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Chapter 1Introdution He holds him with his glittering eye{The Wedding-Guest stood still,And listens like a three years' hild :The Mariner hath his will.The Rime of the Anient Mariner, 1798Samuel Taylor Coleridge1.1 MotivationThe e�etiveness of a parallel appliation has been traditionally measured onlyin terms of its ahievement of high performane as ompared with its sequentialimplementation ounterpart. From this point of view, the typial senario hasbeen one of a high performane quest, espeially in the �eld of sienti� omput-ing. This situation is quikly hanging nowadays, sine general purpose parallelmahines have beome an a�ordable alternative to lassial superomputers, andnetwork onnetivity improvements have enabled parallel omputing based onheterogeneous lusters, NOWs, and GRIDs. Conepts suh as portability, pre-ditability, evolution or orretness, genuinely related to software developmentmethodologies, play now a role as important as performane improvements. Asa onsequene, the onstrution of high-quality parallel software at a reasonableinvestment of e�ort has beome one of the main objetives in the developmentof parallel appliations. Software onstrution methodologies, veri�ation, easeof debugging, interoperability and reusability beome key hallenges for newgeneri superomputing environments [52, 169, 175℄. The ontinuous hardwareevolution, and the lak of an established and ommonly aepted parallel om-puting model or referene arhiteture results in a maturity level idential tothe one in sequential omputing before everybody assimilated the ompatibility1



2 CHAPTER 1. INTRODUCTION
Speed-up

DevelopmentExecution
efficiency efficiency

Programming cost

Shift in time

Effectiveness

Figure 1.1: Shift of interest in parallel development eÆienyideas imposed by the introdution of widespread ommon arhitetures based atthe more abstrat level on the Von Neumann model [134℄. The development ofquality parallel software is ompromised by the lak of well-established modelsand by the ommon design tehniques for the low-level tuning whih is neessaryto get maximum performane.In the parallel programming �eld an important researh ativity is thus fo-used on the introdution of tools and methodologies for parallel software devel-opment. The objetive is to reate an appropriate framework to develop e�etiveparallel appliations (eÆient and portable). However, parallel omputing hal-lenges are being faed from three basially di�erent perspetives whih are notyet mature enough as to bridge the gap between them. These are the following:Parallel semanti modelsFormal models of parallelism have been proposed and studied for a long time (seee.g. [165, 166, 190℄). They are aimed to reason about orretness and onurrenypossibilities. However, the models that explore unrestrited synhronization on-urreny reveal many undeidable problems. Their inherent omplexity preventsformal analysis and the amount of traing information about a system evolutionbeomes intratable. As a onsequene, there are no pratial programming lan-guages or environments whih fully integrate the omplete set of formal propertiespresribed by these models.Parallel omputation modelsParallel omputation models were introdued as a means to reason about om-putability, and to derive omplexity measures of parallel algorithms. In sequentialprogramming, a Turing mahine is a universal model whose omplexity measuresare not modi�ed, but in small onstant fators, when an implementation is gener-ated using the bridging model proposed by Von Neumann. However, in parallel



1.1. MOTIVATION 3omputing, omplexity measures and performane predition are ompliatedby the lak of an established ost-theoreti model or a widely aepted bridgingmodel for parallel omputers [122℄. As a onsequene, parallel omputation mod-els proposed are either too abstrat, too worried about implementation subtleties,or even too restrited to desribe many real situations.When the abstration level is too high, the implementation in a real mahinerequires ompliated transformations, spei� for any new arhiteture and ingeneral not deidable, that an modify the omplexity orders of an algorithm(e.g. PRAM model). At the same time, too abstrat parallel models do notenourage programming tehniques that deal with synhronization problems.On the other hand, some models are foused on modeling the low-level detailsof ommuniation/synhronization osts (e.g. LogP). In these ases, the synhro-nization strutures are ompletely unrestrited and analysis problems arise. Thesoftware development is not intuitive and the ost model (if not untratable),annot be used in reverse to determine whih heuristi implementation deisionsprodue given results.Finally, there are models designed to provide a onvenient and simple ostmodel. However, they use unnatural synhronization restritions that limit thetypes of algorithms that maps diretly into the model, and no lues are given forthe mapping of other types (e.g. BSP).Parallel programming modelsGiven the previously disussed problems, an important part of the parallel pro-gramming ommunity is foused on the development of pratial programming in-terfaes that allows the programmer to exploit the parallel and high-performaneharateristis of atual mahines. In searh of the maximum expressive powerand exibility, many of these programming models allow the reation of struturesthat are dynami, omplex, or impossible to analyze. Poorly strutured synhro-nization is the origin of many urrent diÆulties of parallel programming [89℄. Forunrestrited synhronization strutures the optimal mapping (problems to pro-grams) is almost humanly impossible, ost models are not a�ordable, and goodsheduling algorithms are extremely expensive. The programmer must take lowlevel detail deisions, inluding sometimes mahine dependent optimization solu-tions hardwired in the ode. On the other hand, other models sari�e expressivepower, restriting the synhronization strutures available, so as to keep analysisproperties that lead to better ost models and formal developing, veri�ation,mapping and debugging tehniques.From the above disussion, we identify the synhronization strutures availablein a parallel system as the key fator for a trade-o� between expressive powerand engineering ability. This trade-o� has been, for a long time, an issue of



4 CHAPTER 1. INTRODUCTIONstill on-going debate. In this study we introdue the onept of synhronizationarhiteture to lassify the synhronization strutures in terms of their propertiesrelated to software engineering and high-performane. This new approah lead usto identify the minimum restritions needed to bound the omplexity of relevantanalysis problems, and to evaluate the potential problems to express parallelappliations into these restrited strutures.1.2 Parallel programming modelsAs already pointed out, a parallel programming model (PPM) an be de�ned asa programming interfae whih an be targeted to any omputer arhitetureand lets the programmer express parallelism in terms of a set of primitives givenby the underlying parallel model of omputation. There exist PPMs from thehighest (formal spei�ations) to the lowest (lose to implementation details)abstration levels.Many new design deisions take part in the reation of a parallel programminginterfae. Compared to sequential programming, new degrees of freedom are tobe onsidered. Parallel omputations are muh more ompliated to reate, trakand analyze. The mapping of a parallel algorithm to a program is a omplex task.The resoures-to-ativities assignment (sheduling), and the partitioning of dataor ativities that minimize ommuniation osts are optimization problems inthe tuple (time, spae), typially translated to graph problems, whih optimalsolution are not known or are NP-omplete [4℄. A generi, heterogeneous andevolving framework requires exible mapping methods to reate eÆient andportable appliations. Thus, abstration is a more important feature in parallelthan in sequential programming. On the other hand, a parallel programmingmodel is not pratial if it proposes a so abstrat interfae that it is too diÆultor expensive to �nd eÆient ways to implement it in real hardware arhitetures(existing or evolving). The hoie of a parallel programming model involves atrade-o� between portability and eÆieny.We distinguish two main ategories of harateristi for a PPM. They arerelated to two properties of the semantis involved in the model (see Fig. 1.2).A model should propose an interfae abstrat enough to minimize the humane�ort to learn it and use it for software developing (SEC, software engineeringharateristis). At the same time, the model should be simple and lose enoughto the low level details to make it possible eÆiently bridging programs to atualparallel omputations in a mahine (AC, analysis harateristis). However,expressive power may be lost if too muh simpli�ation or abstration is used toimprove the quality of these SEC and AC harateristis.The searh of a onvenient programming environment is the urrent HolyGrail quest in parallel omputing. The problem has been approahed for a long
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Figure 1.2: Software engineering (SEC) and analysis (AC) harateristis.time. In the 80s, there was an important gap between theoreti parallel algorithmdesign (mainly based on PRAM model) and eÆient implementation on real ma-hines. Data-parallel languages and automati parallelizing ompilers based ondata analysis were the major trend of researh for easy and eÆient parallelprogramming. Nonetheless, the restritive data-parallelism model and the im-possibility of reonstruting ertain parallel strutures from sequential ode1 ledto the development of alternative systems for diret and free expressions of par-allelism (mainly message-passing interfaes), that were failing to provide analysisharateristis [89℄.In the 90s, the introdution of the restrited but portable and ost drivenomputation model BSP [185℄, and the more detailed but less restrited ommu-niation ost model LogP some years after [49℄, brought new attention to parallelprogramming models in general, and to those aimed to ost measurement in par-tiular [16, 57, 76, 133, 161℄. Performane modeling beame an important issue.In the middle of 90s, the performane analysis study of Van Gemund lead to theintrodution of the parallel programming model SPC [70, 71℄. In this model thedependene strutures that an be generated are restrited to nested-parallelismstrutures (those that an be represented by a Series-Parallel (SP) graph [184℄),extended with a simple ontention mehanism. This basi restrition in the syn-hronization strutures allowed by the model is related with the possibility ofusing a new performane analysis tehnique, with adjustable auray in termsof a mahine model. SPC provides a simple parallel software development frame-work. However, some synhronization strutures are not diretly representablein nested-parallelism, and they must be reprogrammed, possibly adding depen-denes that were not in the original problem. Thus, the utility of a restrited1When a naturally parallel appliation is programmed in a sequential model, the onurrenyspae is ompressed in only one point of the onurreny axis. Conurrent tasks are pushedinto the time axis, imposing an arbitrary order on them. Thus, important information aboutonurreny ould be lost.



6 CHAPTER 1. INTRODUCTIONsynhronization programming model is endangered by the potential loss of per-formane in ertain type of appliations. We will ome bak to this importantissue along the next setion.The study and omparison of unrestrited and restrited parallel program-ming models (like SPC) brought to light an important feature of PPMs. Mostof their properties (SEC,AC) are related to the ability to detet and evaluateproperties of ommuniation and synhronization. Restrited models that havegood analyzability harateristis for both ommuniation and synhronization,an ahieve all the SEC and AC requirements.1.3 Synhronization ArhitetureWe propose the onept of Synhronization Arhiteture (SA) to be the abstratdesription of the synhronization strutures and ommuniation proesses whihharaterize a given PPM, together with their fundamental properties. PPMs anbe lassi�ed in terms of their synhronization arhiteture, de�ned by the meha-nisms whih are provided for expressing synhronization, and the strutures thatan be reated by them.To lassify parallel programming models, Skilliorn and Talia have proposedthe following riteria [174℄. (1) PPMs with support for dynami proess or threadstrutures; (2) PPMs with only stati proess or thread strutures, but no syn-tati limits on ommuniation; (3) PPMs with only stati proess or threadstrutures and syntati limits on ommuniation. They laim that: \Modelsthat allow dynami proess or thread struture annot restrit ommuniation[...℄ even models that restrit ommuniation within a partiular syntati blokannot limit it over the whole program. Thus suh models annot guarantee thatthe ommuniation generated by the program will not overrun the total ommu-niation apaity of a designated parallel omputer. [...℄ some programs thatan be written in the model will perform badly, and it is not straightforward todetet whih ones".Although we do agree this is a good andidate for a general lassi�ation ofPPMs, we think that it an be learly re�ned. In fat, restrited synhronizationmodels an impose struture on the way threads are reated and synhronized,to derive dynami but restrited thread strutures with a preditable number ofommuniations. Even for some dynami thread strutures, it is still possible toobtain ost measures and �nd an eÆient way to map the omputations onto themahine, as shown in Table 1.1.Thus, we propose new more detailed riteria, inluding di�erent lasses of syn-hronization restritions. First, we distinguish two types of synhronization [9℄:(1) Condition synhronization (CS), whih implies an order to be preserved inthe exeution of two tasks or statements, and that is typially assoiated to data



1.3. SYNCHRONIZATION ARCHITECTURE 7(a) CommuniationThread struture Restrited UnrestritedStati Preditable Preditable�Dynami Unpreditable(b) Comm. & Synh.Thread struture Restrited UnrestritedStati Preditable Preditable�Dynami Preditable� Unpreditable� Depending on the exat strutures and restritions of the modelTable 1.1: PPMs lassi�ations: (a) Skilliorn& Talia [174℄, and (b) our proposal.dependenes or ommuniation; and (2) mutual exlusion (ME), that preventsthat two tasks or statements to be exeuted at the same time, although the orderin whih they are �nally exeuted is not relevant. These types of synhroniza-tions an be onsidered orthogonal, in the sense that a PPM an support oneor both of them independently. Some models simply lak any form of expliitsynhronization (e.g., HPF [1, 27℄), some do not provide any expliit dynamisynhronization mehanisms (e.g., Fortran-M [67℄), while others impose restri-tions on the form of the stati synhronization strutures (e.g., BSP [185℄).In setion 2.2 we will introdue a lassi�ation of the synhronization spaein terms of three di�erent harateristis: (1) CS strutures to be allowed, (2)the ME mehanisms, and (3) the data-dependene of synhronization strutures.In partiular, we distinguish two omplementary lasses of CS strutures: oneunrestrited and one restrited to a spei� ompositional form alled nested-parallelism, SP or Series-Parallel. SP strutures are restrited to nested-paralleltask ontrol strutures or, in other words, to the reursive appliation of prim-itives with the semantis of obegin-oend [9℄. Models whih allow only SP re-strited strutures are alled SP-models (e.g. BSP, SPC). The assoiated taskgraph of these strutures is in the lass of Series-Parallel graphs or SP-graphs forshort.Beside the previously mentioned engineering aspets (SEC) the introdutionof restritions on a PPM's synhronization arhiteture has a favorable e�et onits analysis harateristis (AC). For instane, improved sheduling tehniqueshave been designed for SP restrited DAGs [63, 20, 142, 159, 157℄. One of thereasons behind their advantages is that the number of edges in an SP graphis bounded to be a linear funtion of the number of nodes (O(jEj) = O(jV j).Another reason stems from the ompositional nature of SP-graphs, whih allowsa reursive loal analysis of properties. Thus, many sheduling algorithms show



