
Automatic run-time mapping of polyhedral
computations to heterogeneous devices with

memory-size restrictions

Yuri Torres, Arturo Gonzalez-Escribano, and Diego R. Llanos
Departamento de Informática

Edif. Tecn. de la Información, Universidad de Valladolid,
Campus Miguel Delibes, 47011 Valladolid, Spain
E-mail: {yuri.torres, arturo, diego}@infor.uva.es

Abstract—Tools that aim to automatically map parallel com-
putations to heterogeneous and hierarchical systems try to divide
the whole computation in parts with computational loads adjusted
to the capabilities of the target devices. Some parts are executed
in node cores, while others are executed in accelerator devices.
Each part requires one or more data-structure pieces that should
be allocated in the device memory during the computation.

In this paper we present a model that allows such automatic
mapping tools to transparently assign computations to hetero-
geneous devices with different memory size restrictions. The
model requires the programmer to specify the access patterns
of the computation threads in a simple abstract form. This
information is used at run-time to determine the second-level
partition of the computation assigned to a device, ensuring that
the data pieces required by each sub-part fit in the target device
memory, and that the number of kernels launched is minimal.
We present experimental results with a prototype implementation
of the model that works for regular polyhedral expressions. We
show how it works for different example applications and access
patterns, transparently executing big computations in devices
with different memory size restrictions.

Keywords—Heterogeneous devices, Polyhedral model, Memory-
size restrictions, Automatic mapping tools

I. INTRODUCTION

Heterogeneous systems can be built with very different
hardware devices (CPU-cores, accelerators) grouped in sev-
eral nodes and interconnected in a distributed environment.
Portable codes for such systems should implement parallel
algorithms, while abstracting them from the mapping activities
that adapt the computation to the platform. Thus, the program-
ming model should encapsulate the mapping techniques and
the CPU/accelerator synchronization with appropriate abstrac-
tions.

Taking into account the memory size limitations of hetero-
geneous target devices is an additional challenge. Currently,
many approaches do not focus in this problem, working with
fixed sized middle-grain tasks [1], or assuming that the tasks
fit, or are generated to fit into the devices [2], [3]. Other
approaches simply advise to add more computation devices
to allow finer partitions [4]. A simple way to tackle the
problem is to generate more distributed processes than system
nodes, mapping several of them to the same device [5]. In
this way, each process is responsible for a smaller part of

the computation. When enough processes are launched, the
parts are small enough to fit in any target device. However,
this leads to more costly inter-process communications and
scalability problems. A more sophisticated approach is to
consider the device memory limitations while creating the
high-level partition [6]. This approach highly complicates the
whole partitioning activity.

An associated problem for memory-restrictions-aware sys-
tems is to find a proper representation of the parallel com-
putation that allows the system to locate, and measure the
size, of the data portions required by a generic part of the
computation. This information is needed for both generating
a balanced partition, and mapping the parts adequately [6],
even for libraries that make transparent the node to device
communication [7].

In this work we propose a solution to allow a hidden layer
to: (1) Split an arbitrarily large computation in parts that fit
the memory limitations of an assigned target device; (2) trans-
parently launch the partial kernels generated; and (3) move
the required pieces of the data structures between the main
node memory and the target device memory when needed. We
present a model of parallel applications that allows to express
access patterns to data structures in terms of the thread index
domains. These expressions allow the system to automatically
compute the memory requirements of a computation part (a
block of threads). We introduce a generic algorithm for regular
polyhedral computations to compute at run-time an appropriate
partitioning of the thread space that minimizes the number of
kernels launched, ensuring that the pieces of the data structures
needed by each kernel fit into the target device memory.

We also present examples of how to represent with this
model parallel kernels and applications. Experimental results
obtained with a prototype implementation of the model show
its feasibility.

The rest of the paper is organized as follows: Section II
describes the proposed approach and how it integrates in a
previous run-time mapping framework. Section III describes
the model for parallel computations and access patterns. Sec-
tion IV presents an algorithm for computing a partition with
memory size limitations. Section V shows experimental results
with a prototype implementation, while Sect. VI presents our
conclusions.

