduling policies.

time corresponds with the total execution time of the less powerful GPU device.
Nonetheless, E2 presents a 30 % of performance improvement against the baseline.

The use of one and two CPU-cores (E3 and E4) helps to decrease this critical exe-
cution time because the number of subproblems (SSSP problems) that the critical
GPU has to resolve is reduced. The instance E4 shows a 65 % of performance im-
provement. The higher the number of launched threads, the lesser the computation
load given to each GPU device. Nevertheless, due to the irregular nature of the
graph (see the distribution time in Fig. 6.11), there is a threshold where the equi-
table partition overloads so much the work that the CPU-cores have. This occurs
when the most costly tasks, that they were assigned to GPUs before, are assigned
to CPU-cores. For this reason, the total execution time of the approach E6 is signif-
icantly increased even surpassing the baseline time. Furthermore, as more threads
are launched from this point, the total time execution is reduced.

• Numbered-Ticket Scheduling: Figure 6.12(b) shows the execution time results

116 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

of the Numbered ticket technique for instances with different number of OpenMP
threads. The performance of the baseline approach (G1) is significantly improved
by any experimental instance that uses the numbered ticket method (Wi). The in-
stance that uses only two GPUs has a 44 % of performance improvement against
the baseline. As we increase the number of OpenMP threads, more hardware de-
vices are used, reducing the execution times. Although the most costly tasks are
also taken by the CPU-cores, while they are computing their subproblem, the GPUs
are continuously stealing tasks. The instance with the fastest execution times is the
W4 instance, leading to a 60 % of performance improvement. However, when the
number of launched threads exceeds the number of heterogeneous computational
units (W14 and W16), the execution of threads that belong to the same CPU-core is
concurrent. This behavior leads to slightly penalty times, reaching a performance
improvement of 40 % against the baseline.

512-Source-node-to-all shortest path

• Equitable Scheduling: Figure 6.13(a) presents the execution times for scenarios
using the equitable scheduling implementation, for different number of OpenMP
launched threads. The best performance is obtained with the E2 configuration, lead-
ing to a 45 % of performance improvement against the baseline.

The heterogeneous approaches with CPU-cores (E{3...16}) have worse execution
times than the baseline due to memory access bottlenecks. That is because the
CPUs are taking costly tasks due to the random nature of the 512 nodes selection.
However, as it happened in the complete APSP scenario, this time is reduced when
more threads are launched.

• Numbered-Ticket Scheduling: Figure 6.13(b) shows the numbered ticket imple-
mentation for different OpenMP launched threads. As it happens in the APSP sce-
nario, the execution time of any numbered ticket instance (W{2...16}) is better than
the baseline (G1). The instance of two threads that only uses GPU devices, W2, has
a very good performance against the baseline (46 % of performance improvement).
Inserting an additionally CPU-core to the heterogeneous system, W3, leads to an
even better performance improvement of 47 %. However, adding more than one
CPU-cores to the heterogeneous system, W{4...16}, leads to slightly worse execution
times compared with the best.

Experimental conclusions

The best execution time for the complete APSP scenario is achieved with an equitable
scheduling implementation, E4, leading to an 65 % of performance improvement com-

6.5. Load balancing techniques for the APSP problem 117

 0

 100

 200

 300

 400

 500

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(s

e
c
o
n
d
s
)

Number of nodes (multiples of 2
20

)

G1
E2
E3
E4
E6
E8

E14
E16

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(s

e
c
o
n
d
s
)

Number of nodes (multiples of 2
20

)

G1
W2
W3
W4
W6
W8

W14
W16

Figure 6.13: 512 nodes execution times of (a) Equitable and (b) Numbered Ticket Scheduling.

pared with the baseline G1. However, the next approaches that closely follows this im-
provement are those that use a work-stealing implementation, (W{3...8}), instead of other
equitable scheduling instances with similar thread configurations.

For the 512-source-to-all scenario, the best results are reached with a numbered ticket
implementation, W3, with a 47 % of improvement compared to G1. The equitable schedul-
ing approach looses performance compared to the baseline for any thread configurations
excepting the version that only uses GPUs, E2.

These results show that (1) the equitable scheduling can be tuned up to achieve the best
performance times avoiding critical code regions but it is very sensible to changes of the
input graph, and (2) the numbered ticket implementations have a more robust performance
than the equitable scheduling because it is more independent of the graph nature.

118 Chapter 6. Experimental Evaluation of an Heterogeneous Hitmap

6.5.7 Load balancing techniques: Conclusions

The solutions described have achieved a performance improvement up to 65 % compared
with the baseline single-GPU solution. Moreover, the results of our experiments have
shown that the numbered ticket implementation with the same number of OpenMP threads
have given a good performance for all tested scenarios. However, the equitable schedul-
ing implementation, that involves CPU-cores, has not shown a significantly performance
improvement if the nature of the graph is not taken into account.

Our first conclusion is that the jointly use of very different computational power de-
vices is useful to improve the total execution time compared with the fastest GPU im-
plementation. Second, the previous study of the nature of the input problem allows us
to better mapping the most costly tasks to the most powerful devices. For our case, the
equitable scheduling that maps all costly tasks to the GPUs, and leaves light ones to the
CPU-cores, leads to the best performance. Finally, the application of the numbered ticket
technique results in a more robust implementation compared to the equitable scheduling
because it is less sensible to the nature of the input problem.

Chapter 7
Conclusions

In this dissertation we have presented a study of several problems related to the pro-
gramming of heterogeneous systems. We discuss several policies to select good thread-
block geometry and other execution parameters to exploit the GPU device architecture
efficiently. We have also developed a software tool, synthetic benchmarks, and some real-
world applications to study the feasibility of automating these high-risk decisions as well
as automatic data partitioning techniques and communication tools for heterogeneous sys-
tems. This chapter summarizes the main contributions provided by this Thesis, presents
its main conclusions with the answer to the research question proposed in Sect. 1.2.1, and
finally discusses the future directions of this work.

7.1 Summary of contributions

First
We contributed to the development of Hitmap, a library designed to decouple the
communication pattern from data partitioning, thanks to the use of abstract expres-
sions of the communications, that are automatically adapted at runtime depending
on the partition policy finally chosen. We then used the Hitmap abstractions for
homogeneous systems to design new ones focused on heterogeneous environments.

1. Arturo Gonzalez-Escribano, Yuri Torres, Javier Fresno, and Diego R. Llanos.
An Extensible System for Multilevel Automatic Data Partition and Mapping.
Parallel and Distributed Systems, IEEE Trans. on Parallel and Distributed
Systems, PP(99):1–1, 2013. [45].

Second
We provided new insights into the relationship between performance and several
key programmer decisions when using GPU architectures. This includes occupancy,

119

120 Chapter 7. Conclusions

threadblock size and shape, Fermi cache hierarchy configuration, and thread access
pattern on the global memory.

2. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Understand-
ing the impact of CUDA tuning techniques for Fermi. In High Performance
Computing and Simulation (HPCS), 2011 International Conference on, pages
631–639, 2011. [113].

3. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. CUDA Tuning
and Con- figuration Parameters on Fermi Architectures. In Advanced Com-
puter Architecture and Compilation for High Performance and Embedded Sys-
tems (ACACES 2011), 2011. [112].

4. Yuri Torres, Arturo Gonzalez -Escribano, and Diego R. Llanos. Uso del
conocimiento de la arquitectura Fermi para mejorar el rendimiento en apli-
caciones CUDA. In Actas XXII Jornadas de Paralelismo, 2011. [114].

5. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Using Fermi
architecture knowledge to speed up CUDA and OpenCL programs. In Proc.
ISPA’12, Leganes, Madrid, Spain, 2012. [118].

Third
We introduced a complete suite of micro-benchmarks (called uBench) to further
explore the impact on performance of: (a) The thread-block size and shape choice
criteria, and (b) the GPU hardware resources and configuration. This benchmark
suite covers the hardware details of Fermi and Kepler architectures.

6. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Measuring
the Impact of Configuration Parameters in CUDA Through Benchmarking. In
The 12th International Conference Computational and Mathematical Methods
in Science and Engineering, CMMSE 2012, 2012. [116].

7. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. uBench: Per-
formance Impact of CUDA Block Geometry. Technical Report IT-DI-2012-
0001, Depto. Informática, Universidad de Valladolid, Dec 2012. [117].

8. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. uBench: ex-
posing the impact of CUDA block geometry in terms of performance. The
Journal of Supercomputing, 65(3):1150–1163, 2013. [120].

Fourth
We developed and used two real-world applications, such as, the SSSP and APSP
problem to test and verify the conclusion obtained in [112, 113, 114, 116, 117, 118,
120] in these representative benchmarks.

7.2. Conclusions 121

9. Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego R.
Llanos. A New GPU-based Approach to the Shortest Path Problem. In The
2013 International Conference on High Performance Computing & Simula-
tion, (HPCS 2013), pages 505–511, 2013. [92].

10. Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego R.
Llanos. A Tuned, Concurrent Multi-Kenel Approach to the APSP problem. In
The 13th International Conference Computational and Mathematical Methods
in Science and Engineering, CMMSE 2013, 2013. [93].

