Departamento de
Informatica

Universidad de Valladolid

Computer Science Department
University of Valladolid
Valladolid - Spain

Technical Report DI-2003-4

SCM: Structural Contexts Model for Improving
Compression in Semistructured Text Databases™

Joaquin Adiego!, Gonzalo Navarro?, and Pablo de la Fuente!

'Departamento de Informatica, Universidad de Valladolid, Valladolid, Espaiia.
{jadiego, pfuentel}@infor.uva.es
“Departamento de Ciencias de la Computacion, Universidad de Chile, Santiago,
Chile. gnavarro@dcc.uchile.cl

Abstract We describe a compression model for semistructured docu-
ments, called Structural Contexts Model, which takes advantage of the
context information usually implicit in the structure of the text. The
idea is to use a separate semiadaptive model to compress the text that
lies inside each different structure type (e.g., different XML tag). The
intuition behind the idea is that the distribution of all the texts that be-
long to a given structure type should be similar, and different from that
of other structure types. We test our idea using a word-based Huffman
coding, which is the standard for compressing large natural language
textual databases, and show that our compression method obtains sig-

* This work was partially supported by CYTED VII.19 RIBIDI project (all authors)
and Fondecyt Project 1-020831 (second author).

nificant improvements in compression ratios. We also analyze the possi-
bility that storing separate models may not pay off if the distribution of
different structure types is not different enough, and present a heuristic
to merge models with the aim of minimizing the total size of the com-
pressed database. This technique gives an additional improvement over
the plain technique. The comparison against existing prototypes shows
that our method is a competitive choice for compressed text databases.
Finally, we show how to apply SCM over text chunks, which allows one
to adjust the different word frequencies as they change across the text
collection.

Keywords: Text Compression, Compression Model, Semistructured Doc-
uments.

1 Introduction

Compression of large document collections not only reduces the amount of disk
space occupied by the data, but it also decreases the overall query processing
time in text retrieval systems. Improvements in processing times are achieved
thanks to the reduced disk transfer times necessary to access the text in com-
pressed form. Since in the last decades processor speeds have increased much
faster than disk transfer speeds, trading disk transfer times by processor decom-
pression times has become a better and better choice. Moreover, recent research
on “direct” compressed text searching, i.e., searching a compressed text without
decompressing it, has led to a win-win situation where the compressed text takes
less space and is searched faster than the plain text [WMB99,ZMNBY00].
Compressed text databases pose some requirements that outrule some com-
pression methods. The most definitive is the need for random access to the text
without the possibility of decompressing it from the beginning. This rules out
most adaptive compression methods such as Ziv-Lempel compression and arith-
metic coding. On the other hand, semiadaptive models such as Huffman [Huf52]
yield poor compression. In the case of compressing natural language texts, it has
been shown that an excellent choice is to consider the words, not the characters,
as the source symbols [Mof89]. Thanks to the biased distribution of words, the
use of this model joined to a Huffman coder gives compression ratios close to
25%, much better than those usually obtained with the best adaptive methods.
These results are barely affected if one switches to byte-oriented Huffman cod-
ing, where each source symbol is coded as a sequence of bytes instead of bits.
Although compression ratios raise to 30% (which is still competitive), we have
in exchange much faster decoding and searching, which are essential features for
compressed text databases. Finally, the fact that the alphabet and the vocab-
ulary of the text collections coincide permits efficient and highly sophisticated
searching, both in the form of sequential searching and in the form of compressed
inverted indexes over the text [WMB99,ZMNBY00,NMN*00,MNZB00].
Although the area of natural language compressed text databases has gone
a long way since the end of the eighties, it is interesting that little has been

done about considering the structure of the text in this picture. Thanks to
the widespread acceptance of SGML, HTML and XML as the standards for
storing, exchanging and presenting documents, semistructured text databases
are becoming the standard. Some techniques to exploit the text structure have
been proposed, such as XMill [LS00] and XMLPPM [Che01]. However, these are
not designed to permit searching the text. Others, like XGrind [THO02]|, permit
searching but do not take advantage of the structure (they just allow it).