Data distribution and layout

Coordination of processes

(Core, GPU, ...)
Tiling/blocking for local device

Memory access patterns

Coordination CPU/Accelerator C
o

o
rd

in
at

io
n

 le
ve

ls

M
ap

p
in

g
 le

ve
ls

Partitioning Tiles/blocks Grid

Fig. 1. Mapping/Coordination levels. The new level of automatic partitioning
is highlighted with a dark-grey shadowed box.

II. RUN-TIME APPROACH FOR MAPPING

A. Hitmap run-time mapping framework

In a previous work [5] we proposed a programming ap-
proach and framework based on: (1) Several layers of plug-in
modules that encapsulate mapping functions; and (2) function-
alities to build the coordination (synchronization and commu-
nication) structures of an algorithms, which are transparently
adapted at run-time in terms of the results of the mapping
functions. The approach was incorporated into Hitmap [8],
[9], a parallel programming library where partition policies
are implemented through a set of plug-ins with a common
interface.

Figure 1 shows the original mapping and coordination
layers (white boxes). There are two levels of partition. The
first one is designed to encapsulate coarse-grain mapping
techniques, appropriate for distributed-memory nodes. At this
level logical processes are assigned to processing nodes, or
accelerator devices. Coordination patterns are built with high-
level point-to-point, or collective communications, using the
results automatically generated at run-time by the partition
strategies. Thus, if partition or distributed topology details
change, the communication structure will reflect the changes
automatically.

Given the computation part in a logical process, assigned to
a target device, the second mapping level allows to compute a
proper middle-grain blocking partition. The mapping plug-ins
at this level encapsulate heterogeneous policies to generate ap-
propriate tiling sizes for CPU cores, thread-block geometry for
GPU devices, etc. The coordination, data movement between
the CPU and accelerators, and kernel launch, is automatized
by a run-time system, using the second-level partition results.

The programmer naturally introduces a third level of map-
ping inside the kernel code by implementing specific, thread-
level memory access patterns.

B. Integration approach

In the previous mapping approach, the computation par-
titioning is done top-down. The whole computation is first
split and coordinated among logical processes in a distributed-
memory environment. Load balancing techniques can be used
at this level to adapt the amount of computation of each part
to the computation power and characteristics of each device
assigned to a process.

As we mentioned in the previous section, although device
memory restrictions can be considered at this level in the
partition policies, these policies would become much more
complicated. For huge computations, they will lead to the
creation of a higher number of logical processes, with the
associated penalties for coordination and communication.

Our solution is to keep using simple partition policies at
the highest level, that do not take into account the memory
restrictions of heterogeneous accelerator devices attached to
the system nodes. Then, we introduce a hidden abstraction
layer that splits the computation in several parts which memory
requirements fit the device limits. This layer is applied after
determining the appropriate tile or block geometry (see the
dark shaded box in Fig. 1). To keep the optimizations obtained
by the tiling/blocking techniques of the upper layer, this new
internal partition uses as basic mapping elements the tiles or
blocks. Sections of the grid of tiles/blocks are going to be
sequentially launched to the device as separate kernels.

In general, due to communication costs between the main
node and the device memories, the partition of a computation
should be minimal. Besides this, when launching a subpart
of a computation, the exact pieces of data structures accessed
by each part are determined by the application algorithm, and
the design details of the parallel solution. In our approach, we
introduce a simple abstraction to help the programmer express
the access patterns of the threads to any data structure involved.
Thus, the system can automatically derive expressions to
compute at run-time the exact memory requirements, and the
exact locations of data pieces needed for a given computation
subpart (a section of the tiles/blocks grid).