Fifth
We presented a programming framework extending Hitmap library in order to ana-
lyze the possibility of creating a programming model and framework that supports
heterogeneous platforms encapsulating: (a) Policies for the selection of good val-
ues of GPU configuration parameters, (b) the management of the abstract tile data
structures, (c) mapping and load balancing functions, and (d) synchronization/com-
munication functionalities between CPU-GPU heterogeneous devices.

11. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Automatic
Data Layout at Multiple Levels for CUDA. In The 10th International Confer-
ence Computational and Mathematical Methods in Science and Engineering,
CMMSE 2010, 2010. [111].

12. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Data partition
and synchronization in heterogeneous systems. In HPC-EUROPA2 project
(project number: 228398) with the support of the European Commission -
Capacities Area - Research Infrastructures, 2013. [119].

13. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Encapsu-
lated Synchronization and Load-Balance in Heterogeneous Programming. In
Euro-Par 2012 Parallel Processing, volume 7484 of LNCS, pages 502–513.
Springer Berlin Heidelberg, 2012. [115].

14. Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Automatic
run-time mapping of polyhedral computations to heterogeneous devices with
memory-size restrictions. In The 2013 International COnference on Parallel
and Distributed Processing Techniques and Applications, 2013. [53].

7.2 Conclusions

Based on the information, discussions, and results shown throughout the previous chapters
of this Ph.D. Thesis, the main conclusions are:

122 Chapter 7. Conclusions

• Both homogeneous and heterogeneous Hitmap lead to more abstract programs, eas-
ier to code and maintain, still obtaining good performance results. These libraries
allow to achieve similar performance as carefully-implemented manual versions for
several, well-known parallel kernels and benchmarks in distributed and multi-core
systems, and substantially reduces programming effort.

• The choice of global GPU configuration parameters are closely related to the par-
ticular parallel problem implementation. A combined analysis of the knowledge
of a specific GPU card architecture, and code features, such as the type of global
memory access pattern (coalesced vs. scatter), the total workload per thread, and
the ratio of global memory read-write operations, can significantly help to choose
programming parameters, such as threadblock geometry and L1 cache memory con-
figuration, that have a significant impact on performance.

• It is possible to develop a portable and transparent programming system that in-
corporates hierarchical tiling and scheduling policies, in order to take advantage of
heterogeneous computing capabilities.

7.3 Future directions

There are still some issues we would like to address. These issues and paths define the
future directions of this work:

• We are currently working on designing more sophisticated mapping policies that
better exploit CPU-cores and GPU architecture information. We want to test the
applicability of these techniques to more types of programs, including well-know
benchmarks and real applications.

• We plan to study the influence of hardware effects and threadblock configuration
parameters in other GPU architectures vendors, such as AMD and Intel.

• We are curious to study the FPGAs (Field Programmable Gate Array) devices be-
cause, its hardware functionality can be reconfigured several times. We would
like to automate decisions that any programmer should make before launching any
FPGA function. We would like to give support for FPGAs devices in our program-
ming framework.

Appendix A
CUDA Programming Model

A.1 CUDA model

CUDA (an acronym for Compute Unified Device Architecture) [78, 82, 85, 90] is a par-
allel computing architecture developed by NVIDIA Company. CUDA model is the com-
puting engine in NVIDIA graphics processing units (GPUs) that is accessible to software
developers through variants of industry standard programming languages.

This model allows the programmer to focus on algorithm efficiency and also to de-
velop scalable parallel programs. The University of Virginia carried out a study that
uses CUDA during several weeks to check how easy is to learn this model. The stu-
dents of Virginia were able to write correct parallel programs in only three weeks, and
to see the advantages of multi-core GPUs execution. The projects that have been ad-
dressed by this university belong to different areas, such as medical imaging (Leuko-
cyte, Heart Wall) [57, 74], bioinformatics (MUMmerGPU) [75, 105], fluid dynamics
(CFD Solver) [38, 121], linear algebra (LU Decomposition) [24, 25], physics simula-
tion (HotSpot) [35, 48], pattern recognition (back propagation) [50, 63], data mining
(Kmeans) [1, 68], and graph algorithms (Breadth-First Search) [46, 95], among others.

There are many applications [42, 91, 134] that use this parallel programming model to
get more execution performance. For example, FHD-spiral MRI reconstructions, molecu-
lar dynamics, N-body astrophysic simulations, and images treatment. These applications
need many computation resources to minimize the global execution time. For this reason,
the GPUs architectures and GPGPU languages are well suited to these problems.

CUDA parallel programming model is a C or C++ language extension that works with
shared-memory architecture and allows to exploit the GPUs technologies. This parallel
programming extension was implemented by the NVIDIA company, that also produces
several GPU models like GeForce TESLA and QUADRO. CUDA forces the programmer
to explicitly use thread-groups which are related to the memory hierarchy. The thread-
groups contain threads that are executed concurrently, sharing a cache memory. The size

123

124 Appendix A. CUDA Programming Model

of these local memories should be considered by the programmer to efficiently exploit
them, having an important impact of performance. Indeed, this architecture provides a
hierarchy of memory levels. For example, in the low level, we find the main or system
memory. In a second higher level the GPU main memory. Finally, we find the memory
shared by the threads of a threadblock. Different synchronization techniques and issues
are related with the different memory levels.

The programmer writes his program in a serial form with several kernel calls (func-
tions that will be executed on the GPU devices), which are simple sequential functions.
These functions will be replicated across multiple threads that will execute the tasks con-
currently. Threads executing the same kernel function are organized in threadblocks. In
CUDA the threadblock is expressed as an array of threads with one, two, or three dimen-
sions. The actual size (number of threads) is the product of this array domain cardinalities.
Each thread is identified by as many indexes as dimensions on the threadblock declaration.

The threads in different threadblocks may communicate among themselves via shared
memory and synchronize with certain primitives. A grid is the array of threadblocks that
may be executed independently on a single GPU device. One grid is started or launched
by a single GPU call with the corresponding parameters for the kernel function to be
executed by the threads.

Each thread of a threadblock has an ID number called threadIdx, and also, each thread-
block has a unique block ID number within its grid, called blockIdx. Thus, we can identify
each thread and threadblock within a grid, and then, assign work to each thread. A grid
may have two or three dimensions depending on CUDA version.

A.1.1 Brief examples

Matrix multiplication

A very easy example could be the multiplication between a vector and a scalar number.
This vector would have N elements, and a efficient form to execute this operation on
a GPU with CUDA model would be to assign each vector element multiplication to a
different thread. In a sequential implementation, it takes N steps to execute all multiplica-
tions in sequence. Using the CUDA model, each multiplication would still take one step
but all of them may be executed in parallel in only one concurrent execution step (without
considering other costs in the synchronization). In this way, we have reduced significantly
the global execution time.

In the CUDA implementation we have several declaration qualifiers, for example
__global__. This declaration specifies a kernel entry point. The programs launch par-
allel kernels with the following programming language extension:

kernel<<<dimGrid, dimBlock>>>(...functions parameters...);

A.1. CUDA model 125

Where dimGrid and dimBlock are declarations that specify the number of blocks and
the number of threads per dimension respectively.

Figure A.1: Computing Y ← Ax+y in CUDA parallel model (this figure is obtained from [78]).

In Example A.1, the grid would have one threadblock with N threads, that will be
spawned in a single GPU device call. By default, CUDA assumes that there are no depen-
dencies among the threadblocks in a grid, executing them in parallel. The threads in each
threadblock are executed concurrently depending on potential synchronization primitives
that can be added. We can put several grids in our program but CUDA launches them in
sequential form. In other words, the grid can not be executed in parallel with other grids.
This limitation will be further explained in later sections. However, in the new GPU de-
vice architecture (Fermi or Kepler [81, 84, 86]), it is possible to launch several grids to a
single GPU,and they are executed in parallel.

Parallel reductions

Other easy-to-understand problem is the parallel reductions. This algorithm initially
seems to be sequential, as we are used to sum up one element at a time, remembering
only one partial result along the whole operation. However, as it is shown in Fig. A.2,
several threads may concurrently compute partial results which are also reduced in fur-
ther steps, until we obtain one single value. Thus, a parallel algorithm may reduce the
global execution time.

126 Appendix A. CUDA Programming Model

Figure A.2: Parallel sum reduction tree (this figure is obtained from [83]).

A.1.2 Thread organization

Figure A.3 illustrates the organization of threads within a threadblock. In this figure,
each threadblock is organized as an array of 2 × 4 threads. All blocks within a grid
have the same dimensions for the threads array. The specifications provided by each
CUDA architecture technology define a maximum number of threads per block. This
number is 512 or 1024 threads, depending on the technology. In this example, we have 6
threadblocks with 2× 3 threads (a grand total of 12× 6 = 72 threads in the grid). Typical
CUDA grids contain thousands millions of threads.