Our goal in this paper is to explore the possibility of considering the text
structure in the context of a compressed text database. We aim at taking ad-
vantage of the structure, while still retaining all the desirable features of a word-
based Huffman compression over a semiadaptive model. An idea like that of
XMLPPM, where the context given by the path in the structure tree is used
to model the text in the subtree, is based on the intuition that the text under
similar structural elements (i.e., XML tags) should follow a similar distribution.
(In fact XMLPPM uses the full path, which is more powerful.) Although this
compression is adaptive and does not fit our search purposes, a simplification
where only the last element in the path is considered can be joined to a semi-
adaptive model, which is suitable for searching. The idea is then to use separate
semiadaptive models to compress the text that lies inside different tags. For ex-
ample, in an email archive, a different model would be used for each of the fields
From:, Subject:, Date:, Body:, etc.).

While the possible gain due to this idea is clear, the price is that we have
to store several models instead of just one. This may or may not pay off. In
our example, coding the dates separately is probably a good idea, but coding
the subjects separate from the bodies is probably not worth the extra space of
storing two models (e.g., two Huffman trees). Hence we also design a technique
to merge the models if we can predict that this is convenient in terms of com-
pressed file length. Although the problem of finding the optimal merging seems
a hard combinatorial problem, we design a heuristic to automatically obtain
a reasonably good merging of an initially separate set of models, one per tag.
Other related techniques can be found in [BCCT00].

In a text collection, some words can be common in some parts (with high
frequency) and rather uncommon in others (low frequency). This is typical in
news archives, for example, where some subjects are hot issues today and fade
out in a few weeks. Considering this fact, another possiblility is to apply SCM
over different text chunks. This idea allows us to adjust word frecuencies as they
change across the text, improving compression rates.

This model, which we call Structural Contexts Model, is general and does not
depend on the coder. We plug it to a word-based Huffman coder to test it. Our
experimental results show significant gains over the methods that are insensitive
to the structure and over the current methods that consider the structure. At
the same time, we retain all the features of the original model that makes it
suitable for compressed text databases.

2 Related Work

With regard to compressing natural language texts in order to permit efficient
retrieval from the collection, the most successful techniques are based on models
where the text words are taken as the source symbols [Mof89], as opposed to the
traditional models where the characters are the source symbols.

On the one hand, words reflect much better than characters the true entropy
of the text [TCB90]. For example, a semiadaptive Huffman coder over the model
that considers characters as symbols typically obtains a compressed file whose
size is around 60% of the original size, on natural language. A Huffman coder
when words are the symbols obtains 25% [ZMNBYO00]. Another example is the
WLZW algorithm (Ziv-Lempel on words) [BSTW86,DPS99].

On the other hand, most information retrieval systems use words as the
main information atoms, so a word-based compression eases the integration with
an information retrieval system. Some examples of successful integration are
[WMB99,NMN*00,MWO01].

The text in natural language is not only made up of words. There are also
punctuation, separators, and other special characters. The sequence of characters
between every pair of consecutive words will be called a separator. In [BSTWS&6]
they propose to create two alphabets of disjoint symbols: one for coding words
and another for separators. Encoders that use this model consider texts as a strict
alternation of two independent data sources and encode each one independently.
Once we know that the text starts with a word or a separator, we know that
after a word has been coded we can expect a separator and vice versa. This idea
is known as the separate alphabets model.

A fact that the separate alphabets model does not consider is that in most
cases a word is followed by a single blank space as a separator. Since at least the
70% of separators in text are single blanks [Mof89], they propose in [MNZBO00] a
new data model which uses a single alphabet for both words and separators, and
represents the blank space implicitly. This model is known as spaceless model.
Hence, after each word is decoded, we assume a single blank follows unless the
next decoded symbol is a separator.

On the one hand we have to use a larger coding alphabet and then code
lengths grow. On the other hand we do not need to code about 35% of the
source symbols. It is shown in [MNZBO00] that compression improves a bit using
this method, although the improvement is not much.

A compression method that considers the document structure is XMill [LS00],
developed in AT&T Labs. XMill is an XML-specific compressor designed to
exchange and store XML documents, and its compression approach is not in-
tended for directly supporting querying or updating of the compressed document.
XMill is based on the zlib library, which combines Ziv-Lempel compression (LZ77
[ZL77]) with a variant of Huffman.