III. MODEL FOR PARALLEL COMPUTATIONS AND
ACCESSES PATTERNS

A. Polyhedral domain spaces

We define a domain D as a collection of n-tuples of integer
numbers that define a space of n-dimensional indexes. For
dense arrays, the index domain is a subspace of Zn, defined
by a rectangular parallelotope. In this work we also allow
strided domains, where the parallelotopes are defined by its
dimensional limits, and a stride value for each dimension.
A Signature is a 3-tuple of integer numbers S = (b, e, s) :
b, e, s ∈ Z representing a subset of integer numbers where the
begin or lower limit is b, the end or upper limit is e, and the
elements are selected using the stride value s. We denote this
subset of integer numbers as the range of the signature S̆.

S = (b, e, s); S̆ = {x ∈ Z : x ≥ b, x ≤ e, (x− b) mod s = 0}
D < S0, . . . , Sn >= {(p0, . . . , pn) : pi ∈ S̆i}

Domains are used in this work to represent the index space
of a data structure, a set of indexed threads, the geometry of
a tile/block of threads, a grid of tiles/blocks, or a superblock
geometry (a subdomain of a grid of tiles/blocks).

B. Parallel computations

A data structure or tile T is a map between elements
of a domain and data elements of a given type: T : D →
dataType. We denote with d(T) the Domain of a tile.

We define a Parallel Computation P < D, f, T0, . . . , Tm >
as a collection of threads manipulating data in one or more data
structures or tiles T0, . . . , Tm. The domain of the computation
D defines the number and indexes of the threads to be
executed. The computation is the application of the function f
(or collection of statements) by each thread on data elements.
A Polyhedral Computation is a parallel computation where its
domain D can be expressed as a parallelotope, and where the
function f uses affine expressions on the thread indexes to
locate and access data elements in any data structure Ti.

C. Access patterns

An Access Pattern AP is a set of access expressions.
An Access Expression represents a domain transformation
A : D,Zn → D. It is a tuple of n Signature Functions
A = (A0, . . . , An). Each signature function maps a signature,
and one domain element, to another signature: Ai : S,Zn → S.

Affine Access Expressions are those whose signature func-
tions determine the resulting signatures using affine expres-
sions in terms of the input domain element ~x ∈ D, to compute
the begin and end elements of the new signature and the
resulting stride is proportional to the original one.

Ai < ~ab, bb,~ae, be, c > (S, ~x) = (b′, e′, s′) :

b′ = ~ab · ~x+ bb,

e′ = ~ae · ~x+ be,

s′ = c× s

In some real parallel computations one dimension of a data
structure is fully traversed by any thread. We model this special
behavior using infinity values in the signature function to refer
to the limits of the input signature. If bb = −∞, then b′ = b.
If be =∞, then e′ = e.

D. Union of domains

The union of generic domains expressed by signatures, can-
not always be expressed themselves by signatures. As an ex-
ample, consider the situation where there is a gap between their
extremes, such in S = (2, 100, 2), S′ = (250, 300, 2), or when
the strides are not compatible, such in S = (2, 100, 2), S′ =
(2, 100, 3).

We define the Signature coarse union operator t as: S t
S′ = (b′′, e′′, s′′) : b′′ = min(b, b′), e′′ = max(e, e′), s′′ =
m.c.d.(s, s′). We can also extent the operator definition to
n-dimensional domains. The Domain coarse union of two
domains is calculated applying the signature coarse operator
to each pair of signatures with the same index: D t D′ =
(S0 t S′

0, . . . , Sn t S′
n). The application of this operator to

merge two strided parallelotope domains generates another
strided parallelotope that can be expressed with signatures,
with minimal number of extra added elements.

E. Domain transformations

We define a Domain transformation Γ : D,AP,D → D
as the coarse union of the domains obtained applying each
access pattern to each element of the second domain, using as
reference the first domain, or data-structure domain.

Γ(D,AP,D′) = t{A(D,~x)} ∀~x ∈ D′ ∧ ∀A ∈ AP

We call Regular access expressions to those that for two
given input domain elements ~x, ~y, the signatures Ai(D,~x) =
(b, e, s) are a translation of the signatures Ai(D, ~y) =
(b′, e′, s′) such that ∀i: (1) b′ = b, e′ = e, s′ = s, or (2)
b′ = b + (yi − xi), e

′ = e + (yi − xi), s
′ = s. A Regular

access pattern is a pattern with only regular access expressions.
Memory requirements of regular access patterns grow linearly
when the threads space grows in only one dimension.