8 CHAPTER 1. INTRODUCTIONa very low omplexity measure when applied on SP graphs. Moreover, manyombinatorial problems whih are NP-hard for generi graphs are known to belinear on Series-Parallel graphs [179℄. Cost analysis (e.g. ritial path analysis) isalso improved. Even more, analytial losed form ost expressions an be derivedfor SP graphs [71℄. At a more abstrat level, there exists a formal algebraiharaterization of the languages onstruted on SP semanti models (alled SP-languages), with their extended reognition automata [125, 126, 127℄.However, the restritions imposed on the stati synhronization strutures doeliminate some expressive power from the model. In some situations, tasks thatould be theoretially exeuted in parallel must be serialized as a onsequeneof nested synhronization. This ould lead to a performane loss whih, unlessarefully estimated, would learly ompromise the use of these models in parallelprogramming.To illustrate this point, let us onsider the task graph assoiated to a 1Dellular automata with just 3 ells, where a funtion dependent on parametersevaluated at neighbor ells (the ones given by a stenil) is applied in parallelaross all the ells along 3 onseutive iterations. In Fig. 1.3(a) a task graphassoiated with a generi PPM omputation is presented. Eah edge representsa ommuniation or a synhronization. The version in Fig. 1.3(b) is a task graphassoiated with the hoie of a model whih restrits ommuniation so thatit an only synhronously take plae at a barrier synhronization. The dashedline represents the barrier. The blak nodes an be exeuted in parallel in the�rst example, but are serialized in the seond. If exeution times of the blaknodes is tb = 10, and white nodes tw = 1, the total exeution time (withoutommuniation osts) is T1 = 12 in the �rst example, and T2 = 30 in the seondone, whih give a performane penalty of almost 3.
(a) (b)Figure 1.3: Example of parallelism loss at programming levelThis potential loss of parallelism is introdued at a programming level whenin the design phase, as a onsequene of the restritions of the abstration levelwe are using to desribe the problem, and it will be readily propagated throughthe following development phases. We are spei�ally interested in any potentialomputation time penalty fored by the restrited expressive power of a PPM.On the other hand, the quality of the low-level implementation phases an beimproved with restrited CS models. Spei�ally, SP-restrited programming



1.4. PROBLEM STATEMENT AND THESIS 9shows interesting features for sheduling and mapping, not found in non SP-restrited models, as mentioned earlier.1.4 Problem statement and thesisFrom the previous disussion, a number of interesting open questions arise whihwe will address in this work. It is not yet lear what type of programming modelsare more onvenient for nowadays and near future parallel programming. It willbe highly interesting to �nd objetive harateristis that we an use to evaluateor lassify the potential bene�ts and drawbaks of a given model. As mentionedearlier, Skilliorn and Talia proposed in [174℄ a set of interesting properties forideal parallel programming models that promotes low ost software developmentand maintenane, eÆieny and portability. Aording to them, a model should\be easy to program, have software development methodology, be easy to under-stand, guarantee performane, and provide aurate information about osts".These riteria are mainly subjetive, and an be diÆult or impossible to agreeabout the adequay of a given model to it. On the evolution of future parallelprogramming models lear diretions and requirements must be proposed. The-oretial omparisons between well-known parallel omputing models has beenshown (see for example [16, 161, 128℄). However, no rationale has been o�ered inthe more abstrat level to explain the similarities and di�erenes, Quantitativeevaluation of parallel programming models has been tried previously fousingon eÆieny and performane evaluation auray [114℄. Related design har-ateristi are studied in [112℄. Although the experimental approah is similarto ours in the low level, we are more interested in determining the origins ofthese quantitative di�erenes at more abstrat levels and to predit the e�et ofdesign deisions in parallel programming languages and models in both, softwareengineering and analizability harateristis (SEC,AC).The problem we want to takle is deteting any relation between the SAof a PPM and its software development and analizability harateristis, in or-der to present lassi�ation riteria of SAs it terms of their harateristis forparallel programming. If restrited SA lasses appear to have advantages overunrestrited lasses, a related question is if there are methods to map knownappliations in unrestrited SA lasses to restrited ones, and how muh perfor-mane impat may impose suh high level transformations.In the thesis proposal we are presenting here, we identify, �rst, the syn-hronization arhiteture (SA) as a key property of PPMs with respet to itssuitability for software engineering and analysis, and a good riterion to lassifyPPMs. Some lasses of restrited SA leads to good harateristis in softwareengineering as well as analysis, while others prevent them. The most importantfeature of an SA is the lass of ondition synhronization it allows (NSP vs. SP).



10 CHAPTER 1. INTRODUCTIONThe hoie of a restrited SA may entail a loss of parallelism at the pro-gramming level of abstration (possibly propagated to lower levels). We proposean empirial evaluation system of PPMs to grade them in terms of this loss ofparallelism as a funtion of their SA. Based in our value system, we promotethe lass of SP-restrited PPMs as a promising PPM for general-purpose parallelomputing. SP restrited SA models present a good trade-o� between expres-siveness and software engineering and analizability harateristis. Moreover, weshow that most appliations an be mapped to SP (nested-parallelism) struturewith minimal performane impat.1.5 ApproahIn this dissertation we study the problem from three di�erent perspetives. Aoneptual review of the SA of parallel arhitetures, omputation and program-ming models, programming languages, and appliations is needed to identify thebest riteria for lassifying the synhronization strutures found at any detaillevel of a parallel system. One the lasses are determined and the restritedSP lass arises as the lass with the most promising features, a further study ofthe properties of its strutures is needed. Then, the seond step is a theoreti-al study, based on graph theory, of the properties of NSP and SP strutures,inluding an study of the transformation of strutures in di�erent lasses. Thethird step entails an experimental framework: ideas and tehniques developed onthe theoretial study an be used to experimentally ompare the behavior andperformane of appliation strutures in di�erent lasses. This empirial studyvalidates results and proposals analyzed in the previous steps and reveals thereal parameters and behavior of real appliations when programmed in di�erentlasses of SA.Coneptual approah: After de�ning the SA onept and establishing the dif-ferent abstration levels of study, it inludes a lassi�ation of the SAs foundat any level: From parallel arhitetures and well-known parallel omput-ing or programming models to the appliations spae. In this approahwe relate the SA lass with the programming models expressive power,analysis harateristis and the virtues and aws assoiated for mappingappliations to them. The NSP vs. SP lassi�ation appears as the morerelevant feature of a PPM. We also present a oneptual disussion of thepossible mapping strategies of appliations, to PPMs in a di�erent andmore restrited lass.Theoretial approah: This approah is based on a theoretial study of themodeling apaities and restritions of SP models in an abstrat level, and



1.6. OUTLINE 11their signi�ane. A formal analysis of the NSP and SP graphs, their re-lation and the distane from NSP to SP forms is introdued. We presentheuristi transformation tehniques and algorithms to onvey NSP stru-tures into SP approximations that introdue minimum hanges in topologyor performane. We develop an analysis framework to predit the loss ofperformane introdued at the programming abstrat level as funtion ofSA. The framework is based on the use of graph theory, topology lasses,and task workload metris. We measure performane di�erenes in termsof ritial path.Experimental approah: We present a omparison of using programming mod-els or languages in di�erent SA lasses to implement real appliations, in-luding the e�ets of typial implementation trajetories. Here we do notrestrit ourselves to the highest abstration levels, but we use the aboveframework to disuss the performane e�ets of various mappings and im-plementation issues at lower level. Thus, two di�erent frameworks arestudied:1. Oriented to the whole program spae.We study the results of enforing SP restritions on a sample of thewhole graph spae, and on syntheti graphs, relating the modeled per-formane loss to generi and simple graph and workload parameters.2. Oriented to appliations.Based on our parallel appliations lassi�ation presented in the on-eptual approah, we selet a olletion of representative appliationsfrom all relevant SA lasses. We ompare exeution times and perfor-mane e�ets produed when real odes programmed in generi andrestrited SP models are run in several mahines models. The impatof SP restritions is empirially predited and ompared with previousresults.As we will show along the following hapters, the results of this three ap-proahes will fully support our theses: presenting the SA as the key fator inthe analysis harateristis of a PPM, and onsequently in the software engi-neering of parallel appliations, and promoting the SP restrition of onditionsynhronization as one of the most relevant hoies in the design of a PPM.1.6 OutlineThis dissertation is organized following the three di�erent approahes presentedin the previous setion. Chapter 2 presents the oneptual approah. After



12 CHAPTER 1. INTRODUCTIONintroduing some onepts and terminology (inluding SA), we present our las-si�ation riteria for SA. Then, we travel bottom-up along the di�erent abstra-tion levels studying the SA of parallel arhitetures, programming models andappliations. Interesting onlusions are disussed for eah new layer. In Chap-ter 3 we present the theoretial approah. We formally de�ne SP graphs andstudy their strutures. Simple transformation tehniques and problems are dis-ussed, after whih two new heuristi algorithms are introdued. The impatof the transformation is studied from di�erent perspetives. Chapter 4 inludesan exposition of the motivations and deisions taken to build our experimentalframework. Graph appliation modeling tehniques are introdued in this phaseof the study. A broad summary of the results obtained in eah phase is presentedand disussed. In Chapter 5 we reall the results and ideas presented along thewhole work, and we present our onlusions.



Chapter 2Coneptual approahI did not paint it to be understood, but Iwished to show what suh a sene was like.J.M.W. Turner, 1775-1851This hapter is an attempt to bring the reader a travelogue through theparallel programming world. After the introdution of some onepts and termi-nology, we will initiate a trip along the �elds of parallel programming, a land fullof sight spots where the synhronization struture olors are showing up frominside everything that blossom. From the rough and hanging oeans of parallelarhitetures and low level exeution models, we will y up to the low-lands ofmapping, where the implementation oods are direted by the river oasts ofompilation. In the upper valleys we will �nd the programming models whihallow this ompilation tehniques and the abstrations that hide the details tothe programmer. Finally, we will limb up the high abstration peaks to �ndtheir snow rowns, where appliations and parallel algorithms dwell, nurturingthe waterfalls where all the implementation line begins. All around, synhroniza-tion struture will be a friendly guide that will show us serets beneath what theuntrained eye athes. Throughout this trip we will learn how synhronizationstruture helps us to understand the roots of advantages whih show, and thediÆulties to be takled, when di�erent parallel programming models are used.First, we will disuss about models and modeling, to propose general de�-nitions for parallel programming and omputing models, and desribe the dif-ferent detail levels involved in parallel omputing. Then, we will introdue thesynhronization arhiteture onept, presenting lassi�ation riteria, useful fordeteting the good and bad properties of synhronization strutures regarding an-alyzability and expressive power. These riteria are used in the following setionsto lassify models and appliations, showing the relevane of synhronization ar-hiteture at any level of detail. 13



14 CHAPTER 2. CONCEPTUAL APPROACH2.1 Parallel models and de�nitionsIn this setion we begin to prepare the luggage we will need for our trip. Weestablish some terminology that sometimes have onfusing meanings, typiallywhen oming from di�erent ommunities related to parallel omputing. We alsode�ne the main onepts about parallel programming models we will use fromnow on.2.1.1 Parallelism and parallel omputingAlthough parallel omputing is somehow a omplementary onept to sequentialomputing, they share a main substrate. They solve problems applying a pro-grammed olletion of ations, hosen from a redued set, where eah of themmodi�es a well-de�ned environment in a deterministi way.The important di�erene between parallel and sequential worlds is how theseations interat with the environment and how they are ordered in the time spae.In sequential omputing the programmer is responsible for the order in whih theinstrutions are exeuted and only one of them an modify the environment in agiven instant of time. When the restritions of time order are relaxed, and many(a given number) of ations an be exeuted simultaneously or in no spei�edorder, the programmer has new freedom degrees to exploit, but she/he faesnew assoiated problems. When two given ations modify an initial environmentstate in non-ompatible ways, they must be prevented to exeute simultaneouslyto preserve the onsistene of the omputation until it arrives at a known statewhere the problem is solved. Thus, we distinguish ations that an be exeutedin parallel and ations that must be exeuted sequentially.We all parallelism to the possibility of exploiting time ordering relaxationand simultaneous exeution of ations for problem solving. Thus, parallel pro-gramming is related to uses and tehniques to express a solution to a given prob-lem in a omputational environment where parallelism is possible. And parallelomputing refers to the evaluation of solutions in suh environments.Parallel omputing and programming is historially assoiated with high-pried mahines and high-performane. However, parallelism is a broader wordthat an be assoiated with many terms, most of the times with unlear bound-aries among them. For example:Conurreny: Typially assoiated with the basi problems of parallelism, likeanalyzing mutual dependenes and using synhronization mehanisms toaess shared resoures. Sometimes, onurrent omputing refers to meh-anisms of time-sharing to provide simulated parallel exeution in multitaskenvironments with restrited number of proessing elements.Distributed omputing: More related to the tehniques for using parallelism