Another XML compressor is XGrind [TH02], which directly supports queries
over the compressed files. An XML document compressed with XGrind retains
the structure of the original document, permitting reuse of the standard XML

techniques for processing the compressed document. It does not, however, take
full advantage of the structure.

Other approaches to compress XML data exist, based on the use of a PPM-
like coder, where the context is given by the path from the root to the tree node
that contains the current text. One example is XMLPPM [Che01], which is an
adaptive compressor pased on PPM, where the context is given by the structure.

3 Structural Contexts Model

Let us, for this paper, focus on a semiadaptive Huffman coder, as it has given
the best results on natural language texts. Our ideas, however, can be adapted
to other encoders. Let us call dictionary the set of source symbols together with
their assigned codes.

An encoder based on the separate alphabets model (see Section 2) must use
two source symbol dictionaries: one for all the separators and the other for all
the words in the texts. This idea is still suitable when we handle semistructured
documents —like SGML or XML documents—, but in fact we can extend the
mechanism to do better.

In most cases, natural language texts are structured in a semantically mean-
ingful manner. This means that we can expect that, at least for some tags, the
distribution of the text that appears inside a given tag differs from that of an-
other tag. In our example of Section 1, where the tags correspond to the fields of
an email archive, we can expect that the From: field contains names and email
addresses, the Date: field contains dates, and the Subject: and Body: fields
contain free text.

In cases where the words under one tag have little intersection with words
under another tag, or their distribution is very different, the use of separate
alphabets to code the different tags is likely to improve the compression ratio.
On the other hand, there is a cost in the case of semiadaptive models, as we have
to store several dictionaries instead of just one. In this section we assume that
each tag should use a separate dictionary, and will address in the next section
the way to group tags under a single dictionary.

3.1 Compressing the Text

We compress the text with a word-based Huffman [Huf52,BSTWS86]. The text
is seen as an alternating sequence of words and separators, where a word is
a maximal sequence of alphanumeric characters and a separator is a maximal
sequence of non-alphanumeric characters.

Besides, we will take into account a special case of words: tags. A tag is a
code embedded in the text which represents the structure, format or style of
the data. A tag is recognized from surrounding text by the use of delimiter
characters. A common delimiter character for an XML or SGML tag are the
symbols <’ and ’>’. Usually two types of tags exist: start-tags, which are the

first part of a container element, ’<...>’; and end-tags, which are the markup
that ends a container element, </...>’.

Tags will be wholly considered (that is, including their delimiter characters)
as words, and will be used to determine when to switch dictionaries at compres-
sion and decompression time.

3.2 Model Description

The structural contexts model (as the separate alphabets model) uses one dic-
tionary to store all the separators in the texts, independently of their location.
Also, it assumes that words and separators alternate, otherwise, it must insert
either an empty word or an empty separator. There must be at least one word
dictionary, called the default dictionary. The default dictionary is the one in use
at the beginning of the encoding process. If only the default dictionary exists for
words then the model is equivalent to the separate alphabets model.

We can have a different dictionary for each tag, or we can have separate
dictionaries for some tags and use the default for the others, or in general we
can have any grouping of tags under dictionaries. As explained, we will assume
for now that each tag has its own dictionary and that the default is used for the
text that is not under any tag.

The compression algorithm written below makes two passes over the text. In
the first pass, the text is modeled and separate dictionaries are built for each tag
and for the default and separators dictionary. These are based on the statistics of
words under each tag, under no tag, and separators, respectively. In the second
pass, the texts are compressed according to the model obtained.

At the begining of the modeling process, words are stored in the default
dictionary. When a start-structure tag appears we push the current dictionary
in a stack and switch to the appropriate dictionary. When an end-structure tag
is found we must return to the previous dictionary stored in the stack. Both
start-structure and end-structure tags are stored and coded using the current
dictionary and then we switch dictionaries. Likewise, the encoding and decoding
processes use the same dictionary switching technique.

The following code describes the dictionary switching used for modeling,
coding and decoding.