A.1.3 Synchronization barriers

In CUDA model, different issues appear when synchronizing the threads. The threads of
a threadblock can be synchronized by __syncthreads() calls. These calls allow to stop the
threads that are involved in the barrier until all threads reaches it. This guarantees that a
thread may see all concurrently computed data without any race conditions.

There is no direct mechanism to synchronize thread execution of different thread-
blocks. However, there exist atomic operations to avoid race conditions when threads of
different blocks access to global memory positions. All the blocks in a grid are synchro-
nized at the end of its execution with the equivalent of a barrier.

We may declare and use several grids in our program. These grids can be depen-
dent or independent. Dependent grid will be executed in sequential mode with old GPU
technologies, while the independent grids may be executed concurrently, given sufficient
hardware resources, with current Fermi technology. By default, concurrent grids are not
synchronized at their end. However, GPU to CPU memory blocking operations may be
used to create global synchronization points for grid sets.

A.1. CUDA model 127

Figure A.3: Grid of threadblocks (this figure is obtained from [83]).

A.1.4 Memory accesses

All threads of a grid can access elements on several memories. For example, accesses to
the global memory (memory hosted on a Host) pass across the GPU to CPU communica-
tion system (typically the system bus). When a thread executes a global memory call, it
spends a significant amount of time, slowing the program execution. There also exists the
GPU main memory, used to save the global variables for the kernel computation, together
with big sets of data. Finally, it exists the shared memory between the threads of a thread-
block. This memory is named GPU cache memory. As its name suggests, it is a faster
memory. However, its main disadvantage is its small size. There is a memory hierarchy,
where the high level is the faster and smallest-sized memory (cache), and in the low level
we find the slowest and the most abundant memories. To book shared memory we have to
use the __shared__ qualifiers within the GPU code (code that will be executed by GPU).
There are two other specific-purpose memories that are in the same level than the shared
cache memory: (1) The constant cache that store the different constant values used in a
code, and (2) the texture cache that was initially thought to improve the image-processing
operators related to texture application.

One of the most important things to consider when programming in CUDA is the

128 Appendix A. CUDA Programming Model

cache memory size. We have said that this memory is very fast, and we have to use it
as much as possible. When we choose a little threadblock (few threads in the block),
the amount of threads may also limit the amount of shared data that may be located and
exploited on the cache memory to reduce the global memory latencies. This situation
could be improved by increasing the number of threads per threadblock. However, if the
threadblock has too many threads, the cache size may be too small to locate all the shared
data they need, forcing to use global memory with higher latencies.

Thus, when we try to choose a threadblock size it is very important to be acquainted
with all levels of the memory architecture, as well as to be aware that threadblocks with
different sizes can give us very different behaviors (in terms of computation efficiency).
The sequential program executed in the CPU may manage the global memory space visi-
ble to kernels or grids by calls to CUDA run-time functions. For example, cudaMalloc()
and cudaMemcpy() primitives allows to copy portions of data from system global memory
towards GPU device memory.

A.1.5 CUDA architecture

CUDA programming model allows the execution of general purpose applications. For
this reason, thousands of data-parallel threads can be used on NVIDIA’s CUDA architec-
ture [82, 85]. But is very important to know how the multiples kernels in a NVIDIA GPU
are organized and executed. On an NVIDIA GPU there are several streaming multipro-
cessor called SMs (or MP Multi-processors). They are shown in the Fig. A.4. All these
SMs share the same device memory, that is the global memory of a GPU card. Each SM
has a set of scalar processing elements called SPs. Each SP executes a different thread,
but they work with a SIMD model (Simple Instructions, Multiple Data). In other words,
these sets of SPs within the same SM execute the same instruction at the same time. Each
SM has a cache memory and a set of registers shared by the threads executed by the SPs.

Each SM has 8 or 32 SPs depending on the technology version. However, CUDA
groups the threads in sets of 32, to be executed in the same SM with the SIMD model.
This sets are called Warps. Each warp of 32 concurrent threads is scheduled on the 8, 32
or 192 SPs. When threads in a warp access memory they stall, waiting for the data. It is
convenient to have other warps (from the same or from a different threadblock) to keep
the SM busy while data arrives from memory. A sufficient number of warps help to hide
global memory latencies. However, all the warps of a threadblock must be scheduled on
the same SM, and the architecture and technology version impose a maximum number of
warps supported by the SM.

When the user launches a kernel in a CUDA program, she can declare several thread-
blocks executing the same kernel function. Each threadblock consists of at most 1024
threads (with the last technology) and each one of them is assigned to a single SM, being

A.2. Concurrent kernels 129

Figure A.4: A set of SIMT multiprocessors with on-chip shared memory (this figure is obtained
from [81]).

executed without preemption. This set of threads are executed in SIMD model. There is
also a limited number of warps scheduled to a single SM at a given moment. This also
sets a maximum number of threads per SM, independently of the threadblock sizes.

The CUDA model specifies that the order of the execution of threadblocks within a
single kernel is undefined. With this situation, communications between the different
threadblocks are not allowed. These communications are substituted by access to the
global memories.

A.2 Concurrent kernels

Since the advent of the second generation of NVIDIA architectures, CUDA supports con-
current kernel execution. With this feature, different kernels can be executed concurrently,
allowing better utilization of GPU resources. The maximum limit of concurrent kernels
are 16 for Fermi (GF110 serie) and Kepler (GK104 serie).

Moreover, the advantages of concurrent kernel execution are automatically exploited
by the CUDA kernel dispatcher, providing a high efficiency without an extensive user

130 Appendix A. CUDA Programming Model

intervention. The authors in [85] show that the best performance using concurrent kernels
is achieved with small kernels. The maximum number of concurrent kernels that can be
allocated efficiently in the GPU depends on the use of the hardware resources made by
each one. The less resources used by each kernel, the more kernels that can be efficiently
computed concurrently.

A.3 CUDA heterogeneous programming

Heterogeneity is a term that is related to execute the same code across several devices
of a different nature. The heterogeneous computing [17, 76] is a technique that uses a
collection of different devices, for example CPUs and GPUs, to solve a particular parallel
problem. To exploit efficiently the parallel program with an heterogeneous model it is
highly recommended to know the GPUs device architectures.

CUDA programming model is oriented to support heterogeneity [82] on the program
executions. In other words, the parallel code will be executed by CPU and GPU devices
working jointly. We will have to specify the parts that we want to execute onto the CPU
and onto the GPU device. Thus, it is possible to exploit all devices in parallel.

In Fig. A.5, we can see a generic diagram of the sequential model of execution for
CUDA programs. First, we have the serial code executed by the CPU device (in this ex-
ample called Host) and then, the parallel execution launched by CPU that will be executed
on the GPU device. The Fermi architecture does not block the Host execution flow when
a single kernel is launched.

A.4 CUDA strengths and weaknesses

So far, we have only spoken about CUDA programming model features, but it is very
important to summarize and highlight the CUDA low-level software and hardware, that
imposes both advantages and limitations.

A.4.1 Advantages

CUDA provides an easy-to-understand model to implement parallel programs on NVIDIA
GPU cards. Some of the most important features of the CUDA programming model
are, among others, asynchronous memory copy between GPU and CPU, and support for
integer and bitwise operations, including integer texture lookups. The cache of each SM
is divided in 16 individual modules that access to multiple cache modules at the same
time. For this reason, the cache bandwidth is considerably increased. This cache memory
is a shared memory between all threads of a threadblock, then, the threads may read and

A.4. CUDA strengths and weaknesses 131

Figure A.5: Serial code executes on the host while parallel code executes on the device (this figure
is obtained from [83]).

write data (taken into account the synchronization primitives) that are immediately visible
for the rest of the threads. The global memories are more slower than the cache modules.
Therefore, when a GPU device wants to read a CPU global memory, it has to go through
the CPU device, and this situation produces a noticeable delay. CUDA provides high
bandwidth to mitigate this situation. There is also a primitive that allows the copy of data
to a global GPU device memory at same time that a kernel is called to be executed. With
this primitive, it is possible to start the kernel execution without waiting for the data copy.

A.4.2 Constraints

The studied CUDA versions (up to CUDA 4.2) do not allow recursion techniques. Besides
this, a single process should run across multiple disjoint memory spaces, unlike other C

132 Appendix A. CUDA Programming Model

language runtime environments, and the texture rendering is not supported.
CUDA programming synchronization may be insufficient [78]. In the CUDA pro-

gramming model, the threadblock are independent. In other words, there is not commu-
nication and synchronization mechanisms among them. Each threadblock is launched to
a single SP (with eight cores), then, each threadblock will have its own cache without
access to another cache.

For double precision (only supported in newer GPUs like GTX 260) there are some de-
viations from the IEEE 745 standard: round-to-nearest-even is the only supported round-
ing mode for reciprocal, division, and square root. In single precision, abnormals and
signaling NaNs are not supported; only two IEEE rounding modes are supported (chop
and round-to-nearest even), and those are specified on a per-instruction basis rather than
in a control word; and the precision of division/square root is slightly lower than sin-
gle precision. The bus bandwidth and latency between the CPU and the GPU may be a
bottleneck.