2.1. PARALLEL MODELS AND DEFINITIONS 15in environments where ative elements are loosely-oupled and/or havediverse nature.High-performane omputing (HPC): While mainly using parallelism, HPCis foused on the extration of high performane peaks from spei� (si-enti�) appliations with new or reent omputing tehnologies.Parallel omputing: Mostly related to the programming and use of real par-allel arhitetures, where several proessing units operate with a hardwareor software layer that allows interation among them.We will use parallel omputing in the broadest sense, referring to the exploitingof parallelism in any omputational environment.2.1.2 ModelingHuman beings use modeling or models to abstrat reality in order to representit in a simpli�ed way whih allows them to reason about it, developing theories.However, the exat meaning of the terms model and modeling depends on manyissues related to the nature of what is being modeled, the purpose of the model,the level of detail required and the intended tehniques to be applied. Thus,talking about, and espeially de�ning what a programming or omputing modelis, is tehnially diÆult, as di�erent people understand or think di�erently aboutthem.In the parallel omputing world, there does not yet exist a referene arhi-teture or programming model aepted as universal. We present in this setiona tentative distintion of modeling levels and their relations in a parallel ompu-tation environment, that will be useful for oneptually analyze both, well-knowmodels of parallel omputation, and the sope of our study.The �rst distintion we must introdue is that programming and omputingare not the same thing. While programming is the ativity oriented to express orpresribe a solution to a problem (or family of problems) with a onstrained setof ations, omputing is the ativity oriented to evaluate programmed solutionsin a omputational environment. Thus, parallel programming models and parallelomputing models are not exatly the same, although the boundaries are blurred,as programming and omputing are inter-related ativities. Many models par-tially over aspets of both programming and omputing ativities, and they tryto �ll in the gap between them. They are usually alled bridging models. Wewill disuss about them in the next setion.2.1.3 Parallel omputing and programming modelsNow we will walk through the abstration levels, from the highest to the lowestof the omputing/programming ativities, giving names to what we �nd on our



16 CHAPTER 2. CONCEPTUAL APPROACHway. The reader an follow our trip in Fig. 2.1.
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Figure 2.1: Abstration levels of modelingThe reality that we try to model is the programming and omputing taskwith real mahines able to use parallelism. The programming task is done byimplementing an algorithm or appliation spei�ation in a programming lan-guage with apabilities to express parallelism. A programming language is aninstane (with given words and syntax) of a programming model (whih providespei� semantis).Thus, a Parallel programming model (PPM) is an abstrat desription (orabstrat virtual mahine) to express parallel ations independently of the un-derlying exeution level. Message-passing interfaes, onurrent objet-orientedprogramming and other similar tools are mainly foused at this level. We all aninstane or spei� notation for a PPM a Parallel programming language (PPL)Thus, a PPM de�nes a family of PPLs (a family of possible languages that allowthe programmer to express exatly the same parallel semantis).A omplete virtual mahine inludes the de�nition of a basi informationunit and a onise instrution set with lear semantis. In parallel programmingthe instrution set must inlude synhronization operations. The reader mustnotie that a PPM de�nes an abstrat virtual mahine that in fat indues aomputation model. A PPM is a programming interfae that hides some exe-ution details and issues of the underlying exeution model . That is what weall a Parallel omputing model (PCM). An e�etive parallel omputing modelmust be a�ordable to be eÆiently implemented in real parallel mahines andmany times it is highly inuened by real arhiteture model apabilities. Atthe same time, it is expeted that a good parallel omputing model provides areliable ost analysis tehnique to test the behavior and performane expeta-tions of programmed solutions. Examples of this level inlude abstrations suh



2.1. PARALLEL MODELS AND DEFINITIONS 17as PRAM [65℄ or LogP [50℄ models.Finally, at the lowest level, mahines are abstrated by parallel arhitetures.They propose a model for hardware apabilities of the mahine, de�ning a kind oflow-level virtual mahine. A parallel arhiteture may inlude a spei� mahinedesription (e.g. The Connetion Mahine [103℄), or a more generi model (e.g.NUMA arhitetures [51℄, Beowulf systems [177℄). PPMs and PCMs should beabstrat enough to provide an easy interfae to the programmer, and at thesame time, they should be portable (eÆiently implementable) aross the mostrelevant parallel arhitetures.For example: MPI [48℄ or PVM [178℄ are di�erent languages (level 1) thatimplement the semantis of the same PPM: Message-Passing (level 2). Messagepassing assumes an underlying PCM based on a bounded number of proessorsrunning asynhronously and exhanging point to point messages, suh as LogP(level 3). At the lowest level, suh a PCM an be diretly implemented on aNOW, a luster or even in a shared-memory arhiteture (level 4), with possiblydi�erent low-level implementation mehanisms on eah.PPMs and PCMs are highly related. Sine most of the times they are di�er-ent only in the point of view (from the programmer or from the implementationlevel), they share many ommon problems, and the solutions to them may besimilar. This is the reason why nowadays there exists a wide onern about bridg-ing models for parallel omputation. These models inlude the main features ofa PPM, o�ering a high-level parallel programming interfae, and give detailsabout performane ost modeling and low-level implementation issues assoiatedwith the PCM (typially representing a given arhiteture or real mahine witha small number of parameters). They try to jump over the gap between twoommunities: The arhiteture design ommunity (onerned by eÆieny andimplementation) on one hand, and the parallel solution design ommunity (on-erned with programming tehniques and parallelism exploiting) on the otherhand. Many models an be onsidered bridging models, although the oneptwas proposed with BSP [185℄. We will review some bridging models and theirharateristis in setion 2.4.In the following paragraphs we review other de�nitions and ideas found inthe literature about what parallel programming and omputing models are orshould be.Skilliorn & Talia de�ne a PPM in [174℄ as an interfae separating high-level properties from low-level ones. It is an abstrat mahine providing ertainoperations to the programming level above and requiring implementations foreah of these operations on all the arhitetures below. It is designed to sep-arate software-development onerns from e�etive parallel-exeution onernsand provide both abstration and stability.A similar idea introdued by Maggs in [129℄: A PCM de�nes an abstratexeution engine, powerful enough to produe a solution to relevant lasses of



18 CHAPTER 2. CONCEPTUAL APPROACHproblems, whih must reet the salient omputing harateristis of pratialparallel omputing platforms. The model is both, desriptive and presriptive.It desribes realisti platforms behavior, and at the same time it suggests hintsand diretions for new hardware development, as it models features desirable forinteresting programming and omputing tehniques.2.1.4 Detail levelsFrom the more abstrat spei�ations of a problem solution, to the real imple-mentation and program, there exist several detail levels that an be onsideredand inluded in a model. Most of them are learly related to the abstrationlevel where they typially an appear. We introdue here a lassi�ation of thesedetail levels from MColl, as presented in [35℄. From the maximum abstrationto the lowest level of detail, a PPM/PCM an inlude or model the followinglevels (we present some examples of models that inlude a given level):Spei�ation: Unambiguous desription of a omputational problem (e.g. Z,CSP, �-alulus).Programming: Notation for a preise, high-level desription of orret and ef-�ient solutions to a given omputational problem (e.g. HPF, Oam).Cost analysis: Basis for evaluation and omparison of eÆient methods for aprogrammed solution to a omputational problem (PRAM, BSP, LogP).Arhitetural (also alled mapping level): Framework for the desriptionof implementations of programs (e.g. monitors, semaphores, RPC, message-passing).Physial (also alled mahine level): Desription of a real mahine har-ateristis in whih to implement and solve a program (e.g. distributed-memory vs. shared-memory models, NOWs).A programmer typially walks through these levels top-down during the de-sign and implementation until the program an be exeuted in a real mahine.The term implementation is sometimes used for the whole proess of transform-ing a problem spei�ation in real ode for a given mahine. In our framework,it typially means the proess of transforming a program (spei�ed in a PPMnotation for the programming level) into a ready-to-run exeutable.2.1.5 Requirements of PPMsWhat harateristis should have a PPM/PCM to be a good andidate for generalall-purpose parallel programming? We disuss here a proposal from Skilliornand Talia [174℄. They propose six main requirements for a PPM/PCM:



2.1. PARALLEL MODELS AND DEFINITIONS 19Easy to program: A PPM should oneal details about deomposition of theomputation in threads, ommuniation and synhronization between them,and any mapping deisions to adapt the omputation to the underlyinghardware model.Software development tehnology: A �rm semanti foundation is needed tobridge from spei�ations to programs.Easy to understand: To eduate existing software developers.Arhiteture independent: Even with new evolving or future tehnologies.(In [129℄ we also read that a PPM should be somehow presriptive, andpoint into new interesting diretions for hardware development).Guaranteed performane: Although it is not needed to exploit it to the bestpossible in eah arhiteture, espeially at the expense of muh higher devel-opment and maintenane osts. \Implementations should aim to preservethe order of the apparent software omplexity and keep onstants small".Cost measures: They should over exeution time, proess utilization, devel-opment, et. They must be ompositional and onvex.These requirements an be divided in two broad ategories. The �rst three re-quirements are foused on the software development harateristis (more relatedwith the PPM), and the last three ones are foused on the good mapping hara-teristis (more related to the indued PCM). The ahievement of the requirementsdepends on the modeling deisions taken in the design of a PPM/PCM at thedi�erent detail levels (see setion 2.1.4). These deisions de�ne the power of themodel expressiveness and analyzability , being foundations of the feasibility of thesoftware development and good mapping requirements ategories respetively.Spei� restritions at the programming level, that somehow redue the num-ber of appliations that have a natural mapping from spei�ations to the stru-tures aepted at this level, may produe bene�ts for the lower levels. Speif-ially, advantages may appear on ost analysis tehniques and implementationtransformations to map appliations into the arhitetural level.The programming model, formally, provides a set of rules or relationships thatde�nes the meaning of a set of programming abstrations. Its objetive is to allowreasoning about program meaning and orretness [129℄. Thus, a model mustbe simple enough to allow analysis and stable software developing tehniques.At the same time it must provide meanings to express problems in a naturalway (obvious to any programmer), omplying to the original spei�ations of theproblem solution and obtaining eÆient implementations and good performanein real mahines. Suh mapping deision should be helped by a performane ostmodel, based on a suÆient detailed but abstrat enough mahine model. Cost



20 CHAPTER 2. CONCEPTUAL APPROACHmodels that allow to plug di�erent mahine models in a standardized desriptionlanguage or formalism are the best andidates. The programmer may tradeomplexity and auray in the proess to determine the best implementation ofan algorithm for a given mahine [70℄.Our study is mainly foused on the ross relationships between the program-ming, ost analysis and arhitetural (or implementation) detail levels and theirimpat on the expressive and analysis power of the model. We have identi�edthe synhronization strutures supported in the programming model as a basiomponent of a PPM design. We have found it responsible for an importanttrade-o� between expressiveness and analyzability, whih are foundations for thetwo PPM/PCM requirements ategories. This matter is disussed in the follow-ing setions.2.2 Synhronization arhitetureAppliations that exhibit the same synhronization strutures usually have prop-erties that an be exploited through the programming and implementation pipe-lines. PPMs an restrit or support spei� kinds of strutures in order to o�eradvantages in software engineering, programmability and portability (automatior interative performane analysis, veri�ation, et.) Identifying importantlasses of programming strutures with interesting properties beomes a hal-lenge for parallel software engineering.We propose the onept of synhronization arhiteture to lassify parallelsystems regarding its main synhronization struture properties. In this setionwe propose and desribe a lassi�ation of the di�erent main types of synhro-nization strutures.De�nition 2.2.1 A Synhronization arhiteture (SA) is the formal desriptionof the properties that de�ne the ommuniation strutures and synhronizationmehanisms either present in a spei� appliation or supported by a given PPM.2.2.1 Types of synhronization: CS, MEAlthough several names are used in the literature, we distinguish only two maintypes of synhronization (see e.g. [9, 122℄).Condition synhronization (CS): It is used when an operation or proessmust be delayed until a ertain ondition is satis�ed. It is typially asso-iated to data dependenes, ommuniation or other proesses ending. Itimplies an exeution order in the proesses or operations involved for theomputation to be orret. It is also alled stati, deterministi or eventsynhronization.