Algorithm 1 (Dictionary Switching)

current__dictionary < default _dictionary
while there are more symbols do
word «— get_symbol()
if (word is separator)
then store/code/decode(word, separators__dictionary)
else store/code/decode(word, current_ dictionary)
if (word is a start-structure tag)
then push(current dictionary)
current__dictionary <« dictionary(word)

else if (word is an end-structure tag)
then current dictionary — pop()

3.3 Considering Text Chunks

In addition to tags, we may decide to separate the text collection into a sequence
of chunks. There will be a different dictionary for each different tag appearing
in each chunk. This permits the method to adapt to word frequencies as they
change across the text collections.

For each chunk we have a separate default dictionary, but still there is a
unique separators dictionary for the whole collection.

There is a tradeoff regarding chunk size. Too small chunks will create too
many dictionaries which will require a larger header table to find the right dic-
tionary. Even if many dictionaries are finally merged (Section 4) and shared
by many of these headers, the header table may get too large. Also, merging
may become too expensive. On the other hand, too large chunks will not permit
adapting fast enough to changes in text distribution.

3.4 Entropy Estimation

The entropy of a source is a number that only depends on its model, and is
usually measured in bits/symbol. It is also seen as a function of the probability
distribution of the source (under the model), and refers to the average amount
of information of a source symbol. The entropy gives a lower bound on the size
of the compressed file if the given model is used.

Definition 1 (Raw frequency) Letn be the total number of terms that appear
in the text. The raw frequency f; of term i is given by

oce;

fi= (1)

n

where occ; is the number of occurrences of vocabulary term i in the text. The
raw frequency is also called occurrence probability of term i.

The fundamental theorem of Shannon [Sha48]| establishes that the entropy of
a probability distribution {p;} is >, p;logy(1/p;) bits. That is, the optimum way
to code symbol ¢ is to use log,(1/p;) bits. In a zero-order model, the probability
of a symbol is defined independently of surrounding symbols. Usually one does
not know the real symbol probabilities, but rather estimate them using the raw
frequencies seen in the text.

Definition 2 (Zero-order entropy estimation) Let T, be the number of vo-
cabulary terms. Bearing in mind Shannon’s theorem and assuming that a single
dictionary is used to encode symbols, we estimate the zero-order entropy H of a
text

L 1
H:Zfil()gQﬁ (2)
i=1

This definition lets us estimate the entropy when we have only one dictionary.
If we want to estimate the entropy value when our model includes multiple
dictionaries, we have to combine the entropies of each dictionary.

Definition 3 (Zero-order entropy estimation for a dictionary) Letn? be
the total number of text terms in dictionary d. Let T¢ be the total number of dis-
tinct terms in dictionary d. Let f& be raw frequency of term i in dictionary d
given by

d
occy

St = (3)

nd

where occ? is the number of occurrences of vocabulary term i of dictionary d
in the texts. We can reformulate equation 2 to get the entropy for terms in
dictionary d:

;!

1
He = Zfzd log, F
i=1 i

Definition 4 (Zero-order entropy estimation with multiple dictionaries)
Let N be the total number of dictionaries. The zero-order entropy for all dic-
tionaries, H, is computed as the weighted average of zero-order entropies con-
tributed by each dictionary (H?*,d € 1...N):

(4)

_ Zfivzl nt H

n

H (5)

4 Merging Dictionaries

Up to now we have assumed that each different tag and chunk uses its own
dictionary. However, this may not be optimal because of the overhead to store
the dictionaries in the compressed file. In particular, if two dictionaries happen
to share many terms and to have similar probability distributions, then merging
both tags under a single dictionary is likely to improve the compression ratio.

In this section we develop a general method to obtain a good grouping of
tags/chunks under dictionaries. For efficiency reasons we will use the entropy as
the estimation of the size of the text compressed using a dictionary, instead of
actually running the Huffman algorithm and computing the exact size.

Definition 5 (Estimated size contribution of a dictionary) Let)V be the
size, in bits, of the vocabulary that constitutes dictionary d, and H? its estimated
zero-order entropy. Then the estimated size contribution of dictionary d is given
by

T =V 4 niy? (6)

Considering the last definition we determine to merge dictionaries i and j
when the sum of their contributions is larger than the contribution of their union.
In other words, when

T4+ 77 > TN (7

To compute 7?7 we have to compute the union of the vocabularies and the
entropy of that union. This can be done in time linear in the vocabulary sizes.