The atomic operations are slower than any other memory access operation affecting
the system performance. The CUDA atomic operations are operations that are performed
without interference from any other threads. In CUDA, atomic operations are often used
to prevent race situations which are common problems in multithreaded applications. In
CUDA model, an atomic operation can read, modify, and write a single value without
interference of any other threads, which guarantees that a race condition will not occur.
The time requested to finish the atomic operations is closely related with the number of
threads in a single grid.

A.4.3 Summary

In order to program with CUDA model it is very important to know the different restric-
tions imposed by the model. The threads and threadblocks can only be created invoking
a parallel kernel (functions executed in the GPU devices). A kernel function may not
invoke new kernels. The levels of parallelism are restricted. Parallel tasks also are ex-
pressed at the threadblock level. Synchronization mechanisms provided are limited to
synchronization barriers inside the threadblocks. Different threadblocks within the same
grid, may read/write on the global memory to communicate. But there is no mechanism
to synchronize such memory operations between threads of a different threadblock. Thus,
threadblocks are designed to be executed independently.

When we define the threadblock size, we have to know these limitations. This size
will be closely related to the global performance. It is related to the use of synchroniza-
tion barriers, memory hierarchy, data transfers and latencies, communications, and shared
memory sizes, among others. As we stated above, CUDA model does not allow recursive
calls. The reason is that using ten of thousands of threads with recursive calls will need

A.5. Review of NVIDIA GPUs architectures 133

Thread

Shared Memory L1 Cache

16 or 48 Kb48 or 16 Kb

L2 Cache

384 bits
768 Kb

P5P4P3P2P1P0

256 bytes

1.5 Gb

DRAM

Figure A.6: Fermi memory hierarchy (NVIDIA GTX-480).

a big stack management, not supported by the studied architecture (up to Kepler GK 104
serie). It is possible to manually develop programs which exploit heterogeneity, but us-
ing explicit asynchronous memory transfers between the CPU and GPU devices. These
memory copy operations across devices may take long times when compared with the
GPU-CPU performance, generating a bottleneck for the computation.

A.5 Review of NVIDIA GPUs architectures

Pre-Fermi is the first NVIDIA CUDA supported architecture, launched in early 2007 [83].
Fermi is the second generation of CUDA architectures [83], launched on early 2010. The
latest generation of CUDA architecture at the time of writing is Kepler [85, 86], released
on early 2012. Table A.1 summarizes their main characteristics.

Each new architecture generation has increased the number of SPs (Streaming Pro-
cessors), and the maximum number of threads, per SM (Streaming Multiprocessor). This
leads to different relations between the threadblock configuration and the occupancy on
the SMs. Thus, the policies to select a good threadblock configuration are potentially
subject to changes.

The main change introduced by Fermi is a transparent L1/L2 cache hierarchy that has
been maintained in Kepler (see Fig. A.6). L1 caching in Kepler GPUs is reserved only for
local memory accesses, such as register spills and stack data. Global loads are cached in
L2 only or in the Read-Only data cache [86, 87]. The sizes and configurations possibilities

134 Appendix A. CUDA Programming Model

Parameter Pre-Fermi Fermi Kepler
SPs (per-SM) 8 32 192
Max. number of blocks (per-SM) 8 8 16
Max. number of threads (per-SM) 1 024 1 536 2 048
Max. number of threads (per-block) 512 1 024 1 024
L2 cache - 768 KB ≥ 512 KB
L1 cache (per-SM) - 0/16/48 KB 0/16/32/48 KB
Size of global memory transaction 32/64/128 B 32/128 B 32/128 B
Global memory banks 8-9 5-6 4
Number of concurrent kernels - 16 16/32

Table A.1: Summary of CUDA architecture parameters (pre-Fermi, Fermi and Kepler).

of this memory are different. The programmer can select to enable/disable the L1 cache.
When the L1 cache is active, the size of the cache and local SM memory has two possible
configurations in Fermi, and three in Kepler.

The size of the memory transaction segment can be adjusted. In Pre-Fermi is auto-
matically chosen by the compiler, while in Fermi and Kepler is associated with the L1
configuration chosen. Nevertheless, this maximum size is always 128 bytes. This size is
relevant for the alignment of data in memory.

The global memory is organized is several banks. The number of banks has been de-
creased on Fermi and Kepler. Concurrent data accesses in the same bank produce access
conflicts that can affect the performance. Thus, the number of memory banks becomes
important for decisions related to code optimizations, data alignment, and threadblock
shape. Finally, the concurrent kernel feature is only supported by Fermi and Kepler archi-
tectures.

Appendix B
Benchmarks

Throughout this Ph.D. Thesis we have implemented and experimented with different com-
mon benchmarks. These benchmarks have been modified and adequately adapted to take
profit the hardware architectures mentioned in this document.

This appendix describes the different benchmarks that we have worked, such as matrix-
matrix multiplication, Cannon’s algorithm, and the Single-Source Shortest Path Problem
(SSSP).

B.1 Matrix-matrix multiplication

The matrix-matrix multiplication is a common lineal-algebra algorithm used in the sci-
entific area in which this Thesis is focused. There are three different matrices (C= A
× B) and each element of the C matrix, Cij , is calculated through the scalar product
of two arrays. The first one corresponds to the i-th row of the A matrix and the sec-
ond one to the j-th column of the B matrix. This algorithm imposes a single restriction:
#columns(Amatrix) = #rows(Bmatrix).

B.1.1 Cannon’s algorithm

In Cannon’s algorithm [21] the available processes are organized in a perfect square topol-
ogy to generate neighbor relations. Each matrix A, B and C is divided into rectangular
blocks, distributing them across processes.

It starts with an initial communication stage. Matrices A and B data are realigned or
reassigned so that, if there is a two-dimensional array of P × P processors, the element
or submatrix A in row i and column (j + i)modP , ai,(j+i)modP , and also the element or
submatrix of B in row (i+ j)modP and column j, b(i+j)modP , i, are assigned to processor
Pij . In other words, each data of row i/(0 ≤ i ≤ P −1) of the elements or submatrices of
A are transferred or shifted i times towards the left processors, and each data or column

135

136 Appendix B. Benchmarks

j/(0 ≤ j ≤ P − 1) of the elements or submatrices of B are transferred or shifted j times
towards upper processors.

Figure B.1 shows the initial assignment (a), and initial relocation (b), imposed by
Cannon’s algorithm for matrices of 3× 3 elements in a 3× 3 processors torus.

Figure B.1: 3× 3 Data Location for Cannon’s Algorithm.

From the initial relocation, the following steps are carried out iteratively:

• Local multiplication of data assigned in each processor for a partial result compu-
tation

• Left rotation of the elements or submatrices of A

• Upwards rotation of the elements or submatrices of B and after P of these steps,
thoroughly computed values of matrix C are finally obtained

B.2 Shortest Path Problem

B.2.1 Graph Theory Notation

We will first present some graph theory concepts and notations related to the shortest-path
problem. A graph G = (V,E) is composed by a set of vertices V , also called nodes, and
a set of edges E, also called arcs. Every vertex v is usually depicted as a point in the
graph. Every edge e is usually depicted as a line that connects two and only two vertices.
An edge is a tuple (u, v) that represents a link between vertices u and v. The number of
edges connected to a vertex v is called the degree of v. In an undirected graph all edges
can be traversed in both directions, whereas an edge (u, v) of a directed graph only can
be traversed from u to v. There is a weight function w(u, v) associated to each edge, that
represents the cost of traversing the edge.

B.2. Shortest Path Problem 137

A path P = 〈s, ..., u, ..., v, ..., t〉 is a sequence of vertices connected by edges, from a
source vertex s to a target one t. The weight of a path, w(P), is the sum of all the weights
associated to the edges involved in the path. The shortest path between two vertices s and
t is the path with the minimum weight among all possible paths between s and t. Finally,
the minimum distance between s and t, d(s, t) or simply d(t), is the weight of the shortest
path between them. We denote δ(s, t), or simply δ(t), to a temporal tentative distance
between s and t during the computation of d(t).

B.2.2 Dijkstra’s Algorithm

The basic solution for the Non-negative, Single-source, Shortest-Path problem (NSSP) is
Dijkstra’s algorithm [33]. This algorithm constructs minimal paths from a source node s
to the remaining nodes, exploring adjacent nodes following a proximity criterion.

The exploring process is known as edge relaxation. When an edge (u, v) is relaxed
from a node u, it is said that node v has been reached. Therefore, there is a path from
source through u to reach v with a tentative shortest distance. Node v will be considered
settled when the algorithm has found the shortest path from source node s to v. The
algorithm finishes when all nodes are settled.

The algorithm uses an array, D, that stores all tentative distances found from source
node s to the rest of nodes. At the beginning of the algorithm, every node is unreached
and no distances are known, so D[i] = ∞ for all nodes i, except current source node
D[s] = 0. Note that both reached and unreached nodes are considered unsettled nodes.

The algorithm proceeds as follows:

1. (Initialization) The algorithm starts on the source node s, initializing distance array
D[i] =∞ for all nodes i and D[s] = 0. Node s is considered as the frontier node f
(f ← s) and it is settled.