2.2. SYNCHRONIZATION ARCHITECTURE 21Mutual exlusion (ME): A ritial setion is a sequene of statements thatmust be exeuted as an atomi operation. When two or more ritial se-tions or proesses annot be exeuted at the same time (in parallel), wesay they are mutually exlusive. If two or more mutual exlusive proessestry to begin their exeutions, only one of them an proeed, but the orderin whih they are exeuted is not relevant for the omputation orretness.It is also alled dynami or non-deterministi synhronization.These types of synhronization are orthogonal in the sense that a PPM ansupport both or either of them independently. Nevertheless, they are only dif-ferent from the programming point of view. In the exeution model, the MEsynhronization is transformed in CS, reating an order of exeution for themutual exlusive ritial setions. This transformation is done by sheduling al-gorithms in the PCM implementation or diretly by the hardware (e.g. throughommuniations ontention). The di�erene is the freedom for the ritial se-tions to be sheduled in any order, that allows the underlying exeution layerto detet or apply a di�erent order for a partiular exeution of the ode. Thisorder is hosen to maximize the performane and must be determined by theomputation status, the exeution times of other tasks, and previous shedulingresults.2.2.2 Mutual exlusion, mapping and bounded resouresIn this setion we disuss the relation of ME nature with mapping tasks at lowlevels of detail. Thus, ME appears to be highly related to implementation detailsoriented to deal with restrited resoures. Proessors are typially a restrited re-soure. The disussion evolves to the relative importane of supporting boundedor unbounded number of logial proessing elements in a PPM, that is relatedto the parallelism granularity supported.A PPM must inlude CS mehanisms. Although some problems an be solvedwith only ME, there are many others whose solutions need an spei� order ofexeution in some operations for the omputation to be orret. On the otherhand, ME exlusion may be implemented by a programmer in terms of CS re-ating an unneessary order in the tasks involved. The programmer faes the riskof degrading performane if the order hosen is not the optimum for a spei�exeution of the program, but many times she/he has a good heuristi to deidewhat should be an aeptable order. Furthermore, many times ME is introduedby programmers to solve mapping problems in environments where the PCM orexeution model annot solve them diretly.The main purpose of ME is to let the programmer deal with restrited re-soures. These resoures an be of any nature, but they are intrinsially related tothe arhiteture, model, or design of real mahines (e.g. shared-memory aesses



22 CHAPTER 2. CONCEPTUAL APPROACHin shared-memory arhitetures that do not provide an impliit ontention meh-anism). At the more abstrat level of spei�ation ME sarely appears. Onlywhen the programmer (or ompiler designer) is faing mapping problems, on-sidering a restrited number of resoures (e.g. a restrited number of proessors),ME beomes really important. Expliit ME an be used by the programmer toannote the tasks whih an produe ontention problems, for its implementationin arhitetures that do need it, and for being used in a ost model during themapping.Consider the following example. A lassial parallel solution for load balan-ing in many irregular problems is the farm paradigm, also alled work-stealingstrategy (see e.g. [43, 189℄). In problems solved with this strategy, there arek work providers and n workers. The workers repeat a simple yle until theomputation is �nished: Get work from a work provider and do the work. Thework providers at as resoures that must be aessed through ontention by theworkers. See a graphi representation of the generated struture in Fig. 2.2. Forwork balaning reasons and simpliity, in most examples there is only one en-tralized work provider k = 1. In some appliations the work done an produemany other piees of work to do in the future whih are sent to a work providerwhen the exlusive aess for this operation is obtained.
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Figure 2.2: Workers-Farm sheduling strategyThis desription orresponds to a mapped and free sheduled solution for theproblem. The original problem only onsiders that many workers an do pieesof a job in parallel. The original problem solution only spei�es that manyworkers an get a piee of job and do it iteratively. If the number of proessorsis not bounded, then, m simultaneous workers an do one of the many m piees



2.2. SYNCHRONIZATION ARCHITECTURE 23of the job. If the work produes more m0 piees, then, m0 new workers in m0new proessors an start proessing these new m0 piees, as soon as they areavailable. Nevertheless, the number of proessors is typially a limited resoure.When mapping to n proessors one logial hoie is to start n workers, andlet them proess the piees of work iteratively. In a seond mapping phase, ifwe onsider k = n work providers, eah worker has an exlusive font of workpiees, and the omputation does not need mutual exlusion. However, for thekind of irregular and data-dependent problems that this strategy is oriented tosolve, a worker an produe many more piees of work than others. We want tobalane the load suh that no worker is idle while others have still many items toproess. Thus, workers that beome idle should ontat the work providers to getmore job piees. One or more entralized soures of work are needed, ating asresoures and needing mutually exlusive aess to avoid several workers reatingrae onditions when downloading or uploading job piees.This load balaning strategy is a mapping deision that works appropriatelywhen the omputation is highly irregular and the omputation time of a workerdoing a job piee ompensates the ommuniation and ontention delays. Thenumber of work providers an be seleted depending of many ost fators and loadpreditions. All these mapping issues are faed by a programmer implementinga farm diretly, when the original problem de�nition was muh simpler. In fat,the original solution struture is hidden or even lost in the mapped-sheduledode generated. We argue that this mapping deision must be postponed tothe mapping phase, done by the PCM implementation, guided by informationprovided by the programmer either, on the ode or interatively.An interesting question derived from the previous disussion is whether aPPM should fore the programmer to work with a �xed number of logial pro-essors or with an unbounded number of them. As is disussed in followingsetions about existing PPMs, working with an unbounded number of proessorsallows the programmer to exploit the maximum level of �ne-grain parallelism inthe problem. However, in most situations, this is not an eÆient solution in realimplementations. Fine grain parallelism an reate a huge amount of small taskswith too frequent ommuniation, reduing the parallel slakness1 and unbal-aning the ommuniation/omputation ratio, inrementing the ommuniationosts over the omputation. On the other hand, if the programmer must takein aount that he is working with a �xed number of proessors, sometimes heis lead to deal with this restrited resoure diretly, faing and solving the datapartition, sheduling and other mapping details. This ould ompromise porta-bility and the possibility of using powerful software development tehniques. Insetion 2.4 we disuss PCMs that try to fae this problem from di�erent pointsof view.1The granularity of the omputation partition among tasks [185℄.



24 CHAPTER 2. CONCEPTUAL APPROACHThe best solution is to �nd a good mapping tehnique that transforms �ne-grained parallelism expressed in an abstrat form by the programmer in oarse-grained parallelism in the best possible form, adapted to the number of proessorsand other mahine details. An aurate, minimum ost model that detets atleast the asymptoti performane alterations of a given data-layout, shedulingor other mapping transformations is a key for this kind of tehniques.From the above disussion, we suggest that an ideal PPM should abstratthe programmer from the number of proessors that he is going to use, lettinghim only to show hierarhially the di�erent levels of parallelism in the prob-lem solution (from the oarsest to the �nest). The PPM/PCM should inludean automati or interative proedure to map this kind of programs to the re-strited resoures of a given arhiteture using: (1) ME, (2) an asymptotiallyaurate ost model supplied with the target mahine model and parameters, (3)a proper sheduling tehnique to transform �ne-grained parallelism to the propergranularity, eliminating unneessary ommuniation and leading to the properparallel-slakness needed to obtain an eÆient program.We onlude that ME is not needed at the highest abstration level of spe-i�ation, but it is helpful to express some solutions to spei� problems and tohelp the PCM implementation to take deisions about where and how to dealwith ontention problems that are not solved by typial underlying arhitetures.2.2.3 Classi�ation riteria for SAsWe an lassify SAs aording to the di�erent properties (in expressiveness vs.analizability trade-o�) they indue in a PPM/PCM or appliation. We proposeriteria based on three orthogonal axis as shown in Fig. 2.3. The two �rst axisorrespond to the two orthogonal types of synhronization (CS and ME synhro-nization). They are orthogonal in the sense that a PPM an support both oreither of them independently. The third axis is based on a riterion that distin-guish data-dependent from non-data-dependent synhronization strutures. CSand ME are ombined by the programmer to reate the appropriate synhro-nization strutures for a given appliation. Some appliations will always reatea given synhronization struture or ombination. However, appliations thatare data-dependent may reate proesses and any type of synhronization (MEor CS) dynamially. Thus, it is possible that the exat synhronization stru-ture reated by an appliation will be not known until exeution time. Thisthird riterion beomes important to detet if synhronization strutures maybe analyzed and manipulated statially at ompile time or only dynamially atrun-time.The relevant lasses identi�ed in eah of the three axis are:1. CS synhronization subtypes:
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Figure 2.3: SA lassi�ation riteriaWe propose only two omplementary main ategories of CS strutures re-garding the properties of the PPM that derivate from its lass: (1) Hi-erarhial, SP, or Series-Parallel (also known as nested parallelism); (2)Non-hierarhial, NSP, or Non-Series-Parallel.2. ME synhronization subtypes:We onsider two lasses: (1) PPMs not supporting mutual exlusion (NME),or appliations whih do not need it; and (2) another omplementary lassfor PPMs supporting, or appliations whih use, ME.3. Data-dependeny subtypes:We distinguish between: (1) Non-Data-Dependent synhronization stru-tures (NDS), and (2) Data-dependent synhronization strutures (DS),reated by a PPM whih allows dynami thread reation [174℄ or data-dependent synhronization strutures (determining whih and when pro-esses ommuniate at run-time). Parallel algorithms may also be designedwith non-data dependent strutures or may use semantis that need data-dependent (dynami) synhronization.Thus, we propose eight SA lasses, where some of them an be empty atsome abstration or modeling levels if no useful parallel omputations (PPMs orappliations) present suh synhronization strutures. Eah lass will be namedby a triplet (a;b; ), where a will be the lass of CS, b will indiate if ME an beexploited and  if data-dependent synhronizations are possible. In the followingsetions we will fully desribe eah axis sublass, presenting examples of PPMsand programs for eah one.
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Figure 2.4: SA lassi�ationWe will onveniently represent the SA spae in two dimensions as in Fig. 2.4.In this graphi representation, the less restritive SA lasses are in the top rightorner, and the more restritive are in the bottom left orner. Fig. 2.5 shows theidea of inreasing restritiveness from one lass to another with small arrows, andthe intuitive idea of general inreasing restritiveness from the top right ornerto the bottom left orner with a big arrow.2.2.4 Condition synhronization: CS lassesPPMs that do not support ondition synhronization must base all solutions inME. They annot solve many onurreny problems that need fairness, shouldensure no-starvation or should avoid dead-lok onditions. We onsider this asea degenerated lass of PPMs not fully useful for general parallel omputation.Appliations based mainly in ME for problem solving typially inlude some formof CS at least to reate proesses or threads and to wait for them to end beforeanother stage begins, or the appliation �nally ends (see e.g. setion 2.5.5).We will present now the two lasses of CS strutures with an example of apossible parallel programming language and a possible program for eah lass.
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28 CHAPTER 2. CONCEPTUAL APPROACHthe ode. The synhronization strutures that an be reated are onstruted byreursive appliation of spawning parallel setions, and serial omposition. Theuse of global variables or data in tasks from di�erent threads of parallel setionsould ompromise the program orretness, as the model onsiders the tasks indi�erent subthreads ompletely non-dependent.(1) begin(2) do 1;(3) obegin(4) t1: do 2;(5) t2: do 3; do 4;(6) obegin(7) t1: do 5; do 6; do 7;(8) t2: do 8;(9) t3: do 9; do 10;(10) oend(11) do 11;(12) t3: do 12; do 13; do 14;(13) oend(14) do 15;(15) end
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Figure 2.6: Example of series-parallel ode and strutureSublasses of SP lassIn SP lass of SAs we an distinguish two sublasses assoiated with well-knownonepts related to the synhrony in PPMs, and widely used in the literature.Presented in order of dereasing synhronization restritiveness, they are:Lokstep: Eah omputation step is synhronized among all proessing ele-ments in the system. SIMD mahines in Flynn's lassi�ation [64℄ workswith these SA (see also PRAM model disussion in setion 2.4.1). Typi-ally, lokstep mehanism assume unit ost for the operations and no ostfor the synhronization mehanism.Bulk-synhronous: Eah proessor exeutes a series of loal omputationalsteps or tasks before all proessors synhronize together in a full barrier.Communiation or aesses to shared memory only our suh that theresults are only available in the next phase, after the full synhronization.(See BSP, QSM and some PRAM derivate models in setions 2.4.2, 2.4.3and 2.4.1 respetively). The reursive appliation of bulk-synhronizityreates SAs that are in the full SP lass.



2.2. SYNCHRONIZATION ARCHITECTURE 29The relation between these sublasses is presented in Fig. 2.7. SP andNSP lasses are omplementary. Lokstep is a more restrited lass than bulk-synhronization that is in turn a sublass of SP synhronizations.
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Figure 2.7: Classes of ondition synhronizationB. NSP (Non-Series-Parallel)This is the lass of the SAs whih allows stati strutures whose dependenesan NOT be represented by an SP partial order set or SP direted ayli graph.Any kind of dependenes ombination expressed with CS an be found in anappliation programmed in this kind of model.PPMs in this lass are also alled asynhronous. Non-series-parallel modelsare related to the onept of synhronization by point to point message-passingor mehanisms as signal, wait primitives. Consider a toy PPL where arbitrary(1) do (> 1 > a,b )(2) do (> 2 >  )(3) do (b > 3 > e,f )(4) do (a > 4 > d )(5) do (e > 5 > g )(6) do (,f > 6 > h,i,j )(7) do (d,g > 7 > k,l )(8) do (i > 8 > m,n,o )(9) do (j > 9 > p,q )(10) do (n,p > 10 > r,s )(11) do (o,q > 11 > t )(12) do (l,r,s > 12 > u )(13) do (s,t > 13 > v )(14) do (k,u > 14 > )(15) do (m,v > 15 > )
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30 CHAPTER 2. CONCEPTUAL APPROACHthe end of the omputation a olletion of postonditions an be issued. Thesyntax used will be the statement do (preonditions list > taskNumber > post-onditions list). Any task with no preondition will be exeuted (in parallel) atthe beginning of the omputation. In Fig. 2.8 we show an example of a programwhih generates a omplex non-SP graph. Any kind of synhronization strutureor generi graph an be generated with suh a language. (For this example toylanguage it is possible to reate omputations that never end, due to in�niteyles or onditions impossible to be satis�ed).2.2.5 Mutual exlusion: ME lassesWe distinguish two lasses in the ME axis: PPMs that do, and PPMs that do notprovide ME mehanisms. We inlude a disussion about the di�erent natures andME mehanisms in the desription of the related lass. Appliation de�nitionsalso may or may not use ME semantis. In setion 2.2.6 we disuss the problemsof simulating ME semantis with CS.A. NME (No mutual exlusion)Models and appliations in this lass do not support or need ME mehanisms.In previous setions we have shown examples of PPLs and programs whih donot use ME (see Fig. 2.6 and Fig. 2.8).B. ME (Mutual exlusion)In this setion we disuss the di�erent mehanisms that support ME. We willuse as example a simple problem where n threads need to aess a global vari-able (aessible in shared-memory or through ommuniation mehanisms arossthreads) to use it as a ounter. ME must be used to avoid rae onditions. Thetypial mehanisms are:1. Shared-Variable paradigm with mutual exlusion primitives:Some PPMs provide the programmer with mehanisms or primitives thathave impliit ME semantis. In this ase the programmer an diretlyspeify whih tasks annot be exeuted in parallel (simultaneously), with-out speifying any impliit order. Any one an be exeuted before theothers.The exat mehanisms an be of any nature: Atomi operations on vari-ables, atomi transations, ritial setions spei�ation, monitors, ... Themain advantage of diret ME primitives is that the ompiler an easily de-tet and reason about the e�ets of the unordered synhronization in theprogram performane. An approximation tehnique to the ost modelingof ME is given by Van Gemund in [70℄.