Definition 6 (Estimated saving of a merge) Let A™7 be the estimated sav-
ing of merging dictionaries i and j. Then

AV =T 4 79 T (8)

Our optimization algorithm works as follows. We start with one separate dic-
tionary per tag/chunk, plus the default dictionary for each chunk (the separators
dictionary is not considered in this process). Then, we progressively merge pairs
of dictionaries until no further merging promises to be advantageous. Obtaining
the optimal division into groups looks as a hard combinatorial problem, but we
use a heuristic which produces good results and is reasonably fast.

We start by computing 7° for every dictionary i, as well as 7%/ for all pairs
i,j of dictionaries. With that we compute the savings A"~/ for all pairs. Then,
we merge the pair of dictionaries 7 and j that maximizes A™7, if this is positive.
Then, we erase i and j and introduce 7 U j in the set. This process is repeated
until all the A7 values are negative.

The algorithm is depicted next. We have hidden the details on when the 7°
values are precomputed and updated. Its cost is O(V N?) when there are N dic-
tionaries and the vocabulary size is V. This can be reduced to O(V N2 1log N) by
simple tricks such as recomputing savings only for the newly merged dictionaries
and keeping dictionary pairs in a priority queue sorted by gain.

Algorithm 2 (Merging Dictionaries)

do best _saving < 0
for1<i<j<Ndo
current_saving «— T+ TJ — T
if (current saving > best_saving)
then best saving « current saving
bi—1 , bj«—7
if (best_saving > 0)
then dj;, <+ merge_ dictionaries(dy;, dy;)
dpj — dn
N«+—N-1
while (best_saving > 0)

5 Evaluation of the Model

We have developed a prototype implementing the Structural Contexts Model
with a word-oriented Huffman coding, and used it to empirically analyze our
model and evaluate its performance. Dictionaries are compressed using arith-
metic character-based adaptive coding. Tests were carried out on the Linux Red
Hat 7.2 operating system, running on a computer with a Pentium III processor
at 500 MHz and 128 Mbytes of RAM.

For the experiments we selected different size collections of WSJ, ZIFF and
AP, from TREC-3 [Har95]. Several characteristics of the collections are shown
in Table 1. We concatenated files so as to obtain approximately similar subcol-
lection sizes from the three collections, so the size in Mbytes is approximate.

The structuring of the collections is similar: they have only one level of struc-
turing, with the tag <DOC> indicating documents, and inside each document tags
indicating document identifier, date, title, author, source, content, keywords, etc.

Size TREC-WSJ TREC-ZIFF TREC-AP
(Mb)| #T.W.|#V.W.| Ratio| #T.W.|#V.W.| Ratio| #T.W.|#V.W.| Ratio
1| 193899| 18380(9.479%| 161900 12924(7.982%| 195915 19103|9.750%
5| 874586| 38750[4.430%| 992067| 35555(3.583%| 956340 41263(4.314%
10| 1669506 52218|3.127%| 1821015 51094(2.805%| 1721137| 54058|3.140%
20| 3370544| 71832|2.131%| 3489650 71136|2.038%| 3486098| 73820(2.117%
40| 6690067 97190(1.452%| 6970106| 102737|1.473%| 6985763| 101480|1.452%
60(10015765| 116221(1.160%|10272649| 125326|1.219%|10411824| 122340|1.175%
100|16672690| 144701|0.867%|17289782| 165113|0.954%17252119| 157376|0.912%
Tablel. Collection characteristics. For each collection we show the total number of
words (#T.W.), the total number of vocabulary words (#V.W.) and the ratio between
the two (Ratio).

When text chunks are not used, the average speed to compress all collections
is around 128 Kbytes/sec. In this value we include the time needed to model,
merge dictionaries and compress. Time for merging dictionaries ranges from 4.37
seconds for 1 Mb to 40.27 seconds for 100 Mb. Its impact is large for the smallest
collection (about 50% of the total time), but it becomes much less significant
for the largest collection (about 5%). The reason is that merging time is linear
in the vocabulary size, which grows sublinearly with the collection size [Hea7§],
typically close to O(y/n). Although merging time also depends quadratically on
the number of different tags, this number is usually small and does not grow
with the collection size but depends on the DTD /schema.