2. (Edge relaxation) For every node v adjacent to f that has not been settled, a new
distance from source is found using the path through f , with value D[f] + w(f, v).
If this distance is lower than previous value D[v], then D[v]← D[f] + w(f, v).

3. (Settlement) The node uwith the lowest value inD is taken as the new frontier node
(f ← u). After this, current frontier node f is now considered as settled.

4. (Termination criteria) If all nodes have been settled the algorithm finishes. Other-
wise, it proceeds to step 2.

In order to recover the path, every reached node stores its predecessor, so at the end of
the query phase the algorithm just runs back from target through stored predecessors till
the source node is reached. The shortest path tree of a graph from source node s is the
composition of every shortest path from s to the remaining nodes.

138 Appendix B. Benchmarks

B.2.3 Parallel Dijkstra

The key of the parallelization of a single sequential Dijkstra algorithm resides in the in-
herent parallelism of its loops. For each iteration of Dijkstra’s algorithm, the outer loop
selects a node to compute new distance labels. Inside this loop, the algorithm relaxes its
outgoing edges in order to update the old distance labels, that is the inner loop.

Parallelizing the outer loop implies to compute in each iteration i a frontier set Fi of
nodes that can be settled in parallel without affecting the algorithm correctness. The main
problem here is to identify this set of nodes v which tentative distances δ(v) from source s
must be the minimum shortest-distance d(v). Some algorithms that are based on this idea
are [28, 29]. Parallelizing the inner loop implies to traverse simultaneously the outgoing
edges of the frontier node. One of the algorithm presented in [94] is an example of this
kind of parallelization.

B.2.4 SSSP problem

Given a graphG = (V,E), a functionw(e) : e ∈ E that associates a weight to the edges of
the graph, and a source node s, it consists on computing the shortest paths from s to every
node v ∈ V . If the weights of the graph range only in positive values, w(e) ≥ 0 : e ∈ E,
we are facing the so-called Non-negative Single-source Shortest-Path (NSSP) problem.

B.2.5 APSP problem

Given a graph G = (V,E) and a function w(e) : e ∈ E that associates a weight to the
edges of the graph, it consists in computing the shortest paths for all pair of nodes (u, v) :

u, v ∈ V . The APSP problem is a generalization of the classical problem of optimization,
the Single-Source Shortest-Path (SSSP), that consists in computing the shortest paths from
just one source node s to every node v ∈ V . If the weights of the graph range only in
positive values, w(e) ≥ 0 : e ∈ E, we are facing the so-called Non-negative Single-source
Shortest-Path (NSSP) problem.

Bibliography

[1] Lokman A. Abbas-Turki, Stephane Vialle, Bernard Lapeyre, and Patrick Mercier. High
dimensional pricing of exotic European contracts on a GPU Cluster, and comparison to a
CPU cluster. In Proceedings of the 2009 IEEE International Symposium on Parallel& Dis-
tributed Processing, IPDPS ’09, pages 1–8, Washington, DC, USA, 2009. IEEE Computer
Society.

[2] W. Richards Adrion. Research methodology in software engineering: Summary of the
Dagstuhl workshop on future directions on software engineering. SIGSoft Software Engi-
neering Notes, 18:36–37, January 1993.

[3] A.M. Aji, J. Dinan, D. Buntinas, P. Balaji, Wu chun Feng, K.R. Bisset, and R. Thakur.
MPI-ACC: An Integrated and Extensible Approach to Data Movement in Accelerator-based
Systems. In Proc. HPCC-ICESS’2012, pages 647 –654, june 2012.

[4] Ashwin M. Aji, Mayank Daga, and Wu-chun Feng. Bounding the effect of partition camp-
ing in GPU kernels. In Proceedings of the 8th ACM International Conference on Computing
Frontiers, CF ’11, pages 27:1–27:10, New York, NY, USA, 2011. ACM.

[5] S.B. Baden and S.J. Fink. The Data Mover: A Machine-Independent Abstraction for Man-
aging Customized Data Motion. In LCPC’99, volume 1863 of LNCS, pages 333–349.
Springer, 2000.

[6] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and Wen-
mei W. Hwu. An adaptive performance modeling tool for GPU architectures. SIGPLAN
Not., 45:105–114, January 2010.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
NAS parallel benchmarks. Technical report, The International Journal of Supercomputer
Applications, 1991.

[8] E. Bailey, E. Barszcz, J. Barton, D. Browning, and R. Carter. The NAS Parallel Bench-
marks. Technical Report RNR-94-007, NASA Ames Research Center, March 1994.

139

140 BIBLIOGRAPHY

[9] J. Barceló, E. Codina, J. Casas, J. L. Ferrer, and D. García. Microscopic traffic simulation:
A tool for the design, analysis and evaluation of intelligent transport systems. J. Intell.
Robot. Syst., 41:173–203, 2005.

[10] J. Barnat, P. Bauch, L. Brim, and M. Ceska. Employing Multiple CUDA Devices to Accel-
erate LTL Model Checking. In Proc. ICPADS’2010, pages 259 –266, dec. 2010.

[11] Muthu Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA Code Gener-
ation for Affine Programs. In Rajiv Gupta, editor, Compiler Construction, volume 6011 of
Lecture Notes in Computer Science, chapter 14, pages 244–263. Springer Berlin / Heidel-
berg, Berlin, Heidelberg, 2010.

[12] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. Automatic data movement and computation mapping
for multi-level parallel architectures with explicitly managed memories. In Proc. ACM
PPoPP’08, pages 1–10, New York, NY, USA, 2008. ACM.

[13] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela,
María J. Garzarán, David Padua, and Christoph von Praun. Programming for parallelism
and locality with hierarchically tiled arrays. In Proc. of the ACM SIGPLAN PPoPP, pages
48–57, New York, New York, USA, 2006. ACM.

[14] A.P.D. Binotto, C.E. Pereira, and D.W. Fellner. Towards dynamic reconfigurable load-
balancing for hybrid desktop platforms. In Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium, pages 1–4, april 2010.

[15] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. Society for Industrial Mathematics, 1987.

[16] B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1 edition, 1981.

[17] TracyD. Braun, HowardJay Siegel, and AnthonyA. Maciejewski. Heterogeneous Comput-
ing: Goals, Methods, and Open Problems. In Burkhard Monien, ViktorK. Prasanna, and
Sriram Vajapeyam, editors, High Performance Computing — HiPC 2001, volume 2228 of
Lecture Notes in Computer Science, pages 307–318. Springer Berlin Heidelberg, 2001.

[18] J.C. Brodman, B.B. Fraguela, M.M. Garzarn, and D. Padua. New Abstractions for Data
Parallel Programming. In First USENIX Workshop on Hot Topics in Parallelism, Berkeley,
CA, March 2009.

[19] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston,
and Pat Hanrahan. Brook for GPUs: Stream computing on graphics hardware. ACM Trans.
Graph., 23(3):777–786, 2004.

[20] Eva Burrows and Magne Haveraaen. A Hardware Independent Parallel Programming
Model. Journal of Logic and Algebraic Programming, 78:519–538, 2009.

BIBLIOGRAPHY 141

[21] Lynn Elliot Cannon. A cellular computer to implement the kalman filter algorithm. PhD
thesis, Montana State University, 1969.

[22] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to UPC
and Language Specification. Technical Report CCS-TR-99-157, IDA Center for Computing
Sciences, 1999.

[23] M. Castillo, E. Chan, F.D. Igual, R. Mayo, E.S. Quintana-Ortí, G. Quintana-Ortí, R. van de
Geijn, and F.G. Van Zee. Making Programming Synonymous with Programming for Linear
Algebra Libraries. Tech.Rep. TR-08-20, The University of Texas at Austin, Department of
Computer Sciences, Apr 2008.

[24] Joseph M. Cavanagh, Thomas E. Potok, and Xiaohui Cui. Parallel latent semantic analysis
using a graphics processing unit. In Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO
’09, pages 2505–2510, New York, NY, USA, 2009. ACM.

[25] José María Cecilia, José Manuel García, and Manuel Ujaldón. CUDA 2D stencil computa-
tions for the Jacobi method. In Proceedings of the 10th international conference on Applied
Parallel and Scientific Computing - Volume Part I, PARA’10, pages 173–183, Berlin, Hei-
delberg, 2012. Springer-Verlag.

[26] Daniel Cederman and Philippas Tsigas. On Sorting and Load Balancing on GPUs.
SIGARCH Comput. Archit. News, 36(5):11–18, June 2009.

[27] B.L. Chamberlain, S.J. Deitz, D. Iten, and S-E. Choi. User-Defined Distributions and Lay-
outs in Chapel: Philosophy and Framework. In 2nd USENIX Workshop on Hot Topics in
Parallelism, June 2010.

[28] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s shortest
path algorithm. In Luboš Brim, Jozef Gruska, and Jirí Zlatuška, editors, Mathematical
Foundations of Computer Science 1998, volume 1450 of LNCS, pages 722–731. Springer
Berlin / Heidelberg, 1998. 10.1007/BFb0055823.