2.2. SYNCHRONIZATION ARCHITECTURE 31(1) a=0(2) !$OMP PARALLEL, shared(a)(3) myId = OMP GET THREAD NUM()(4) !$OMP CRITICAL(5) a=a+1(6) WRITE(*,*) "Thread ",myId," sores ",a(7) !$OMP END CRITICAL(8) WRITE(*,*) "Ending thread ",myId(9) !$OMP END PARALLEL(10) WRITE(*,*) "End of omputation"
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Figure 2.9: Example of ode and struture with ME primitivesConsider for example OpenMP [149℄. It provides a parallel setion pragmaOMP PARALLEL and another pragma alled OMP CRITICAL to speify apart of ode that is a ritial setion. Critial setions of ode are mutuallyexlusive for all the threads in the same parallel setion. The simpli�ed odein Fig. 2.9 shows an example using OpenMP in FORTRAN language. Inthe assoiated task graph we annot use normal oriented edges to representthis dependene, as it does not indue any order in the tasks. We useshaded nodes to represent this dynami dependene. The shaded nodeswill be exeuted sequentially but in no spei� order. The number in anode represents the number of the thread exeuting the task. The sreenresults of this ode exeution depend on the order in whih the threadsget aess to the ritial setion, but they will be onsistent as no raeondition in the a = a+ 1 statement an be produed.2. Message-Passing paradigm with programmed ME:Other models do not provide primitives with ME semantis, but they havea ontention mehanism that an be use to manually program mutual ex-lusion.Consider for example a SPMD parallel language whih begins a parallelsetion with a parallel() statement, a faility to get the own thread num-ber get id(), and has a message-passing interfae with send(p,i), rev(p,i)operations, where p is the number of proessor to send to or to reeivefrom, and i is an integer. Suppose we allow the reeive operation to get amessage from any proessor, the �rst that arrives at the in-port. For ourexample language, if p = �1, then the rev(p,i) operation will return in pthe number of the proessor from whih the next message omes. We areallowing a kind of ontention between arriving messages in the in-port ofthe reeiving proessor. We onsider a ase in whih if several messages aresent simultaneously the order of arriving annot be predited. In the ode



32 CHAPTER 2. CONCEPTUAL APPROACHin Fig. 2.10 we show an example of using this feature to produe mutualexlusion, using one thread as a (monitor like) dynami synhronizationserver. Again, the number in a node represents the number of the threadexeuting the assoiated task. The results will be similar to those of theprevious example for ME primitives.(1) parallel(n+1) f(2) myId = get id();(3) if (myId==0) f(4) a=0;(5) for (i=1; i<=n; i++) f(6) p=-1; /* From any */(7) rev(p,foo);(8) a=a+1;(9) send(p,a);(10) g(11) g(12) else f(13) send(0,foo);(14) rev(0,result);(15) printf("%d reads %d",myId,result);(16) g(17) g(18) printf("End of omputation");
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Figure 2.10: Example of ode and struture with programmed MEAlthough it is still possible to produe similar results as using ME primi-tives, the programs get more ompliated, the programmer must fae semi-sheduling issues, and the global e�et of the mutual exlusion is hidden tothe ompiler. Typially, in these programming models, the analysis of theontention must be done at a very low level, where the original semantisof the mutual exlusion are lost, ompliating the overall ost analysis withnew low-level parameters.2.2.6 Mutual exlusion vs. ondition synhronizationSome PPMs do not inlude any mehanism for mutual exlusion (NME). Whensuh a model needs to deal with a problem like the one proposed as examplein setion 2.2.5, the only possible solution is to use ondition synhronizationbetween the tasks that annot be exeuted in parallel, reating a spei� order,that may be not the optimum shedule.Consider a SPMD language extension of C, with an expliit parallel regiononstrut, with a faility to identify the number of the urrent thread get id() and



2.2. SYNCHRONIZATION ARCHITECTURE 33with semaphore-like operations: wait() that waits until  ondition is signaled,signal() that signals the ondition . Conditions will be identi�ed by an integernumber. Thus, the ode in Fig. 2.11 shows how to use ondition synhronizationto avoid rae onditions in the aess to the shared variable a.(1) a=0;(2) parallel(n) f(3) myId = get id();(4) if (myId==1) f /* thread 1 */(5) a=a+1;(6) printf("%d reads %d",myId,a);(7) signal(2);(8) g(9) else if (myId < n) f(10) wait(myId);(11) a=a+1;(12) printf("%d reads %d",myId,a);(13) signal(myId+1);(14) g(15) else f /* thread n */(16) wait(myId);(17) a=a+1;(18) printf("%d reads %d",myId,a);(19) g(20) g(21) printf("End of omputation");
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a=a+1; printf;
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a=a+1; printf;

a=a+1; printf;
signal;

wait;
a=a+1; printf;

get_id

printf;Figure 2.11: Example of none ME synhronization ode and strutureHowever, ondition synhronization reates an ordering over-spei�ation notreally oming from the original problem. In ases of not perfetly balaned situ-ations, where the ontending threads may arrive at the ritial setion in randomorder, this over-spei�ation ould delay threads prepared for exeution until theprevious threads in this false order arrives and �nish the ritial task. Fortu-nately, not many parallel problems present this kind of unbalaned behavior.2.2.7 Data-Dependeny: DS, NDS lassesThis lassi�ation axis is related to the reation, from the same program, ofpotentially di�erent synhronization strutures at run-time (data-dependent).We distinguish only two lasses.A. NDS(Non-Data-Dependent synhronization strutures)Many appliations reate the same synhronization struture independently ofthe input data (no thread reation or ommuniation target is deided as a fun-



34 CHAPTER 2. CONCEPTUAL APPROACHtion of the data values). Although not ommon, PPMs may support only thiskind of data-independent strutures. In this ase, synhronization mehanismsare provided with expliit information about whih proesses or threads ommu-niate at ompile-time. A PPM that is restrited to only non-data-dependentsynhronizations must have a predetermined number of named proesses run-ning. The name of the proess to whih a ommuniation or synhronization isissued must not be able to be determined at run-time.(1) initialize( M(1:1000,1:1000) )(2) numIterations=3(3) do i=1,numIterations(4) dopar(5) ellAutom(M(1:251,:), M(1:250,:))(6) ellAutom(M(250:501,:), M(251:500,:))(7) ellAutom(M(500:751,:), M(501:750,:))(8) ellAutom(M(750:1000,:), M(751:1000,:))(9) end-dopar(10) end-do(11) write(M)
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cellAutom
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cellAutomFigure 2.12: Example of stati synhronization ode and strutureLet us onsider an example PPL, where the parallelism an be only expressedby a dopar, end-dopar onstrution that ontains no ode, but a maximum ofp funtion alls with one input and one output parameter. Eah funtion isexeuted in an independent proess that reeives the input parameter from theroot proess and ommuniates the output parameter bak to the root proess.The semantis of the language do not allow onits by syntatially foring thatthe variables whih reeive the output parameters int the root proess must bein non-overlapping memory ells. The funtions inside a parallel onstrutionmust not ontain other parallel onstrution. In this model, the synhronizationstruture is ompletely non-data-dependent if the dopar onstrution may notbe inside a onditional statement. Hene, no run-time deisions may a�et theparallelism or ommuniation struture. An example of a stati ellular automatalike program in suh a PPL is shown in Fig. 2.12. The input parameter of eahfuntion inlude the frontier lines of the matrix, while the output parameters doreeive only the omputed part, with non-overlapping lines.B. DS(Data-Dependent synhronization strutures)Almost all PPMs allow an impliit or expliit form to reate data-dependent syn-hronization strutures. Typial ases of these synhronization mehanisms are



2.3. EXECUTION-LEVEL MODELS 35ommuniation/synhronization primitives inside onditional statements, om-muniation hannel names seleted at run-time by a omputed value, data-dependent asynhronous ommuniations, wildards for message reeiving primi-tives in message-passing, dynami reation of proesses inside onditional or loopstatements, et.(1) MPI INIT(err)(2) MPI COMM SIZE(MPI COMM WORLD, numP, err)(3) MPI COMM RANK(MPI COMM WORLD, myId, err)(4) IF (myId==0) THEN(5) read(*,*) s(6) END-IF(7) MPI BCAST(s,1,MPI INTEGER,0,MPI COMM WORLD,err)(8) DO i=1,s(9) neig = MOD(myId+i,numP)(10) CALL MPI SEND(myId,1,MPI INTEGER,neig,0,MPI COMM WORLD,err)(11) END-DO(12) DO i=1,s(13) neig = MOD(myId+numP-i,numP)(14) CALL MPI RECV(le,1,MPI INTEGER,neig,0,MPI COMM WORLD,status,err)(15) write(*,*) myId, "reeive: ", le(16) END-DO(17) MPI FINALIZE(err)
1 2 30

1 2 30

s=1

1 2 30

1 2 30

s=2

Figure 2.13: Example of dynami synhronization ode and strutureIn Fig. 2.13 we present an example of a FORTRAN-like MPI based ode thatprodue di�erent synhronization strutures depending on a run-time value. Thevalue is read from an input devie and determines the number of ommuniations,and the proesses to whih they are sent. Two examples of the generated graphare shown for values s = 1; s = 2 and exeutions with 4 proessors.2.3 Exeution-level modelsIn the following setions we will use the SA lassi�ation to show that bene-�ts and disadvantages found at di�erent modeling levels are strongly related tothe onepts used for our SA lassi�ation riteria. Our trip along the parallelprogramming abstrations begins in the lower level, where the unknown oeansof parallel program exeution are shaking the dangerous li�s of mahine mod-



36 CHAPTER 2. CONCEPTUAL APPROACHels. The roks �ght with the �ere waters, trying to resist in the middle of themoaning winds to form an established oast line. People working in parallelarhitetures try to rule this broken seaside, in onstant hange, applying allnew a�ordable tehnologies. In their e�orts, some mahine models have beenaknowledged and are being used as abstrations for development of higher levelprogramming tools.The mahine models we review in this setion are more or less establishedideas. Sometimes they are thought as equivalents of Von Neumann arhiteturefor parallel omputing, but many of the times they are onsidered little abstra-tions of urrent tehnology trends in the onurreny and high performane rae.Nevertheless, there exist a onvergene of parallel mahine models at hardwareand organization levels [51℄.2.3.1 SA lass of mahine modelsMost mahine models are designed to provide full apaity of ommuniation andsynhronization among proesses. Thus, they are mainly in the SA lass thatpresents no restrition (NSP,ME,DS). The two main trends of parallel arhite-tures have been shared memory-address spae and distributed memory-addressspae or message-passing models. We disuss also the data-ow mahine model,beause it is a di�erent and interesting graph-based approah to generi parallelomputing. There are other non-generi models that are not onsidered in ourstudy, e.g. systoli arrays (simple lok step appliation oriented iruits), vetormahines, and data-parallel mahines. Their arhitetures are spei�ally de-signed to obtain better performane for spei� types of omputations. Thus,their SAs are highly dependent on them. The following desriptions are mainlybased on [51℄.
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Figure 2.14: Shared address spae mahine models



2.3. EXECUTION-LEVEL MODELS 37Shared address spaeShared address spae systems have hardware support for global aess to anymemory ell from any proessor. The lateny of memory aess an be uniform(UMA) or non-uniform (NUMA) depending on the physial on�guration of thememory aross the mahine, the presene of ahes with a oherene system, andthe proessor to memory aess hardware (see a blok diagram of two typial on-�gurations in Fig. 2.14). But it is anyway transparent to the upper levels. Thiskind of mahines provide di�erent mehanisms to prevent rae onditions whenaessing memory ells onurrently. However, the programmer is responsiblefor using the synhronization and ontention mehanisms provided by the arhi-teture (operative system or hardware) to reate programs with �xed semantisand no stohasti behavior. ME is then programmed with expliit primitives thatimplement lok systems. CS is reated through similar primitives also hardwiredin the operative system (e.g. semaphores) or the hardware itself (e.g. CrayT3Eprovide even a hardware barrier mehanism, and ahe oherene hardware maybe exploited in NUMA mahines for the same purpose [102℄). As they arebased on some kind of ag set, ag test mehanism, the CS strutures reatedby proesses are not restrited.Message-PassingMessage-passing (distributed address spae) mahines are based on a modelwhere proessors only have aess to a loal memory, and ommuniate withother proessors to obtain remote data by exhanging messages. There existmany di�erent message ommuniation mehanism, all of them abstrated as aninteronneting network from the mahine model point of view (see a blok dia-gram of these mahine models with two example on�gurations of the abstratnode elements in Fig. 2.15). Messages are used to reate CS in a natural way(when the preondition is ativated, a message is sent to all the proesses wait-ing for it and the reeption of the message �res the ation). Messages are intransit through the ommuniation network for an unknown and typially un-preditable time (usually depends on network traÆ). Thus, the order of severalmessages sent from di�erent proessors at di�erent times annot be predited.The programmer may program ME using messages. The proesses that wantto exeute a mutual exlusive task (ritial region) must send a request messageto a resoure server proess and reeive a on�rmation message from it beforethey proeed. After the exeution of the ritial region, the proess send anending message to the server to indiate that it an send a on�rmation to otherrequesting proesses. Thus, in this model ME must be manually programmed.As presented in [51℄, there exist a onvergene in these two main trends ofparallel mahine models. Traditional message passing operations are supported
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Figure 2.15: Message-passing mahine modelsby shared-memory mahines using hidden shared bu�er storage with a properAPI. On the other hand, over a message-passing system it is possible to build amore abstrat layer where a global address spae hides the neessary messagesto exhange data. Thus, in upper abstration levels, even if di�erent PPMs seemto be more oriented to a spei� mahine model, all of them an be implementedin both types of arhitetures.Data-Flow mahinesThese mahines arhiteture are based on a hihgly abstrat exeution model.The programs are spei�ed as stati task graphs. A node is a basi operationto be exeuted when all preondition (input parameters) are available. Afterexeution, a node throws its post-onditions to suessor nodes. The proessorsare based on a mathing mehanism that identi�es ready to run graph nodes(those whih inputs are already omputed) and spawns new threads to exeutethem. The exeution graph has the same topology as the input graph, whihstruture is not restrited. Thus, any kind of NSP CS is possible, although itmust be stati. In a more dynami version, the nodes an be funtion invoa-tions with ontext information. Dynami synhronization strutures are possible.As information generated as node output may be used or modi�ed by di�erentsuessor nodes, lok mehanisms to reate ME are provided to aess memoryelements (by hardware) or entire data strutures (by operative system). Thus,ME is impliit in the low level data aess system.