In Table 2 we show original sizes, compressed sizes and compression ratios
for each collection. It can be seen that compression ratios improve for larger
collections, as the impact of the vocabulary is reduced [HeaT78].

In Figure 1 we can see a comparison, for WSJ (using up to 200 Mb this time),
of the compression performance using the plain separate alphabets model (SAM)
and the structural context model (SCM) with and without merging dictionaries.
For short texts, the vocabulary size is significant with respect to the text size,
so SCM without merging pays a high price for the separate dictionaries and
does not improve upon SAM. As the text collection grows, the impact of the
dictionaries gets reduced and we obtain nearly 10% additional compression. The
SCM with merging obtains similar results for large collections (12.25% additional

TREC-WSJ TREC-ZIFF TREC-AP
Original| Compr.| Ratio| Original| Compr.| Ratio| Original| Compr.| Ratio
1221659| 484575/39.66%| 1021882 376180(36.81%| 1185968 492832|41.55%
5516592 1793950(32.51%| 6083389| 1956195(32.15%| 5805776 1952979|33.63%

10510481| 3214613|30.58%| 11164171| 3480842|31.17%| 10469592| 3315087(31.66%

21235547| 6190051|29.14%| 21306059| 6414762(30.10%| 21219693| 6371426|30.02%

42113697|11858566|28.15%| 42659558|12452756(29.19%| 42523572|12307072|28.94%

62963963|17498136|27.79%| 62966279|18131869(28.79%| 63343648|18054387|28.50%

104942941|28681879|27.33%|105709264|29972861|28.35%|105018927|29479824|28.07%
Table2. Sizes and compression ratios for each collection.

compression), but its performance is much better on small texts, where it starts
obtaining 11% even for 1 Mbyte of text.

40

] j j Structural Contexts Model with Merge —+—
Structural Contexts Model without Merge ---x---

i Separate Alphabets Model ----

Size|SCM+merge| SCM | SAM

1221659 39.66% |44.64%|44.52%
5516592 32.51% |35.41%|35.89%
10510481 30.58% (32.76%|33.67%
21235547| 29.14% |30.72%|32.08%
42113697 28.15% |29.24%|31.01%
62963963| 27.79% |28.64%|30.63%
104942941 27.33% |27.95%]30.26%
210009482| 26.80% |27.20%|30.54%

Compression rate (%)

26

50 100 150 200
Collection size (Mbytes)

Figurel. Compression ratios using different models, for WSJ.

Table 3 shows the number of dictionaries merged. Column “Initial” tells how
many dictionaries are in the beginning: The default and separators dictionary
plus one per tag, except for <DOC>, which marks the start of a document and
uses the default dictionary. Column “Final” tells how many different dictionaries
are left after the merge.

For example, for small WSJ subsets, the tags <DOCNO> and <DOCID>, both of
which contain numbers and internal references, were merged. The other group
that was merged was formed by the tags <HL>, <LP> and <TEXT>, all of which
contain the text of the news (headlines, summary for teletypes, and body). On
the larger WSJ subsets, only the last group of three tags was merged. This
shows that our intuition that similar-content tags would be merged is correct.
The larger the collection, the less the impact of storing more vocabularies, and
hence the fewer merges will occur.

Aprox.|TREC-WSJ|TREC-ZIFF| TREC-AP
Size(Mb)|Initial| Final |Initial| Final |Initial|Final
1 11 8 10 4 9 5

5 11 8 10 4 9 5
10{ 11 8 10 4 9 7
201 11 9 10 6 9 7
40| 11 9 10 6 9 7
60| 11 9 10 6 9 7

100 11 9 10 7 9 7

Table3. Number of dictionaries used.

The method to predict the size of the merged dictionaries from the vocabulary
distributions was quite accurate: our prediction was usually 98%—99% of the final
value.