[29] J. R. Crobak, J. W. Berry, K. Madduri, and D. A. Bader. Advanced Shortest Paths Algo-
rithms on a Massively-Multithreaded Architecture. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE, march 2007.

[30] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 1997.

[31] Carlos de Blas Cartón, Arturo Gonzalez-Escribano, and Diego R. Llanos. Effortless and
Efficient Distributed Data-Partitioning in Linear Algebra. In HPCC’2011, pages 89–97.
IEEE, September 2010.

142 BIBLIOGRAPHY

[32] C.S. de la Lama, P. Toharia, J.L. Bosque, and O.D. Robles. Static Multi-device Load Bal-
ancing for OpenCL. In Parallel and Distributed Processing with Applications (ISPA), 2012
IEEE 10th International Symposium on, pages 675–682, july 2012.

[33] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[34] Everton Hermann, Bruno Raffin, François Faure, Thierry Gautier, and Jérémie Allard.
Multi-GPU and Multi-CPU Parallelization for Interactive Physics Simulations. In Europar
2010, Ischia-Naples Italy, 09 2010.

[35] R. Farivar, A. Verma, E.M. Chan, and R.H. Campbell. MITHRA: Multiple data independent
tasks on a heterogeneous resource architecture. In Cluster Computing and Workshops, 2009.
CLUSTER ’09. IEEE International Conference on, pages 1 –10, 31 2009-sept. 4 2009.

[36] Naila Farooqui, Andrew Kerr, Gregory Diamos, S. Yalamanchili, and K. Schwan. A frame-
work for dynamically instrumenting GPU compute applications within GPU Ocelot. In
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Process-
ing Units, GPGPU-4, pages 9:1–9:9, New York, NY, USA, 2011. ACM.

[37] Naila Farooqui, Andrew Kerr, Gregory Frederick Diamos, Sudhakar Yalamanchili, and
Karsten Schwan. A framework for dynamically instrumenting GPU compute applications
within GPU Ocelot. In GPGPU, page 9, 2011.

[38] Vincent Favre-Nicolin, Johann Coraux, Marie-Ingrid Richard, and Hubert Renevier. Fast
computation of scattering maps of nanostructures using graphical processing units. Journal
of Applied Crystallography, 44(3):635–640, Jun 2011.

[39] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345–345,
June 1962.

[40] Javier Fresno, Arturo Gonzalez-Escribano, and Diego R. Llanos. Automatic Data Parti-
tioning Applied to Multigrid PDE Solvers. In PDP’2011, pages 239–246. IEEE, February
2011.

[41] Javier Fresno, Arturo Gonzalez-Escribano, and Diego R. Llanos. Extending a hierarchical
tiling arrays library to support sparse data partitioning. The Journal of Supercomputing,
2012. Online-first version available.

[42] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott
Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel Computing Experiences
with CUDA. IEEE Micro, 28(4):13–27, 2008.

[43] Arturo Gonzalez-Escribano and Diego R. Llanos. Trasgo: A Nested-parallel Programming
System. J. Supercomput., 58(2):226–234, November 2011.

BIBLIOGRAPHY 143

[44] Arturo Gonzalez-Escribano and Diego R. Llanos. Trasgo: A Nested-Parallel Programming
System. The Journal of Supercomputing, 58(2):226–234, 2011.

[45] Arturo Gonzalez-Escribano, Yuri Torres, Javier Fresno, and Diego R. Llanos. An Extensible
System for Multilevel Automatic Data Partition and Mapping. Parallel and Distributed
Systems, IEEE Transactions on Parallel and Distributed Systems, PP(99):1–1, 2013.

[46] Oded Green, Robert McColl, and David A. Bader. GPU merge path: a GPU merging
algorithm. In Proceedings of the 26th ACM international conference on Supercomputing,
ICS ’12, pages 331–340, New York, NY, USA, 2012. ACM.

[47] Paulius Micikevicius Greg Ruetsch. NVIDIA Optimizing Matrix Transpose in
CUDA. http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/

CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf, June 2010. Last visit:
Dec 2, 2013.

[48] Max Grossman, Alina Simion Sbîrlea, Zoran Budimlić, and Vivek Sarkar. CnC-CUDA:
Declarative programming for GPUs. In Proceedings of the 23rd international conference
on Languages and compilers for parallel computing, LCPC’10, pages 230–245, Berlin,
Heidelberg, 2011. Springer-Verlag.

[49] Jia Guo, Ganesh Bikshandi, Basilio B. Fraguela, Maria J. Garzaran, and David Padua. Pro-
gramming with tiles. In Proceedings of the ACM SIGPLAN PPoPP, pages 111–122, Salt
Lake City, UT, USA, 2008. ACM.

[50] Ziyu Guo, Bo Wu, and Xipeng Shen. One stone two birds: Synchronization relaxation and
redundancy removal in GPU-CPU translation. In Proceedings of the 26th ACM interna-
tional conference on Supercomputing, ICS ’12, pages 25–36, New York, NY, USA, 2012.
ACM.

[51] Maurice H. Halstead. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA, 1977.

[52] Mark Harris. Optimizing Parallel Reduction in CUDA. Technical report, nVidia, 2008.

[53] Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, Diego R. Llanos. High-
Performance Computing on Complex Environments, ComplexHPC 2013, chapter The All-
Pair Shortest-Path Problem in Shared-Memory Heterogeneous Systems. Series on Parallel
and Distributed Computing. Addison-Wesley, 2013.

[54] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin. MapCG:
Writing parallel program portable between CPU and GPU. In PACT’2010, PACT ’10, pages
217–226, New York, NY, USA, 2010. ACM.

[55] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. In Proceedings of the 36th International Sym-

http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/sdk/website/CUDA/website/C/src/transposeNew/doc/MatrixTranspose.pdf

144 BIBLIOGRAPHY

posium on Computer Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009.
ACM.

[56] Dominique Houzet, Sylvain Huet, and Anis Rahman. SysCellC: A data-flow programming
model on multi-GPU. Procedia Computer Science, 1(1):1035–1044, 2010. ICCS 2010.

[57] Edward S. Jimenez, Laurel J. Orr, and Kyle R. Thompson. An Irregular Approach to Large-
Scale Computed Tomography on Multiple Graphics Processors Improves Voxel Processing
Throughput. In Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, pages 254–260, Washington, DC, USA, 2012.
IEEE Computer Society.

[58] N.P. Karunadasa and D.N. Ranasinghe. Accelerating high performance applications with
CUDA and MPI. In ICIIS’2009, pages 331 –336, dec. 2009.

[59] Andrew Kerr, Gregory Diamos, and Sudakhar Yalamanchili. Modeling GPU-CPU Work-
loads and Systems. In Third Workshop on General-Purpose Computation on Graphics
Processing Units, Pittsburg, Pennsylvania, USA, 4 2010.

[60] Khronos. Open Computing Language (OpenCL), 2010. http://www.khronos.org/

opencl/, Last visit: December 2, 2013.

[61] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2010.

[62] Stephen M. Kofsky, Daniel R. Johnson, John A. Stratton, Wen-Mei W. Hwu, Sanjay J.
Patel, and Steven S. Lumetta. Implementing a GPU Programming Model on a non-GPU
Accelerator Architecture. In A4MMC 2010 - 1st Workshop on Applications for Multi and
Many Core Processors, Saint Malo France, 2010.

[63] Akintola Kolawole and Alireza Tavakkoli. Robust foreground detection in videos using
adaptive color histogram thresholding and shadow removal. In Proceedings of the 7th in-
ternational conference on Advances in visual computing - Volume Part II, ISVC’11, pages
496–505, Berlin, Heidelberg, 2011. Springer-Verlag.

[64] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam, Atanas Roun-
tev, and P. Sadayappan. Effective automatic parallelization of stencil computations. In Pro-
ceedings of the ACM SIGPLAN PLDI, pages 235–244, San Diego, California, USA, 2007.
ACM.

[65] Qing kui Chen and Jia kang Zhang. A Stream Processor Cluster Architecture Model with
the Hybrid Technology of MPI and CUDA. In ICISE’2009, pages 86 –89, dec. 2009.

[66] Alan Leung, Ondřej Lhoták, and Ghulam Lashari. Automatic parallelization for graph-
ics processing units. Proceedings of the 7th International Conference on Principles and
Practice of Programming in Java PPPJ 09, page 91, 2009.

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

BIBLIOGRAPHY 145

[67] Allen Leung, Nicolas Vasilache, Benoît Meister, Muthu Manikandan Baskaran, David
Wohlford, Cédric Bastoul, and Richard Lethin. A mapping path for multi-GPGPU acceler-
ated computers from a portable high level programming abstraction. In Proceedings of 3rd
Workshop on General Purpose Processing on Graphics Processing Units, GPGPU 2010,
volume 425 of ACM International Conference Proceeding Series, pages 51–61, Pittsburgh,
Pennsylvania, March 2010.

[68] Yuping Lin and Gérard Medioni. Mutual information computation and maximization using
GPU. 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion Workshops, 0:1–6, 2008.