2.3. EXECUTION-LEVEL MODELS 392.3.2 Conlusions about exeution modelsAll mahine models are in the less restrited SA lass (NSP,ME,DS); see Fig. 2.16.Parallel mahine developers try to satisfy all possible onsumer requirements.Hene, most mahine models proposed have the apaity to reate any kind ofCS struture. Moreover, ME is needed at low levels for shared resoure ontrol. Itis a basi feature for distributed and parallel operative systems. They should alsohave mehanisms to reate or destroy proesses and threads to attend new userjobs and system requests. These elements, that appear and disappear at hand,may ommuniate or synhronize among them. Although an spei� installationof the operative system may limit this apaity, the parallel mahine models arefully dynami and support data-dependent synhronization strutures.
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Figure 2.16: SA lassi�ation of mahine modelsIn generi environments, suh as NOWs or GRID omputing, it is ommonto have only software mehanisms to synhronize. Espeially in these environ-ments with mixed arhitetures and high latenies that ineÆiently inrease thesynhronization time with the number of proessors, strutured and hierarhi-al synhronization highly inreases performane. Hierarhially splitting theomputation in subsets of proessors improves loality, and maps well to big het-erogeneous or hierarhial lusters (see e.g. [119, 187℄). Thus, more restrited



40 CHAPTER 2. CONCEPTUAL APPROACHsynhronization arhitetures (spei�ally in SP lass) will be found in higherabstration levels, to improve software development on these generi exeutionmodels.2.4 Bridging models and ost modelsWalking up from the exeution level oasts, we will travel through the wide landsof ost evaluation and bridging models (PCM/PPM). We will �nd pleasant slantsof greenery where new proposals ourish, but most of the time we will ross vast�elds whih old well-known PCMs have ploughed long ago, and where the ropsso many of experiene are now hanging on their heads.We review several models frequently found in the literature. All of thempropose a PCM based on an abstrat parallel mahine, give a performane ostmodel (at least for asymptotial omplexity measures) and presribe a SA for thePPM. Some of them are more foused on the solution design point of view, butmost of them are introdued as bridging models, proposing a trade-o� betweenprogrammability and eÆient mapping for any mahine. We examine here themost popular ones, fousing on the features relevant to our study, to show howSA is highly related to the analyzability properties of a model. (For a moreomplete survey of parallel omputation models see e.g. [129, 35, 4℄).2.4.1 Class (SP,NME,NDS): PRAMIn this lass we �nd an important family of PCMs with a ommon origin. ThePRAM parallel omputing model [65℄ has been used for parallel omplexity mea-surement during more than two deades. In PRAM, a parallel omputer arhi-teture is highly abstrated, leading to a very simplisti model for easy program-ming. Although in many referenes (see e.g. [73, 156℄) it has been presentedand used as the equivalent of a data-parallel programming model, based on theSIMD (Single Instrution, Multiple Data-ow) mahine model of Flynn's lassi-�ation [64℄, the PRAM model has indeed more expresive power and it is a fullMIMD model.DesriptionA PRAM mahine [65℄ onsist of a ontrol unit that synhronously ativates theexeution of one mahine level instrution on an unbounded number of proessorsthat, apart from their private memory, work with an unbounded global memoryspae of uniform time aess (see Fig. 2.17). When the exeution begins thesame program is loaded in eah proessor (SPMD model). The proessor P0 isthe only proessor ativated when the omputation begins, but the instrutionset inludes a fork operation to ativate other proessors whih may evolve in



2.4. BRIDGING MODELS AND COST MODELS 41di�erent ways as they have their own program ounter, aumulator register andan unbounded number of private memory ells. Note the oneptual similaritywith the shared-memory mahine model blok diagram in Fig. 2.14.
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...Figure 2.17: PRAM omputing modelThe ost of a PRAM algorithm is the produt of the parallel time omplex-ity by the number of proessors used. Time omplexity is easily measured asthe proessors operate synhronously and global memory aesses have uniformlateny inluded in the proessors step.Derivates of the basi PRAM model exist to over the problem that appearswhen more than one proessor issues simultaneous aesses to a ell in the globalmemory (see e.g. [156℄). They a�et the programmer in the tehniques availablefor algorithm design, but the stronger the model (the more expressive power) thefurther from easy implementation of the model in a real mahine. The PRAMmodel an be onsidered:EREW (Exlusive read, exlusive write): Two proessors are not allowedto read or write at the same memory ell simultaneously.CREW (Conurrent read, exlusive write): Only simultaneous reads areallowed in the same ell, but only one proessor an write. This is thedefault PRAM model.CRCW (Conurrent read, onurrent write): Reads and writes to sameell are possible in the same step. A poliy for handling onurrent writesmust be spei�ed, leading to more sublassi�ations of the model (seee.g. [156℄).PRAM models an be simulated, sometimes eÆiently, in other variants ofPRAM or in other parallel omputing models (see e.g. [97, 128℄).Synhronization arhitetureThe basi PRAM model presents a extremely restrited SA. The CS is restritedto a synhronous advane step by step, or lokstep (a sublass of SP). All tasks



42 CHAPTER 2. CONCEPTUAL APPROACHin one step depend on all tasks of the previous step. Whether all proessorsexeute the same instrution or they exeute di�erent ones does not a�et thesynhronization struture. The most important simpli�ation for the ost modelis the assumption of similar lateny in memory aesses and omputation steps,fored by the synhronization ontrol.We onsider PRAM to be in the NDS SA sublass beause even if data-dependent appliations may be programmed, the synhronization struture istransformed to a stati lokstep struture. Although proessors may ativateother proessors at any moment, the PRAM algorithms are typially designedin two phases [156℄: In the �rst phase a suÆient number of proessors are ati-vated, and then, in the seond phase, all proessors ativated are used to exeutethe program with no new ativations. In this ase, the number of proessorsused for a given omputation is �xed. Let us analyze now the allowed synhro-nization patterns among them. The number or index of the proessor and thevalues of memory ells may be used in onditional statements. Thus, in priniple,the exat instrutions and memory loations aessed in one omputation phasean be ompletely data-dependent. From this point of view, the ommuniationstruture an be also data-dependent. However, from a more abstrat point ofview, the lokstep mehanism transforms any ommuniation struture in a fullall-to-all synhronization struture. On one hand, programmer do fae an statiprogramming model, as the synhronization struture is synhronized and mem-ory latenies or ommuniation problems are transparent. On the other hand,data-dependent appliations may be programmed, being the lokstep mehanismthe responsible to deal with the dynami behavior during implementation.The objetive of PRAM is to simplify the ost model assuming unit ost foromputation step and ommuniation. One an see PRAM as synhronized onlybeause of equal lateny on the operations. This simpli�es the algorithm design,but the implementation should keep the ommuniation struture expressed inthe algorithm, in the presene of real latenies and even with asynhronous exe-ution in eah proessor. In this ase, the implementation of a PRAM algorithman express regular but not fully-synhronized patterns between eah layer ofomputation (a SA in NSP and DS lass). As it is shown in the disussionbelow, these di�erenes between spei�ation (using a ost model in a highlyrestrited SA) and implementation (in unrestrited SA), is one of the reasonswhy PRAM fails to provide good mapping features.The basi PRAM model laks ME mehanisms, as they are not needed in alokstep SA. The only shared resoures are the memory ells. The EREW modeldo not allow writing algorithms that need ontention ontrol, while the CREWmodel assumes the possibility of simultaneous reading but no writing ontentionis allowed. In the CRCW model, a ontention poliy for onits prevents theneed of ME. However, if an arbitrary non-deterministi poliy is assumed, MEmay be expliitly programmed. One proessor may be used as resoure (ritial



2.4. BRIDGING MODELS AND COST MODELS 43region) server, using the non-ordered ontention in a memory ell to ommuniatethe requests. Thus, for non-deterministi ontention poliies, CRCW is in lass(SP,ME,DS).DisussionThe simpliity of the model allows immediate ost measures. The parallel timeomplexity is in the order of the number of instrutions exeuted (as any opera-tion is synhronized among all proessors), and no more parameters are onsid-ered. However, the simpliity of the model makes it to ignore important detailsof real parallel and distributed programming.First, global memory aess in uniform time is not portable. It is not easilysimulated in non-uniform memory aess (NUMA) mahine, and the model doesnot onsider the ost of full ommuniation in a distributed memory arhiteture.Thus, the model does not disourage the design of algorithms with a very �negrain of parallelism. Communiation patterns an produe bottleneks that om-pletely neglets performane improvement and salability. The time needed forontention solving in real onurrent aesses to memory ells is also disregarded.Seond, the number of proessors is unbounded. It is onsidered that a �xednumber of proessors an simulate a set of PRAM proessors, but the implemen-tation of the synhronization system, a load balane mehanism when PRAMproessors are dynamially swithed on and o�, and the ost of the simulationwith onurrent memory aesses are diÆult issues and an ompletely modifythe omplexity bounds of the original algorithm.The onlusion is that PRAM model is adequate for basi theoreti om-plexity measurement, or gross lassi�ation of algorithms. However, it is sounonerned about real mahine details that the mapping problem of PRAMalgorithms is far from diret, and many details must be still onsidered by theprogrammer to keep the original features of the algorithm for a spei� mahine.However, for its simpliity, and for assuming unit resoure osts, it enouragesthe algorithm designer to expose all possible parallelism in the problem (evenif this �ne-grained parallelism will have a non-eÆient or even a non-a�ordableost). Thus, it surely will survive as an interesting tool for theoretial purposes.PRAM extensionsMany extensions of the original PRAM model have been proposed to solve themodel shortomings. They typially try to takle one of the main importantfeatures not ontemplated in basi PRAM, although some of them try several atthe same time. Some are still too simplisti and they do not usually map well inreal arhitetures. Others lead to muh more ompliated or even non-pratialost models. In general they try to preserve simpliity, by assuming restrited



44 CHAPTER 2. CONCEPTUAL APPROACHSA. Evolution to real bridging models an be notied in some of them. Considerthese few examples (see [129, 35℄ for a detailed survey of more alternatives):Contention problems: An extended family of PRAM models known as theQRQW-PRAM [75℄ (Queue read, queue write PRAM) deals with the on-tention problem in memory aesses. This model is better suitable for arhi-tetures with pipelining ontention rules in ells, and suÆient proessors-to-memory bandwidth. EÆient implementations in other arhiteturesare not supported. This model support programmable ME using the on-tention queues, moving the SA to ME lass (still in lokstep sublass of SPCS).Asynhrony: It is another important issue in PRAM model extensions. Someexamples of partial asynhrony are in the Asynhronous PRAM [74℄ andthe APRAM [46℄ models. In these models di�erent proessors may exe-ute at di�erent time rates, skipping the lokstep mehanism. Neverthe-less, expliit synhronization is needed to keep onsisteny in write/readoperations. Thus, these models propose global or partial synhronizationmehanisms. Communiation through write/read operations between syn-hronization points is limited to eliminate dependenes (e.g. no read aftera write in the same global memory ell before a synhronization point).There exists several variants:APRAM: Synhronization ours in �xed rounds. SA moves to bulk-synhronous SP sublass.Phase Asynhronous PRAM: Full synhronization is expliitly usedby the programmer for onsisteny in read/write operations: Bulk-synhronous SA.Subset Asynhronous PRAM: The programmer an use full synhro-nization in hierarhial subsets of proessors. SA moves from lokstepand bulk synhronous sublasses. SP synhronization strutures areallowed. As the subsets of proessors may be reated dynamially bydata-dependenes, the synhronization strutures are hange to DSlass. The SA is in (SP,NME,DS).All these models still keep an a�ordable ost model due to the SP-restritedCS strutures.Another model alled Asynhronous QRQW-PRAM [77℄ ombines on-tention in ells and real asynhrony, where dependenes through aesses toglobal memory an appear in any form. Thus, SA moves to (NSP,ME,DS)lass. However, to avoid the problems of omplexity, reduibility and anal-ysis in the ost model, derived from unstrutured CS, it fores the program-mer to onstrut the program in a way that it assures orretness under