IV. PARTITION OF REGULAR COMPUTATIONS FOR
HETEROGENEOUS DEVICES WITH MEMORY LIMITATIONS

This section presents a general algorithm that, given a
polyhedral parallel computation with regular access patterns,
determines how to split in regular parts the grid of tiles/blocks
of threads, in such a way that the number of parts is minimal,
and the memory requirements of each part does not exceed
an arbitrary memory limit. To introduce the basic concept we
present first the special case for 1-dimensional domains. Then,
we present the solution for 2-dimensional domains. Algorithms
for higher dimensions can be deduced from these ones.

To simplify the presentation, in the following algorithms
we assume that the thread index space has stride 1, and starts
at 1, for all dimensions. It is straightforward to extend the
algorithm to use generic thread index domains with any stride
or starting positions.

A. Inputs/Outputs

The algorithms have the following parameters:

Input: The device memory limit devLim ∈ N.
Input: The dimensional sizes of the grid of tiles/blocks

~g ∈ Nn.
Input: The dimensional sizes of the tile/block ~b ∈ Nn.
Input: A collection of data structures or tiles T0, . . . , Tm.
Input: A collection of access patterns, one for each tile

AP0, . . . APm.
Output: The number of blocks in each dimension that will

form a subpart ~r ∈ Nn.

B. Algorithm for 1-dimensional spaces

The algorithm is based on determining the linear increasing
rate of memory requirements when more blocks are grouped
together, and represent it with a line equation. Substituting
the device memory limit into the equation, we can obtain the
higher number of blocks which memory requirements fits in
the available space.

1. B1 = ((1, b, 1)), B2 = ((1, 2× b, 1))
2. s1 =

∑
i |Γ(d(Ti), APi, B1)|, s2 =

∑
i |Γ(d(Ti), APi, B2)|

3. Compute α, β, γ : 0 = αx+βy+γ is the line equation that
contains both (1, s1) and (2, s2).
4. Return r = b−(β · devLim+ γ)/αc

C. Algorithm for 2-dimensional spaces and beyond

For two dimensional spaces we obtain a plane equation for
the memory requirements of three samples of block groups.
Substituting the device memory limit into the equation, we
obtain a line equation. The points of this equation determine

Vector addition
1. ∀i ∈ d(~z)
1.1. zi = xi + yi
2. Return ~z

Cellular automata
1. for i=1. . . t
1.1. A′ = A
1.2. ∀(i, j) ∈ d(A)
1.2.1. A(i, j) = (A′(i− 1, j) +A′(i+ 1, j)

+A′(i, j − 1) +A′(i, j + 1))/4
2. Return A

Matrix-matrix multiplication

1. C = 0
1. ∀(i, j) ∈ d(C)
1.1. ∀ k ∈ [0,m− 1]
1.1.1. C(i, j) = C(i, j) +A(i, k)×B(k, i)
2. Return C

Fig. 2. Algorithms for the three study cases.

the best candidates for the solution. These candidates are
checked to determine which one leads to less number of parts
due to better alignment of multiples of the new superblock
sizes with the grid dimensions.

1. B1 = ((1, b0, 1), (1, b1, 1)), B2 = ((1, b0, 1), (1, 2 ×
b1, 1)), B3 = ((1, 2× b0, 1), (1, b1, 1))
2. s1 =

∑
i |Γ(d(Ti), APi, B1)|,

s2 =
∑

i |Γ(d(Ti), APi, B2)|,
s3 =

∑
i |Γ(d(Ti), APi, B3)|,

3. Compute α, β, γ, δ : 0 = αx + βy + γz + δ is the plane
equation that contains (1, 1, s1), (1, 2, s2), and (2, 1, s3).
4. Substitute z = devLim to obtain a line equation 0 =
αx+ βy + δ′.
5. ∀ ~r = (r0, r1) : r0 = bq0c, r1 = bq1c : 0 = αq0 + βq1 + δ′

5.1. Compute k(~r) = dg0/r0e × dg1/r1e
6. Return ~r with the minimum value of k(~r).

D. Study cases

In this section we present some examples of regular kernels
and applications to show how our model can be used to express
different access patterns. The base algorithms for the study
cases are presented in Fig. 2.

