Description of a case study

Anibal Bregon, Carlos Alonso-Gonzalez, and Belarmino Pulido

September 17, 2013

1 Case Study

A simple one tank system (Fig. 1).

Figure 1: Diagram of the tank system.

The system is represented by the following set of equations:

Constraint	Equation	Component	Fault
$c_1: (\dot{h}, Q_i, Q_o)$	$e_1: Ah = Q_i - Q_o$	Т	f_T
$c_2:(h,\dot{h})$	$e_2: h = \int_0^t \dot{h} \cdot dt$		
$c_3:(Q_o,u_c,h)$	$e_3: Q_o = K_c \sqrt{h \cdot u_c}$	V_o	f_{V_o}
$c_4:(u_c,h)$	$e_4: u_c = pid(h)$	PI	
$c_5:(h^*,h)$	$e_5: h = h^*$	LT	f_{LT}
$c_6:(Q_o^*,Q_o)$	$e_6: Q_o = Q_o^*$	FT_1	f_{FT_1}
$c_7:(Q_i^*,Q_i)$	$e_7: Q_i = Q_i^*$	FT_2	f_{FT_2}

Where Q_i and Q_o are the input and output flows to the tank, T, h represents the level of the tank, and u_c is the PID signal that controls the opening of valve V_o . A is the cross section of the tank, and K_c is the valve constant. Three sensors, LT, FT_2 , and FT_1 measure the variables h, Q_i , and Q_o , respectively, and we represent such values as h^* , Q_i^* , and Q_o^* . In this plant, we consider faults in the level and output sensors, f_{LT} and f_{FT_1} , respectively, leakages in tank T, f_T , and partial blocks of valve V_o , f_{V_o} .