2.4. BRIDGING MODELS AND COST MODELS 45the worst ase assumption on the �nite delays inurred by the proessorsin queuing global memory aesses. The ost model uses an optimisti syn-hronous assumption. Thus, the omplexity introdued by the NSP SA,is moved not to the ost model (that works properly for bulk-synhronousstrutures), but to the programmer deisions. Many PRAM algorithmsmust be reonsidered and reprogrammed to get pro�t of this model, andto assure orretness if the simpli�ed ost model is to be used.Communiation lateny: Several variants onsider di�erent lateny valuesfor aessing loal or global memory. Some well-known examples are theLPRAM and BPRAM models.LPRAM model [3℄ distinguish only two lateny times: One for aessingloal memory (unit time) and one for aessing global memory ells (a newlateny parameter). It is suggested that LPRAM algorithms should restrittheir behavior to perform two di�erent kind of steps. Communiation steps(where the aesses to global memory has a high �xed ost), or omputationsteps (where proessors work in loal memory in unit time). Thus, the ostmodel inludes two types of steps with di�erent osts, but the SA does nothange and the analyzability is not a�eted.The Message-Passing Blok PRAM (BPRAM) [2℄ inludes a startup ostfor a message (or aess to a global memory blok) and a onstant ostfor any word in the message (pipelined read/write operations). Thus, itrewards the sent of long messages, and enourages the design of algorithmsthat exploit data loality to form ohesive bloks that an be moved fast.A proessor an send and reeive at most one message in a step. Thismodel does not greatly modify the SA. As long as di�erent blok aessesan have di�erent osts, the lokstep is inherently substituted by a bulk-synhronous ativity. The ost model of a step is a little more omplexdue to new parameters for more aurate preditions. But the overall ostmodel simpliity is similar beause of the still SP-restrited SA lass.We onlude that many extensions of PRAM model try to over featuresignored in original PRAM to jump over the implementation gap. Some try toimprove auray by adding new parameters and a little omplexity to the lowlevel details of the ost model, but keeping a restrited SA to make the overallsolution simple and easy to handle. Others move to unstrutured SAs, leading toost models that beome too ompliated. Some of them are so far from originalPRAM model that no algorithm developing tehniques and pratie have beenyet exerted. In general we notie how newly introdued features that seriouslymodify the SA lead to important hanges in the ost model or mapping propertiesof the model.



46 CHAPTER 2. CONCEPTUAL APPROACH2.4.2 Class (SP,ME,NDS): BSPThe Bulk Synhronous Parallelism model [185℄ was introdued as a more realistibridging model for a parallel mahine. BSP and variants have been studied formore than a deade and its introdution has produed a lot of expetation andinterest. However, its aeptane is not omplete due to its restrited parallelexpressive power. We fous on several key features of BSP and espeially in ex-tended BSP models that support nested parallelism, as they provided the nearestframework to a pure SP parallel programming model.DesriptionA simpli�ed model of a parallel omputer, alled the bulk-synhronous parallelomputer (BSPC) onsists of: (1) A �xed number p of proessors with loalmemory; (2) an interonneting network with limited bandwidth and simplebounded lateny parameters; (3) a �xed ost barrier synhronization system.The BSP omputer works in supersteps. In eah superstep every proessorworks independently with its loal memory and data. During the omputationphase every proessor sends or reeives at most h messages of little size (typ-ially one word) to other proessors (if h = p every proessor ommuniateswith all the others). This is alled an h-relation (see e.g. [173℄). Data reeivedfrom other proessors are not available until next superstep. After the om-putation/ommuniation phase, a full barrier synhronization is issued. Everyproessor begins the next superstep at the same time (the full synhronizationan be inherent to the ommuniation phase when h = p).Two main interpretations of how BSP superstep works and its ost modelexist (see Fig. 2.18). The main premise for the model is a onsisteny statementthat assures that data oming from other proessors during superstep s are notused for omputing before the beginning of superstep s+ 1. Thus, ommunia-tions ould be issued during the omputation phase at any moment, providedthat transfered data arrived during the urrent superstep are not used in thetarget proessor before the beginning of the next superstep.Interpretation 1: Completely horizontal model. The messages are delayed un-til the end of the omputation phase (all proessors end their omputationfor this superstep), and sent during a ommuniation phase. See for exam-ple [114, 173℄.Interpretation 2: Overlapping model. The messages are sent during the om-putation phase, overlapped with omputation. Examples of this interpre-tation an be found in [76, 133℄.The ost parameters of the model are:
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48 CHAPTER 2. CONCEPTUAL APPROACHAuthors using the horizontal interpretation typially onsider another param-eter l for the ost of the barrier synhronization, and they ompletely split ompu-tation and ommuniation osts. In this ase, wi represents the work/omputationtime of eah proessor during the superstep and hi the total number of messagessent by the proessor i. The ost model of a superstep is:T = maxi=1:::pwi + maxi=1:::p ghi + lOther authors using this interpretation onsider L to be the minimum ostof a superstep. Thus, L represents the time for synhronization and ativationof next superstep and it substitutes l in the formulae.However, in the seond interpretation, omputation and ommuniation over-lap. Typially L is onsidered a minimum lateny parameter that representsthe minimum time length of a superstep imposed by the hardware. Let beW = maxi=1:::pwi and H = maxi=1:::p hi. Thus, the superstep ost model is:T = max(W; gH) + lOr, in other versions: T = max(W; gH;L)The parameters L; l; g are empirially measured for a given arhiteture anda given number of proessors p. The ost model an be used to test how analgorithm maps to a range of values for the parameters ombination (the BSPspae). Thus, if the ost model shows to be aurate enough, the programmer aneasily predit whih algorithm is going to perform best for an spei� mahine.In [49℄ we read that being the L parameter (the duration of a superstep orperiodiity) alulated as a funtion of h it must be onsidered for the worstpossible h. In this ase, the ardinality of interproess ommuniation an bedi�erent in di�erent supersteps leading to performane losses in some steps. TheExtended BSP (E-BSP) model [113℄ inludes an extended ost model based onmore omplex and variable routing relations. It provides reliable measures forunbalaned ommuniation patterns in di�erent supersteps and models loality(network proximity) in ommuniations.ImplementationsImplementations of the BSP model in generi arhitetures have been developedsine 1993. Mainly the Oxford BSP library [138℄, the Green BSP library [92℄ andthe BSPlib library [101℄ whih inludes Diret Remote Memory Aess (DRAM)and Bulk Synhronous Message Passing (BSMP). BSPlib has almost beome astandard or at least a referene point for BSP implementation researh and pro-gramming. New implementations with nested parallelism approah are disussedbelow.



2.4. BRIDGING MODELS AND COST MODELS 49Synhronization arhitetureThe SA of the BSP model is highly restrited. The only ondition synhroniza-tion strutures allowed are sequenes of supersteps, and a superstep is a parallelomposition, always with the same degree of parallelism. Eah parallel threadis a series of tasks of any length. These strutures are in the bulk-synhronoussublass of SP CS lass. The restrition of using always p proessors in eah su-perstep is not important for the SA point of view. The lateny parameters L; l; gare typially dependent on p. The purpose of �xing p is to use �xed and knownvalues of parameters throughout all supersteps for ost formulae simpli�ation.At the same time it is a reasonable hoie to use as many proessors as possibleduring all the program exeution.Some kind of ontention is produed by the arbitrary arriving of messagessent to the same proessor. Thus, even if no ME primitive is onsidered in themodel, ME an be programmed and the SA is in the ME lass.For the same reasons disussed in the PRAM model in setion 2.4.1, theSA is stati and non-data-dependent, in the sense that the programmer do notfae the problems of dynami ommuniations among proessors. She/he seesonly one bulk synhronization and ommuniation step, independently of the in-ternal dynami struture reated in lower implementation levels. Programmingdata-dependent appliations is possible, but the bulk synhrony barrier systemis responsible for transforming the dynami struture into an stati one, mak-ing it transparent for the programmer. Thus, we onsider BSP to be in the(SP,ME,NDS) lass.DisussionThe thesis of Valiant [185℄ is that when the programmer uses enough parallelslakness2 the model behaves neutral with respet to the number of proessors,and the programs run eÆiently as long as the ommuniation is at least balanedwith the omputation. The value of L an be pre-alulated for any mahine andh value ombination, for any program to run with optimal eÆieny (in onstantfators) for this model.It is laimed by Valiant that the implementation of this model in any arhi-teture is possible loosing only little eÆieny (no logarithmi losses). Suessfulimplementations of BSP models and appliations on�rms it for many ases (seereferenes in [173, 100, 91℄). The model lets the programmer determine whihalgorithm is better suitable for any mahine simply heking the results of theost model for the given parameters measured for the mahine, and knowing theh-relation ardinality of the algorithm.2Programs are written for v virtual proessors to run on p physial proessors where v ismuh larger than p (e.g. v = p log p)



50 CHAPTER 2. CONCEPTUAL APPROACHNevertheless, objetions and ounter-objetions to this model are stated. Theauray of the ost model is not so high, although it is \very reliable in modelingthe overall behavior of an appliation, inluding the predition of breakpoints atwhih the performane hanges" [91℄. In the same paper it is also laimed thatthe auray ould be inreased by adding new parameters, but this will made themodel more omplex and the algorithmi trade-o�s less obvious. Nevertheless,as far as the SA does not hange, the main analyzability properties that leads toan a�ordable ost model will not hange. The hoie of modeling parameters ofthe underlying mahine is a trade-o� between auray and omplexity that anbe applied to the same ost modeling tehniques [70℄.BSP ost model ignores possible delays due to ontention problems derivatedby many proessors sending messages to a given proessor at the same time. Thesolution is to use spei� message ordering adapted to the omputation. Imple-mentations of BSP an do it internally, but most of the time the programmershould be aware of the problem and provide a solution hanging the order inwhih messages are sent in the algorithm [112℄. Thus, the programmer is fainga mapping problem derivated by the limited number of resoures (proessors andnetwork interfaes).At the same time full barrier synhronization is laimed to be an expensivemehanism that most mahines do not provide by hardware, and a mehanismwith no �xed ost, whih sales-up with the number of proessors. Hill andSkilliorn studied the pratial implementation of barrier mehanisms in [102℄.The performane of the di�erent mehanisms available in shared memory arhi-tetures is good enough, but diÆult to predit without very low-level detailedknowledge. For distributed memory arhitetures, whih rely on message-passingmodels, performane of barrier synhronization is preditable and reliable, butpoor in general. However, better synhronization systems are onstantly devel-oped and it is reasoned that synhrony is an important feature to improve analyz-ability and orretness proo�ng. The model suggests this diretion for hardwaredevelopers. Software alternatives to diret barrier synhronization exist:1. When h = p and every ommuniation is delayed until the end of thesuperstep, the ommuniations an be optimized and the barrier is impliitin the h = p information exhange [57℄.2. A speial system of zero-ost emulation of a barrier that an be used inspeial irumstanes was proposed in [62, 8℄. It is implemented in thePUB library with the name oblivious synhronization [25℄. When everyproess knows exatly the number of messages that other proesses aregoing to send to it during a superstep (the exat reeiving h-arity), when itreeives that number of messages it an proeed to the next superstep. Theonsisteny is maintained, as long as no proess uses data reeived duringa superstep until next loal superstep begins.



2.4. BRIDGING MODELS AND COST MODELS 513. A relaxed barrier synhronization emulation by a handshake protool onlybetween ommuniation proesses is proposed in [121℄. It uses the numberof the superstep (s) in the sending proess as ontrol information in themessage to keep the onsisteny statement (data are not used before thes + 1 superstep in the reeiving proess). The eÆieny of the system isimproved due to the relaxation of the synhronization phase.However, these systems only work under speial assumptions (e.g. knownnumber of reeiving messages), and the relaxation of the synhronization om-promises the simpliity of the ost model beause of a hange in the SA. It isdiÆult to deal with the lak of synhrony and still keep ost measures tight, es-peially in irregular or not highly-balaned problems. A new ost model shouldbe devised, but the lak of synhrony an lead to NSP SA and non-reduible ostmodels. An approximation to this problem has been presented in [81℄.Another pro�table feature is that BSP model is mainly used in the mostgeneral ase where h = p (assuming a full interproess ommuniation in eahsuperstep). For this ase, implementations may exploit the impliit and ex-pliit knowledge of the ommuniation global struture. Repaking, destinationsheduling and paing tehniques used in an implementation of the BSPlib im-prove performane to a fator of approximately four omparing with a generimessage-passing interfae (MPI) [57℄. This is a good example of how restritedand strutured synhronization arhitetures lead to performane improvementsin implementation.An interesting proposal for inreasing the expressive power of BSP and main-taining or even improving the performane, somehow related to the idea of sub-dividing the BSP mahine, is the Colletive Computing Model (CCM) [163℄. Inthis model the number of possible ommuniation patterns at the end of a normalsuperstep is limited to a hosen subset that inludes all typial olletive ommu-niation shemes. Aurate ost measures an be obtained for them, and spei�eÆient implementations are possible for suh a limited number of well-knowommuniation patterns. At the same time they propose a new speial kind ofsuperstep, the division superstep, that splits the proessors in groups, distributesdata among them, omputes spei� tasks in eah group, and redistributes theresults, always trying to bene�t from the redued number of eÆient ommuni-ation patterns. However, the division steps are rigid and annot be nested toextent the SA to an SP lass. The model keeps the great simpliity of the BSPost model even in the division steps as the SA is still bulk-synhronous. Thisdiretion is mainly foused to the integration of BSP with the eÆient and per-formane preditable olletive ommuniation operations, that are so ommonlyused in message passing environments (see setion 2.5.4).