Aprox. Chunk size (Mbytes)
Size(Mb)| 0 2 4 8 16
1139.66%39.66%)39.66%|39.66%|39.66%
5|32.51%|32.51%32.51%32.51%|32.51%

10{30.58%30.57%30.57%|30.58%30.58%
20129.14%|29.13%|29.13%29.13%|29.14%
40(28.15%(28.13%28.13%|28.14%|28.14%
60(27.79%|27.76%|27.76%|27.76%|27.77%
100(27.33%|27.28%|27.28%27.28%|27.29%
Table4. Compression ratios using differents chunk sizes in Mbytes. Zero size shows
compression ratio without using chunks.

Let us now consider the use of text chunks. In Table 4 we can see a compar-
ison of the compression performance using differents chunks sizes over the same
collection sizes for WSJ. The best gain obtained is around 0.03%, not really
significant. This can be due to the characteristics of WSJ: all the texts are very
uniform, with similar distributions of words. In fact, all dictionaries in different
chunks of tags <HL>, <LP> and <TEXT> were merged. On the other hand, the
time for generating and merging dictionaries grows fast as the number of dictio-
naries grows. With these results, we can conclude that the use of chunks is not
profitable in this case.

Finally, we compared our prototype (using merging) against other compres-
sion systems: the MG system, XMill, and XMLPPM. The MG system [WMB99]
is a public domain software, versatile and of general purpose, which handles text
and images. MG compresses structured documents by handling tags as words,
and uses a variant of word-based Huffman compression called Huffword. On the
other hand, XMill [LS00] is an XML-specific compressor based on Ziv-Lempel

and Huffman, able to handle the document structure. XMLPPM [Che01] is also
specific of XML and based on adaptive PPM over the structural context.

We compressed all the collections with the four systems! and averaged com-
pression rates for each collection size. Average compression rates are shown in
Figure 2. XGrind was not included because we could not find public code for it.
CGrep [MNZBO00] was not included because it is byte-oriented and the compar-
ison would be unfair against it.

8

SCM —+—
MG System --x---
XMill - -
XMLPPM -3

©
8

Size] SCM | MG | XMill | XMLPPM
1|39.34%|34.22%|36.46%| 25.38%
5|32.76%|30.72%|36.44%| 25.70%
10(31.13%29.93%|36.49%| 25.79%
20(29.75%|29.30%36.51%| 25.80%
40|28.76%|28.83%|36.55%| 25.88%
60|28.36%|28.67%|36.61%| 25.91%
100(27.91%28.54%|36.56%| 25.90%

Compression rate (%)
@ @ @
8 ® 8

—

»
B
T

5

L L L L L
20 40 60 80 100
Collection size (Mbytes)

Figure2. Comparison between SCM and other systems over WSJ, using default set-
tings for all. The ratios shown in the table are average values for each collection size,
over the different collections tested.

XMill obtains an average compression ratio roughly constant in all cases
because it uses zlib as its main compression machinery. The compression ratio
obtained is not competitive in this experiment.

XMLPPM, on the other hand, obtains the best compression. This shows
that the idea of using the structural context to compress is good. The problem
of XMLPPM is that its compression is adaptive, and hence it is not suitable for
direct access on large compressed text databases.

Our prototype is better than MG for medium and large collection sizes, but
not for small sizes. This can be due to our penalty in storing more than one
dictionary. SCM starts to be better from 40 Mbytes, and for 100 Mbytes it
improves over MG by 2.2%.

Note also that the difference between XMLPPM and our prototype is rather
small for large collection sizes. In any case, the penalty is a rather small price
for permitting direct access to the text.

! XMLPPM required several changes to the sources in order to run properly, but these
did not affect the compressibility of the collection.

6 Conclusions and Future Work

We have proposed a new model for compressing semistructured documents based
on the idea that texts under the same tags should have similar distributions. This
is enriched with a heuristic that determines a good grouping of tags so as to code
each group with a separate model. On the other hand, the impact of the model
on the retrieval performance is insignificant, in fact it is similar to the retrieval
performance over compressed documents.