[69] D.B. Loveman. High Performance Fortran. Parallel & Distributed Technology: Systems &
Applications, 1(1):25–42, Feb 1993.

[70] Rama Malladi, Richard Dodson, and Vyacheslav Kitaeff. Intel many integrated core (MIC)
architecture: Portability and performance efficiency study of radio astronomy algorithms. In
Proceedings of the 2012 workshop on High-Performance Computing for Astronomy Date,
pages 5–6, New York, NY, USA, 2012. ACM.

[71] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A system for
programming graphics hardware in a C-like language. In ACM SIGGRAPH 2003 Papers,
pages 896–907, San Diego, California, 2003. ACM.

[72] P. Martín, R. Torres, and A. Gavilanes. CUDA Solutions for the SSSP Problem. In Gabrielle
Allen, Jaroslaw Nabrzyski, Edward Seidel, Geert van Albada, Jack Dongarra, and Peter
Sloot, editors, Computational Science – ICCS 2009, volume 5544 of LNCS, pages 904–
913. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-01970-8_91.

[73] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, 2:308–
320, 1976.

[74] Richard Membarth, Frank Hannig, Jurgen Teich, and Harald Kostler. Towards Domain-
Specific Computing for Stencil Codes in HPC. In Proceedings of the 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis, SCC ’12, pages 1133–
1138, Washington, DC, USA, 2012. IEEE Computer Society.

[75] Julian Francis Miller and Simon Harding. Cartesian genetic programming. In Proceed-
ings of the 2008 GECCO conference companion on Genetic and evolutionary computation,
GECCO ’08, pages 2701–2726, New York, NY, USA, 2008. ACM.

[76] V. K. Murthy and E. V. Krishnamurthy. Heterogeneous programming with concurrent ob-
jects. In Proceedings of the 1997 ACM symposium on Applied computing, pages 454–463,
San Jose, California, United States, 1997. ACM.

[77] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An Improved Magma Gemm For Fermi
Graphics Processing Units. Int. J. High Perform. Comput. Appl., 24:511–515, November
2010.

146 BIBLIOGRAPHY

[78] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Program-
ming with CUDA. Queue, 6(2):40–53, March 2008.

[79] NVIDIA. Occupancy calculator spreadsheet. http://developer.download.nvidia.

com/compute/cuda/CUDA_Occupancy_calculator.xls, Last visit: Jun 2013.

[80] NVIDIA. Optimizing Matrix Transpose in CUDA. http://docs.nvidia.com/cuda/

samples/6_Advanced/transpose/doc/MatrixTranspose.pdf, Last visit: Jun 2013.

[81] NVIDIA. Fermi home page, 2010. http://www.nvidia.es/object/fermi_

architecture_es.html, Last visit: Nov, 2013.

[82] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming Guide Ver-
sion 2.0, 2010. http://docs.nvidia.com/cuda/, Last visit: Nov, 2013.

[83] NVIDIA. NVIDIA CUDA Programming Guide 3.0 (Fermi), 2010. https://developer.

nvidia.com/cuda-toolkit-30-downloads, Last visit: Nov, 2013.

[84] NVIDIA. Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
2010. http://www.nvidia.com, Last visit: Nov, 2013.

[85] NVIDIA. NVIDIA CUDA Programming Guide 4.2: Kepler, 2012. https://developer.

nvidia.com/cuda-toolkit-42-archive, Last visit: Nov, 2013.

[86] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110 architecture, 2012. http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, Last visit: Jun 2013.

[87] NVIDIA. CUDA C Best Practices Guide: Kepler, 2013. http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/, Last visit: Nov, 2013.

[88] NVIDIA. CUDA CUBLAS Library, 2013. http://www.nvidia.com/object/fermi_

architecture.html, Last visit: Mar, 2013.

[89] NVIDIA. Cuda: Visual Profiel documentation, 2013. http://docs.nvidia.com/cuda/

profiler-users-guide/, Last visit: Nov, 2013.

[90] NVIDIA. The CUDA Compiler Driver NVCC, 2013. http://docs.nvidia.com/cuda/

cuda-compiler-driver-nvcc/, Last visit: December 2, 2013.

[91] Lars Nyland, Mark Harris, and Jan Prins. Fast N-Body Simulation with CUDA. In Hubert
Nguyen, editor, GPU Gems 3, chapter 31. Addison Wesley Professional, August 2007.

[92] Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. A
New GPU-based Approach to the Shortest Path Problem. In The 2013 International Confer-
ence on High Performance Computing & Simulation, (HPCS 2013), pages 505–511, 2013.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf
http://www.nvidia.es/object/fermi_architecture_es.html
http://www.nvidia.es/object/fermi_architecture_es.html
http://docs.nvidia.com/cuda/
https://developer.nvidia.com/cuda-toolkit-30-downloads
https://developer.nvidia.com/cuda-toolkit-30-downloads
http://www.nvidia.com
https://developer.nvidia.com/cuda-toolkit-42-archive
https://developer.nvidia.com/cuda-toolkit-42-archive
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html
http://docs.nvidia.com/cuda/profiler-users-guide/
http://docs.nvidia.com/cuda/profiler-users-guide/
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

BIBLIOGRAPHY 147

[93] Hector Ortega-Arranz, Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. A
Tuned, Concurrent Multi-Kenel Approach to the APSP problem. In The 13th Interna-
tional Conference Computational and Mathematical Methods in Science and Engineering,
CMMSE 2013, 2013.

[94] Marios Papaefthymiou and Joseph Rodrigue. Implementing Parallel Shortest-Paths Algo-
rithms. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 59–68, 1994.

[95] Meng Qi, Thanh-Tung Cao, and Tiow-Seng Tan. Computing 2D constrained Delaunay
triangulation using the GPU. In Proceedings of the ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, I3D ’12, pages 39–46, New York, NY, USA, 2012. ACM.

[96] Gregorio Quintana-Ortí, Francisco D. Igual, Enrique S. Quintana-Ortí, and Robert A. van de
Geijn. Solving dense linear systems on platforms with multiple hardware accelerators. In
PPoPP’2009, PPoPP ’09, pages 121–130, New York, NY, USA, 2009. ACM.

[97] J. Rose and G. Steele. C*: An Extended C Language for Data Parallel Programming. In
ACM Proceedings of the International Conference on Supercomputing, pages 2–16. ACM,
1987.

[98] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, John A. Stratton, Sain-Zee Ueng,
Sara S. Baghsorkhi, and Wen-Mei W. Hwu. Program optimization carving for GPU com-
puting. Journal of Parallel and Distributed Computing, 68(10):1389–1401, October 2008.

[99] Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile Route Planning. In ESA’08,
pages 732–743, Berlin, 2008. Springer.

[100] Nadathur Rajagopalan Satish. Compile Time Task and Resource Allocation of Concurrent
Applications to Multiprocessor Systems. PhD thesis, EECS Department, University of Cal-
ifornia, Berkeley, Jan 2009.

[101] Dana Schaa. Modeling execution and predicting performance in multi-GPU environments.
In Electrical and Computer Engineering Master’s Theses, Boston, Mass, 2009. Department
of Electrical and Computer Engineering, Northeastern University.

[102] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Espasa, Ed Gro-
chowski, Toni Juan, and Pat Hanrahan. Larrabee: a many-core x86 architecture for visual
computing. ACM Trans. Graph., 27(3):1–15, 2008.

[103] Dhirendra Pratap Singh and Nilay Khare. A Study of Different Parallel Implementations of
Single Source Shortest Path Algorithms. International Journal of Computer Applications,
54(10):26–30, September 2012. Published by Foundation of Computer Science, New York,
USA.

148 BIBLIOGRAPHY

[104] Satnam Singh. Computing without processors. Commun. ACM, 54:46–54, August 2011.

[105] James Smaldon, Natalio Krasnogor, Cameron Alexander, and Marian Gheorghe. Liposome
logic. In Proceedings of the 11th Annual conference on Genetic and evolutionary compu-
tation, GECCO ’09, pages 161–168, New York, NY, USA, 2009. ACM.

[106] Fengguang Song and Jack Dongarra. A scalable framework for heterogeneous GPU-based
clusters. In Proc. ACM SPAA’2012, pages 91–100, New York, NY, USA, 2012. ACM.

[107] J.E. Stone, D. Gohara, and Guochun Shi. OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems. Computing in Science Engineering, 12(3):66 –73, may
2010.

[108] John A. Stratton, Sam S. Stone, and Wen-Mei W. Hwu. MCUDA: An Efficient Implemen-
tation of CUDA Kernels for Multi-core CPUs. In José Nelson Amaral, editor, LCPC’2008,
pages 16–30, Berlin, Heidelberg, 2008. Springer-Verlag.

[109] R. Taylor and Xiaoming Li. A Micro-benchmark Suite for AMD GPUs. In Parallel Pro-
cessing Workshops (ICPPW), 2010 39th International Conference on, pages 387 –396, sept.
2010.

[110] Top500. Top500 home page, 2013. http://www.top500.org/, Last visit: October 2, 2013.