1) Vector addition: This simple kernel computes ~z = ~y+~x
using one thread to compute the result of each zi element.
It uses a 1-dimensional thread space of as many threads as
elements in the arrays. The access pattern for this kernel have
a single access expression:

A0 < 1, 0, 1, 0, 1 >

Thus, the resulting signature

S′ = A0(S, ~x) = (1× x0 + 0, 1× x0 + 0, 1) = (x0, x0, 1)

contains only one point in its range S̆′ = ~x.

2) Stencil program: Cellular automata: This is an example
of an stencil application in a two dimensional array space. It
implements a PDE solver to compute the heat distribution is a
2-dimensional discretized space using the Jacobi method. The
application has a step loop that applies a stencil computation,
computing the new value of a matrix position using the old
values of its four neighbors. There is only one input/output
parameter, a matrix A.

The thread domain is the same as the matrix index do-
main. Each thread compute one matrix position. All threads
synchronize on each i loop step.

The access pattern for this kernel can be expressed with
one access expression for each matrix access, or in a compact
form with only one expression:

A = (A0 < 1,−1, 1, 1, 1 >,A1 < 1,−1, 1, 1, 1 >)

Thus, the resulting signatures are

S′
0 = A0(S0, ~x) = (x0 − 1, x0 + 1, 1)

S′
1 = A1(S1, ~x) = (x1 − 1, x1 + 1, 1)

This compact form directly includes in the access pattern
result the four corner elements that are not really accessed.
However, the resulting domain is a parallelotope. When the
pattern is applied to a subset of the thread index space, the
amount of added data is negligible, and the parallelotope shape
conveniently simplifies the movement of data between node
and device memories.

Note that, for threads in the limits of the thread domain,
the resulting accessed pattern exceeds the limits of the original
matrix. To avoid the use of costly conditional evaluations in
the fine-grain threads, the A matrix should be extended with
ghost borders, or the thread index space should be reduced by
one element on each border.

3) Matrix multiplication: In all the previous examples the
resulting domains do not need to take into account the domain
description of the data structures. Thus, the input signatures
on the access expressions are simply ignored.

This study case is a direct implementation of the classical
matrix-matrix multiplication Cn,n = An,m×Bm.n, with three
loops. It implements a fine-grain parallelization of the first
two loops. Each thread executes the third loop to compute one
position of the resulting matrix.

There are three different access patterns for this applica-
tion, one for each matrix. Each pattern has a single access
expression:

For matrix A: (A0 < 0,−∞, 0,+∞, 1 >,A1 < 1, 0, 1, 0, 1 >)

For matrix B: (A0 < 1, 0, 1, 0, 1 >,A1 < 0,−∞, 0,+∞, 1 >)

For matrix C: (A0 < 1, 0, 1, 0, 1 >,A1 < 1, 0, 1, 0, 1 >)

This access patterns indicate that each thread accesses to a
full row of the A matrix, a full column of the B matrix, and
one element of the C matrix, with the same indexes as the
thread.

 0

 50

 100

 150

 200

 250

16 32 64 128 256 512 1024

M
il

is
ec

o
n

d
s

VecAdd N = 67107840

Total
Comp.

 0

 5000

 10000

 15000

 20000

 25000

16 32 64 128 256 512 1024

M
il

is
ec

o
n

d
s

CellularAutomata; 100 Iter; N = 8192

Total
Comp.

 0

 2000

 4000

 6000

 8000

4 8 16 32 64 128 256

M
il

is
ec

o
n

d
s

MatrixMult N = M = 4096

Total
Comp.