We have shown that the idea actually improves compression ratios by more
than 10% with respect to the basic technique. We have compared our prototype
against state-of-the-art compression systems, showing that our prototype obtains
the best compression for medium and large collections (more than 40 Mbytes)
among techniques that permit direct access to the text, which is essential for
compressed text databases. On very large texts, the difference with the best
prototype, which however does not permit direct text access, is no more than
7.2%. These text sizes are the most interesting for compressed text databases.

The prototype is a basic implementation and we are working on several im-
provements, which will make it even more competitive. We can tune our method
to predict the outcome of merging dictionaries: Since we know that usually our
prediction is 1%-2% off, we could add a mean value to our prediction. Also,
we can try the spaceless model [MNZBO0O], which should give a small additional
gain. However, the need to include the separators in all the dictionaries may
make this approach unsuitable for our case.

Use of text chunks did not appear to be promising, but we plan to work on
defining them more cleverly. We still have to test their effect on other collections.
With respect to the study of the method itself, we have to investigate more in
depth the relationship between the type and density of the structuring and the
improvements obtained with our method, since its success is based on a semantic
assumption and it would be interesting to see how this works on other text
collections.

References

[BCCT00] A. L. Buchsbaum, D. F. Caldwell, K. Ward Church, G. S. Fowler, and
S. Muthukrishnan. Engineering the compression of massive tables: an
experimental approach. In Symposium on Discrete Algorithms, pages 175—
184, 2000.

[BSTWS86] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive data
compression scheme. Communications of the ACM, 29:320-330, 1986.

[Che01] J. Cheney. Compressing XML with multiplexed hierarchical PPM models.
In Proc. Data Compression Conference (DCC 2001), pages 163—, 2001.

[DPS99] J. Dvorsky, J. Pokorny, and V. Snasel. Word-based compression methods
and indexing for text retrieval systems. In ADBIS’99, LNCS 1691, pages
75—84. Springer, 1999.

[Har95] D. Harman. Overview of the Third Text REtrieval Conference. In Proc.
Third Text REtrieval Conference (TREC-8), pages 1-19, 1995. NIST Spe-
cial Publication 500-207.

[Hea78|
[Huf52]
[LS00]

[MNZB00]

[Mof89]

[MWO1]

[NMN00]

[Shads]
[TCB90]
[THO2|
[WMB99)

[ZL77]

H. S. Heaps. Information Retrieval - Computational and Theoretical As-
pects. Academic Press, 1978.

D.A. Huffman. A method for the construction of minimum-redundancy
codes. Proc. Inst. Radio Engineers, 40(9):1098-1101, 1952.

H. Liefke and D. Suciu. XMill: an efficient compressor for XML data. In
Proc. ACM SIGMOD 2000, pages 153-164, 2000.

E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast
and flexible word searching on compressed text. ACM Transactions on
Information Systems, 18(2):113-139, 2000.

A. Moffat. Word-based text compression. Software - Practice and Ezpe-
rience, 19(2):185-198, 1989.

A. Moffat and R. Wan. RE-store: A system for compressing, browsing and
searching large documents. In Proc. 8th Intl. Symp. on String Processing
and Information Retrieval (SPIRE 2001), pages 162-174, 2001.

G. Navarro, E. Silva de Moura, M. Neubert, N. Ziviani, and R. Baeza-
Yates. Adding compression to block addressing inverted indexes. Infor-
mation Retrieval, 3(1):49-77, 2000.

C. Shannon. A mathematical theory of communication. Bell Syst. Tech.
J., 27:398-403, July 1948.

Tan H. Witten Timothy C. Bell, John G. Cleary. Text Compression. Pren-
tice Hall, Englewood Cliffs, N.J., 1990.

P. Tolani and J.R. Haritsa. XGRIND: A query-friendly XML compressor.
In ICDE, 2002. citeseer.nj.nec.com/503319.html.

I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes. Morgan
Kaufmann Publishers, Inc., second edition, 1999.

J. Ziv and A. Lempel. An universal algorithm for sequential data com-
pression. IEEE Trans. on Information Theory, 23(3):337-343, 1977.

[ZMNBYO00| N. Ziviani, E. Moura, G. Navarro, and R. Baeza-Yates. Compression: A

key for next-generation text retrieval systems. IEEE Computer, 33(11):37—
44, November 2000.