[111] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Automatic Data Layout
at Multiple Levels for CUDA. In The 10th International Conference Computational and
Mathematical Methods in Science and Engineering, CMMSE 2010, 2010.

[112] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. CUDA Tuning and Con-
figuration Parameters on Fermi Architectures. In Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems (ACACES 2011), 2011.

[113] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Understanding the impact
of CUDA tuning techniques for Fermi. In High Performance Computing and Simulation
(HPCS), 2011 International Conference on, pages 631–639, 2011.

[114] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Uso del conocimiento de
la arquitectura Fermi para mejorar el rendimiento en aplicaciones CUDA. In Actas XXII
Jornadas de Paralelismo, 2011.

[115] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Encapsulated Synchro-
nization and Load-Balance in Heterogeneous Programming. In Euro-Par 2012 Parallel
Processing, volume 7484 of LNCS, pages 502–513. Springer Berlin Heidelberg, 2012.

[116] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Measuring the Impact
of Configuration Parameters in CUDA Through Benchmarking. In The 12th Interna-
tional Conference Computational and Mathematical Methods in Science and Engineering,
CMMSE 2012, 2012.

http://www.top500.org/

BIBLIOGRAPHY 149

[117] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. uBench: Performance
Impact of CUDA Block Geometry. Technical Report IT-DI-2012-0001, Depto. Informat-
ica, Universidad de Valladolid, Dec 2012. http://www.infor.uva.es/investigacion/

publicaciones.html.

[118] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Using Fermi architecture
knowledge to speed up CUDA and OpenCL programs. In Proc. ISPA’12, Leganes, Madrid,
Spain, 2012.

[119] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. Data partition and syn-
chronisation in heterogeneous systems. In HPC-EUROPA2 project (project number:
228398) with the support of the European Commission - Capacities Area - Research Infras-
tructures, 2013. http://www.hpc-europa.org/files/2012/ICT_0688_TORRES%20DE%

20LA%20SIERRA%20Yuri.pdf.

[120] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos. uBench: exposing the im-
pact of CUDA block geometry in terms of performance. The Journal of Supercomputing,
65(3):1150–1163, 2013.

[121] Christian Trott and Lars Winterfeld. General purpose Molecular Dynamics Simulations on
GPUs: Issues of Pair Forces and Scaling to large Clusters. CoRR, abs/1009.4330, 2010.

[122] Stanley Tzeng, Anjul Patney, and John D. Owens. Task Management for Irregular-Parallel
Workloads on the GPU. In Michael Doggett, Samuli Laine, and Warren Hunt, editors, High
Performance Graphics, pages 29–37. Eurographics Association, 2010.

[123] S. Warshall. A Theorem on Boolean Matrices. Journal of the ACM, 9(1):11–12, January
1962.

[124] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Proc. of the
ACM SIGPLAN PLDI, pages 30–44, Toronto, Ontario, Canada, 1991. ACM.

[125] M. Wolfe. More Iteration Space Tiling. In Proceedings of the 1989 ACM/IEEE Confer-
ence on Supercomputing, Supercomputing ’89, pages 655–664, New York, NY, USA, 1989.
ACM.

[126] Michael Wolfe. Implementing the PGI Accelerator Model. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU ’10,
pages 43–50, New York, NY, USA, 2010. ACM.

[127] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demystifying
GPU microarchitecture through microbenchmarking. In Performance Analysis of Systems
Software (ISPASS), 2010 IEEE International Symposium on, pages 235 –246, march 2010.

[128] Erik Wynters. Parallel processing on NVIDIA graphics processing units using CUDA. J.
Comput. Small Coll., 26:58–66, January 2011.

http://www.infor.uva.es/investigacion/publicaciones.html
http://www.infor.uva.es/investigacion/publicaciones.html
http://www.hpc-europa.org/files/2012/ICT_0688_TORRES%20DE%20LA%20SIERRA%20Yuri.pdf
http://www.hpc-europa.org/files/2012/ICT_0688_TORRES%20DE%20LA%20SIERRA%20Yuri.pdf

150 BIBLIOGRAPHY

[129] Changyou Zhang Xiang Cui, Yifeng Chen and Hong Mei. Auto-tuning Dense Matrix Mul-
tiplication for GPGPU with Cache. In Proceedings of 16th international conference on
parallel and distibuted systems, 2010, ICPADS international conference on parallel and
distibuted systems, Shanghai, China, December 2010.

[130] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. An optimizing compiler for GPGPU
programs with input-data sharing. In Proceedings of the 15th ACM SIGPLAN symposium
on Principles and practice of parallel programming - PPoPP ’10, page 343, Bangalore,
India, 2010.

[131] Ping Yao, Hong An, Mu Xu, Gu Liu, Xiaoqiang Li, Yaobin Wang, and Wenting Han. CuH-
MMer: A load-balanced CPU-GPU cooperative bioinformatics application. In HPCS’2010,
pages 24–30, July 2010.

[132] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. On-the-fly elimi-
nation of dynamic irregularities for GPU computing. In Proceedings of the sixteenth in-
ternational conference on Architectural support for programming languages and operating
systems, ASPLOS ’11, pages 369–380, New York, NY, USA, 2011. ACM.

[133] Yao Zhang and J.D. Owens. A quantitative performance analysis model for GPU architec-
tures. In High Performance Computer Architecture (HPCA), 2011 IEEE 17th International
Symposium on, pages 382 –393, feb. 2011.

[134] Simon F. Portegies Zwart, Robert G. Belleman, and Peter M. Geldof. High-performance
direct gravitational N-body simulations on graphics processing units. New Astronomy,
12(8):641–650, November 2007.

	Resumen de Tesis
	Objetivo de la investigación
	Pregunta de investigación
	Tareas
	Metodología de investigación

	Contribuciones y conclusiones
	Contribuciones
	Conclusiones
	Trabajo futuro

	Introduction
	Context
	Parallel computing
	Multi- and manycore architectures
	GPUs for parallel computing
	Heterogeneous computing
	Parallel programming and tiling models
	The Trasgo programming framework
	The Hitmap run-time library
	Purpose of this research
	Research question
	Tasks
	Research methodology

	Outline
	State of the Art
	Programming tools for heterogeneous systems
	Programming languages for GPUs
	GPU tuning strategies
	Challenges in heterogeneous programming
	Data partition and load balancing techniques
	Memory size restrictions
	Tiling support
	Benchmarking
	Micro-Benchmarking for GPUs
	Choice of benchmarks used in this work

	The Hitmap Library for Homogeneous Systems
	Overview
	Functionalities
	Notations

	Tiling functionalities
	Mapping and communication functions
	Combinations of topology and layout functions

	Design and implementation
	Tiling classes
	Data partition and mapping subsystem
	Topologies
	Layouts overview
	Layout plug-ins implementation
	Groups and hierarchical partitions
	Topology and layout techniques currently implemented
	Communications implementation

	Experimental evaluation of Hitmap
	Design of experiments
	Performance comparison

	Conclusions

	New Abstraction Layers for an Heterogeneous Hitmap
	Mapping synchronization issues
	Conceptual approach
	Design and implementation
	Mapping and synchronization issues: Summary

	Memory size restrictions
	Model for parallel computations
	Partition of regular computations
	Memory size-restrictions: Summary

	Conclusions

	Study of GPU Configuration Parameters
	Threadblock geometry
	Threadblock size and occupancy tradeoff
	Shape in several dimensions
	Tuning techniques and threadblock size and shape
	ThreadBlock size and shape in OpenCL

	Experimental study
	Setup
	Benchmarks with coalesced accesses
	Benchmarks with non-coalesced accesses
	Experimental results
	Limitations of this experimental study

	Micro-benchmarks (uBench)
	The uBench suite
	uBench evaluation
	Summary

	Conclusions

	Experimental Evaluation of an Heterogeneous Hitmap
	Mapping and synchronization issues
	Case study
	Experimental work
	Synchronization issues: Conclusions

	Memory size restrictions
	Memory size-restrictions: Conclusions

	A real-world benchmark: The SSSP problem
	Parallel Dijkstra for GPUs
	Experimental setup
	Experimental results
	The SSSP problem: Conclusions

	APSP problem
	Experimental setup
	Experimental results
	APSP-problem: Conclusions

	Load balancing techniques for the APSP problem
	Load-balancing techniques evaluated
	Methodology
	Target architectures
	Input set characteristics
	Load-balancing techniques evaluated
	Experimental results
	Load balancing techniques: Conclusions

	Conclusions
	Summary of contributions
	Conclusions
	Future directions

	CUDA Programming Model
	CUDA model
	Brief examples
	Thread organization
	Synchronization barriers
	Memory accesses
	CUDA architecture
	Concurrent kernels
	CUDA heterogeneous programming
	CUDA strengths and weaknesses
	Advantages
	Constraints
	Summary

	Review of NVIDIA GPUs architectures

	Benchmarks
	Matrix-matrix multiplication
	Cannon's algorithm
	Shortest Path Problem
	Graph Theory Notation
	Dijkstra's Algorithm
	Parallel Dijkstra
	SSSP problem
	APSP problem