Vector Addition
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels 49 25 13 7 3 2 1
Kernel size 16 32 64 128 256 512 767
Cellular Automata
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels 48 24 13 7 4 2 1
Kernel size 11 21 43 85 170 241 512
MM Multiplication
Memory limit MBs 1 2 4 8 16 32 64 128 256 512 1024
#Kernels . . 1103 433 128 43 19 9 1 . .
Kernel size . . 0.4 1.2 4 12 28 60 192 . .

Fig. 3. Execution times for: (a) Vector addition; (c) Stencil computation;
(d) Matrix-matrix multiplication. The tics in the x-axis indicate the value of
the memory-size-limit parameter. The table shows for each program and each
memory-size-limit value, the number of sub-kernels generated by our system
for this case, and the memory size actually used.

V. EXPERIMENTAL STUDY

We have developed a prototype implementation of the
algorithms presented in Sect. IV. The implementation uses
Hitmap, a library for automatic partition and mapping of
parallel applications using hierarchical tiling arrays, that was
briefly described in Sect. II. Our prototype layer implements
the automatic computation of the best partition, the transparent
movement of the required portions of the data structures
to/from the target device memory, and the sequential execution
of each part as a different kernel. The hidden layer is integrated
in a new kernel launching function, that receives one access
pattern specification along with each tile parameter.

We have implemented the three study cases presented
above using the new tools. The codes are similar to the original
ones, with expressions of the access patterns for each data
structure involved in the computation. We have tested the
prototype with a GPU target device, manually changing the
memory-size-limit parameter to simulate different scenarios.

Our experimental platform is a GForce GTX 680 (Kepler,
2048 MB GDDR5) NVIDIA GPU device. The host machine
is a 64-bits Intel(R) Core(TM) i7 CPU 960 3.20GHz, with a
global memory of 6 GB DDR3. It runs an UBUNTU desktop
10.10 (64 bits) operating system. The applications have been
developed using CUDA 4.2 toolkit and the 295.41 64-bit
driver.

The use of integer or float data element lead to practically
the same execution time in CUDA. Thus, we select integer as
data type. The data structures size chosen for each benchmarks
are different, in order to obtain stable execution time values.
The number of items are the following: (1) Vector addition:
n = 67 107 840; (2) cellular automata: n = m =8 192, and
(3) matrix multiplication n = m = 4 096. These sizes are
multiple of the selected threadBlock size to avoid any padding
operation.

To simulate results for different kinds of devices, we
decided to manually change the memory-size-limit parameter.
We have selected values that are powers of two in the range of
1 to 1024 Mbytes. For each kernel there is a different range of
this parameter that leads to a feasible number of sub-kernels
with a reasonable kernel size. Figure 3 shows the execution
times (in milliseconds) obtained for some memory-size-limit
parameter values. The first bar indicates the total execution
time, while the second bar indicates the time devoted to real
computation. The rest of the time is spent in node-device
communications.

The results show that, as expected, for the kernels with
low computational load per thread (vector addition and cellular
automata), the ratio of communication vs. computation is very
high, being very small in the remaining cases. When commu-
nication times dominate the total execution time, we observe a
trend to reduced communication times for particular memory
restrictions. This effect can be explained by the fact that the
PCI Express bus works faster for memory transactions of
particular sizes. Thus, when the subkernels generated require
memory sizes that fit well in the PCI bus, the communication
times are reduced. This information can be exploited by a
library to split the communication in proper block sizes [10].

For the unidimensional example, vector addition, we can

see that the algorithm generates kernels that fit the memory
limit almost perfectly. However, this is not the case for
2-dimensional problems. In the current implementation, the
stage 5 of the 2-dimensional algorithm has not been yet
implemented, leading to suboptimal partition results. However,
the performance results show the same trends when manually
selecting the best candidate.

The intensive reutilization of caches by the concurrent dot
products in matrix multiplication application, leads to reduced
total execution times when the kernels have bigger sizes.

The results show that the hidden layer does not impose a
substantial overhead on the execution of the whole computa-
tion, and it can take away the burden of considering memory-
size restrictions from upper mapping layers. Moreover, a
deeper research on the information provided by the access
patterns may also leads to detect situations where the system
can get profit of the artificial automatic partition of the kernels
to improve performance results.

VI. CONCLUSIONS

In this paper we present a model of parallel computations
that allows to build a transparent mapping layer that divides
and executes a computation taking into account the memory
restrictions of the assigned device. The model requires the
programmer to specify the access patterns of the computation
threads in a simple abstract form. This information is used
at run-time to compute the pieces of data-structures required
by a generic partition, and to determine the best partition that
ensures that each subpart fits in the device memory.

We discuss an implementation of this concept into an auto-
matic mapping tool that allows to apply high-level distributions
in heterogeneous devices without the need to take into account
the memory limitations of the target devices. Our experimental
results show that feasibility of the solution proposed.

Future work includes a further study of the opportunities
to deal with more irregular access patterns at run-time, adding
to the model considerations about optimal kernel sizes, and
analyzing memory transactions cost between node and target
devices.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Murray Cole for
many fruitful discussions. This research is partly supported

by the Castilla-Leon Regional Government (VA172A12-2);
Ministerio de Industria, Spain (CENIT OCEANLIDER);
MICINN (Spain) and the European Union FEDER (Mogecopp
project TIN2011-25639, CAPAP-H3 network TIN2010-12011-
E, CAPAP-H4 network TIN2011-15734-E); and the HPC-
EUROPA2 project (project number: 228398) with the support
of the European Commission - Capacities Area - Research
Infrastructures Initiative.

REFERENCES

[1] C. de la Lama, P. Toharia, J. Bosque, and O. Robles, “Static multi-device
load balancing for opencl,” in Parallel and Distributed Processing with
Applications (ISPA), 2012 IEEE 10th International Symposium on, july
2012, pp. 675 –682.

[2] A. Binotto, C. Pereira, and D. Fellner, “Towards dynamic reconfigurable
load-balancing for hybrid desktop platforms,” in Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE Inter-
national Symposium, April 2010, pp. 1 –4.

[3] E. Burrows and M. Haveraaen, “A hardware independent parallel
programming model,” Journal of Logic and Algebraic Programming,
vol. 78, pp. 519–538, 2009.

[4] J. Barnat, P. Bauch, L. Brim, and M. Ceska, “Employing multiple cuda
devices to accelerate ltl model checking,” in Proc. ICPADS’2010, dec.
2010, pp. 259 –266.

[5] Y. Torres, A. Gonzalez-Escribano, and D. Llanos, “Encapsulated syn-
chronization and load-balance in heterogeneous programming,” in Euro-
Par 2012 Parallel Processing, ser. LNCS. Springer Berlin Heidelberg,
2012, vol. 7484, pp. 502–513.

[6] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic data movement and com-
putation mapping for multi-level parallel architectures with explicitly
managed memories,” in Proc. ACM PPoPP’08. New York, NY, USA:
ACM, 2008, pp. 1–10.

[7] A. Aji, J. Dinan, D. Buntinas, P. Balaji, W. chun Feng, K. Bisset, and
R. Thakur, “Mpi-acc: An integrated and extensible approach to data
movement in accelerator-based systems,” in Proc. HPCC-ICESS’2012,
june 2012, pp. 647 –654.

[8] C. de Blas Cartón, A. Gonzalez-Escribano, and D. R. Llanos, “Effortless
and Efficient Distributed Data-Partitioning in Linear Algebra,” in Proc.
HPCC’2011. IEEE, Sep. 2010, pp. 89–97.

[9] J. Fresno, A. Gonzalez-Escribano, and D. R. Llanos, “Automatic Data
Partitioning Applied to Multigrid PDE Solvers,” in PDP’2011. IEEE,
Feb. 2011, pp. 239–246.

[10] F. Song and J. Dongarra, “A scalable framework for heterogeneous
gpu-based clusters,” in Proc. ACM SPAA’2012. New York, NY, USA:
ACM, 2012, pp. 91–100.