52 CHAPTER 2. CONCEPTUAL APPROACHNested parallelism in BSPIt has been said that \global barrier synhronization is an inexible mehanismfor struturing parallel programs" [135℄. Trying to keep the good properties ofBSP model but getting more expressive power, some new versions of BSP inludesupport for the onept of nested parallelism (SP synhronization arhiteture)using the nested BSP omputers onept. The whole BSP abstrat mahine, withp proessors an be reursively subdivided in k BSP submahines, eah with kiproessors that work like a small BSP mahine, synhronizing their proessorsindependently of the other sub-mahines. When a subset of (perhaps also sub-divided) mahines end their work, they must wait to be synhronized together.Examples of the implementation of this idea an be found in the Paderborn Uni-versity BSP (PUB) library [25℄, NestStep [119℄ (that also inludes support forvirtual shared memory), H-BSP [39℄, and NBSP [80℄.The BSP model assumes that the omputer has a global synhronizationmehanism (a bulk property). It has been argued that synhronizing a subsetof exeuting proesses an be a omplex issue [173℄. However, the same re-port states that arhitetures in whih barrier synhronization is implemented insoftware an make to it without any problem. Moreover, many works orientedto �ne-grained parallelism indiate that nested parallelism an be implementedeÆiently (see e.g. [180, 131, 19℄).Nested BSP has basially an SP SA lass. Thus, the ost model of a nestedBSP an use the ompositional analysis properties of SP lass over the loal BSPost models. For example, a simple nested theoreti BSP ost alulus namedminiBSP was introdued in [172℄.If the subsets of proessors may be hosen dynamially by data-dependenes,the synhronization strutures are no more stati. Nested parallelism move theSA to real SP lass, where dynami onstrution of the nesting is possible. Thus,nested BSP is in (SP,ME,DS) lass. SP languages map without muh trouble inany implementation of a nested parallel BSP model.ConlusionThe BSP model proposes a highly restrited SA (bulk-synhronous) to obtaina very simple and easy-to-use ost model. At the same time, full synhroniza-tion helps in software development beause it makes muh easier to reason aboutorretness [91℄. For example the re�nement alulus an be used to hek or-retness in BSP program building [171℄. In the same report it is also said thatthis tehnique an be also used for nested BSP. Re�nement alulus works in areursive framework, being useful for all SP lass models.Although the programming disipline imposed by the bulk-synhronous arhi-teture is very user-friendly and easy to understand [91, 72℄, no software engineer-



2.4. BRIDGING MODELS AND COST MODELS 53ing tehniques that helps the programmer to atten more omplex SA shemesto only one-dimensional parallelism exist. Automati attening by the ompilerhas been only ahieved for SIMD parallelism [119℄, as e.g. in NESL [18℄. Sim-ulations of other models (as PRAM) are possible in BSP, but for real eÆienydiret BSP algorithm design is desirable. At the same time the programmer isfaed with data-partition problems, as the point-to-point message system foresto expliitly know where data are and where they must be moved to be used.Data-layout is then �xed in the �nal algorithm.It is an interesting question to determine whih range of appliations an beeÆiently programmed in a bulk-synhronous sheme [91℄. No measures of thepotential loss of parallelism inherent to the full barrier synhronization have beenpreviously shown. Measuring the distane from BSP programming to a moreexpressive or generi model is an important issue in this dissertation. Althoughwe fous in the more broad SP synhronization arhiteture lass, we show thatmost of our results are appliable to BSP programming.2.4.3 Class (SP,ME,NDS): QSMThe Queue Shared-Memory model is the evolution of the QRQW-PRAM model(see setion 2.4.1) to a bridging parallel omputation model based on lateny-ontention in a shared-memory environment. It tries to keep the simpliity ofuse of shared-memory with the same ost model features of BSP or LogP models(see setion 2.4.4). QSM detailed desription and rationale an be found in [76℄.DesriptionThe QSM mahine model has a �xed number p of proessors with loal memoryand onneted to a shared memory global spae. Every ell has a queue ofread/write operations that deals with the ontention of many proessors tryingto read/write the same ell.Proessors exeute synhronized phases. A phase is an arbitrary interleavingof three possible operations:Loal omputations: Eah proessor i performs i RAM operations in its loalmemory.Shared-memory reads: Eah proessor i reads ri shared-memory ells, opy-ing their ontents into the loal memory. Shared-read operations are notguaranteed to omplete until the end of the phase. Thus, values annot beused before the next phase begins.Shared-memory writes: Eah proessor i writes to wi shared memory ells.
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Figure 2.19: QSM omputing modelConurrent reads or writes in a given ell are possible during the same phase,but not both. The read/write restritions allow the emulation of a QSM mahinein a MIMD environment, pipelining the shared memory aesses to amortize thelateny of remote aesses. When multiple writes are issued, any one of them�nally sueeds.A phase �nalizes when the loal omputations �nish in every proessor andall the read/write operations pending in the R/W queues of shared-memory ells�nish.QSM proposes only two parameters to model the arhiteture features:p: The number of available proessors.g: The lateny parameter for read/write operations in shared-memory. It repre-sents the gap between loal instrution rate and ommuniation rate dueto limited bandwidth in the proessor interfae.The ost model of a phase represents ontention vs. omputation vs. om-muniation. Let the maximum ontention k represent the maximum number ofproessors reading or writing to a given shared-memory ell during the phase.Let mop = maxifig, and mrw = maxfri; rwg for the phase. The total ost ofthe phase is: T = maxfmop; gmrw; kgSynhronization arhitetureThe CS SA is bulk-synhronous. The model works in synhronized phases, noread/write are allowed in the same phase in the same shared-memory ell, andshared-read values are not obtained until the next phase begins. Thus, no on-dition dependenes an be produed exept from one phase to the next. The



2.4. BRIDGING MODELS AND COST MODELS 55dynami data-dependent strutures are redued to stati ones due to the bulk-synhrony (see disussion in setion 2.4.2). This model has no ME primitive,but it supports ME. Read/write operations invoated by the programmer anontent in the queues of the shared-memory ells, allowing programmed ME.DisussionThe model presents the faility of a shared memory spae, to be used with theusual read/write operations. However, the semantis of the read operations ismodi�ed (values an not be used before next phase), in a way that is equivalentto the onsisteny statement of BSP model.In fat there is a highly inherent oneptual equivalene between QSM andBSP model. The read/write aesses to the shared-memory have similar seman-tis to message passing, and they are done in two phases that an be pipelinedby the proessors. Eah phase is harged with a similar lateny parameter g.The h-relation is substituted by many onurrent writes, and many onurrentreads.The main di�erene with BSP is that in QSM the ontention in the arrivingmessages (read/write operations in this model), is aounted expliitly. Thus, theost model an predit ontention problems due to non-balaned ommuniationpatterns (bottleneks that appear when many read/write onurrent operationsare issued to the same shared-memory ell). An interesting remark is that themodel do not harge any ost for the synhronization mehanism. This an fa-vors programming with too small omputation phases and many synhronizationpoints. The ost model does not penalize this pratie.EÆient emulations of BSP are possible in QSM and vieversa [76℄. Therelationship of emulation possibilities between QSM, BSP and LogP models ispresented in [160℄. The main results indiate that these lateny based modelsare quite similar in omputational power and modeling solutions of real arhi-tetures. QSM has the advantage of a omfortable interfae based on simpleshared-memory operations, making the data-layout transparent for the program-mer.This model exploits the highly restrited bulk-synhronous stati SA to allowthe insertion in the ost model of a simple aount of the ontention sheme(that allows ME), assuming that the bulk-synhronization waits for ontentionproblems to be solved. Again, a restrited stati SA shows its analyzabilitybene�ts.2.4.4 Class (NSP,ME,DS): LogPAnother important model based on messages and network lateny modeling isLogP [49℄. It tries to overome PRAM and BSP models limitations by reating



56 CHAPTER 2. CONCEPTUAL APPROACHa more realisti and detailed model of real parallel omputers. In fat, its SA isin the most exible and expressive lass. Its suess is still ompromised by thehigher omplexity of use that it introdues.DesriptionIn this model the idealized omputer arhiteture is similar to the BSP onept ofindependent proessors with loal memory and a non topology-detailed networkrepresented by few parameters (see Fig. 2.20). This is a representation of a generidistributed-memory multiomputer where proessors ommuniate by point-to-point messages. Compare it with the blok diagrams of message-passing mahinemodels in Fig. 2.15.
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Interconnecting networkFigure 2.20: LogP omputing modelThe main new features are:Asynhrony: No synhronization devie is onsidered, as in BSP. In LogP, pro-essors work at their own path and do not synhronize exept by expliitmessage-passing instrutions inluded in the program.Limited bandwidth: In LogP does not exist the onept of h-relations in syn-hronized phases to limit the amount of traÆ. Proessors an ommuni-ate to their heart's ontent, limited only by the speed of their networkports (modeled with new parameters). Thus, the network apaity an beoverome, produing a stall state. The limited bandwidth of the networkmust be onsidered.The ost model inludes the following parameters:L: Lateny upper bound of the ommuniation of a small message (in the orderof a few words).o: The overhead or time during whih a proessor annot work when engagedin sending a message. It has been argued that new network interfae teh-nology has redued this overhead to almost negligible times. Thus, someauthors laim that this parameter may be e�etively disregarded.



2.4. BRIDGING MODELS AND COST MODELS 57g: The gap. Time interval between onseutive messages reeption or transmis-sion in a given proessor.P : The number of omputing elements (proessor, memory and network interfaemodules).The apaity of the network is limited by the parameters. No more than dL=gemessages an be in transit through the network at the same time. Proessorsthat try to transmit over the apaity of the network stall until the network isnot saturated. Messages that produe stall states an take more that L timeunits in being sent.The desription of the model inludes the following remark: \an algorithmmust produe orret results under all interleaving of messages onsistent withthe upper bound of L on lateny" [49℄. For the general ost model all messagesare assumed to inur in the worst ase lateny of L. Although some examples areprovided in the literature, no general proedures to derive ost model formulaeare proposed, as eah algorithm an present a omplete di�erent behavior thatmust be analyzed on its own.Synhronization arhitetureThe model assumes asynhrony in the proessors work, and point-to-point om-muniation without restritions. Any stati as well as dynami synhronizationstrutures are possible. The expressive power is big, being the SA in the NSPand DS lasses. ME an be expliitly programmed due to the unknown interleav-ing of messages during network transit. No order rule exist in message arriving,allowing non-deterministi ontention. Thus, the SA is in the (NSP,ME,DS)lass.DisussionDue to its NSP ondition synhronization, the LogP model does not o�er a sim-ple analyti ost alulus for performane predition. For a generi appliationthat an use unstrutured programming onstrutions, it is usually not possibleto redue the ost expressions to simple formulae only dependent in given ap-pliation and model parameters values. At the same time, the omplexity andasynhrony of unstrutured omputations prevents simple debugging tehniquesbased on global state heking.Sheduling, data partition and mapping deisions are ompletely faed by theprogrammer. Even more, the stall states in the network must be deteted andprevented by the programmer, as the ontention is not represented in the ostmodel (see details about LogGPS below).



58 CHAPTER 2. CONCEPTUAL APPROACHPerformane preditions are omputed in an unrestrited struture of ommu-niation produed by the implementation of the appliation, and results annotbe projeted bakwards through the implementation transformations path (isimpossible to automatially determine what e�ets are produed by eah trans-formation or implementation deision). The fast growing omplexity of testingany possible mapping or transformation make the testing of a wide range ofhoies impossible. Thus, the model gives little help for software development inthe generi ase.LogP has been proven to be useful for optimal design and performane pre-dition of low level appliations [116, 50℄. Some low-level implementations ofmessage-passing ould support the LogP model of omputation. However, itssimpliity of parameters and mahine modeling is not enough to predit theoptimized operations of a omplex message-passing interfae suh as PVM orMPI [5℄. Extensions to the LogP model inlude:LogGP: Support for long-messages ommuniation latenies [6℄.LogGPS: Variable overheads to simulate impliit synhronization of proes-sors before long-message transmission in message-passing interfaes [109℄.LogGPS is indeed a omplex arhiteture-oriented model, whih inludeshidden features of optimized messages-passing interfaes like MPI.LoGPC: Contention in network traÆ [139℄.The �rst two extensions model the underlying arhiteture with many low-leveldetails, obtaining improved auray for speialized ases. However, the SA isnot hanged, and the diÆulties of applying the model are still oming from theunstrutured NSP synhronizations.The LoGPC model presents the same problem as long as the SA is also nothanged. However, the ontention osts are onsidered and added to the ostmodel. Thus, it eliminates an important problem of the LogP ost model, whereappliations were not enourage to be designed with ommuniation patternsthat do not ause stall onditions due to ontention. Low level trade-o�s betweenontention, ommuniation and omputation an be modeled.ConlusionAlthough it is similar to BSP as a lateny oriented model, and substantially equiv-alent as a omputation model in asymptoti analysis [16℄, LogP presents worsesoftware development features (e.g. easy of programming, orretness hekingand debugging). In this model, the programmer does not only fae data-layoutbut many other mapping problems like expliit sheduling. Any set of mappingdeisions lead to a new algorithm that must be analyzed in detail with the ost



2.4. BRIDGING MODELS AND COST MODELS 59metris. The LogP model has an NSP SA that prevents easy and methodialgeneri algorithm design, driven by a ost model.Its extensions an better represent the behavior of the underlying arhite-ture, and predit it with better auray than the basi model. Thus, they aremore suitable for low-level analysis of optimized routing, sheduling and ommu-niation shemes and tools. Portable low level layers or last phases of parallelappliations implementation an be designed and studied with these extendedmodels.2.4.5 Conlusions about PCMs SAThe graphial lassi�ation of the disussed PCMs SA is shown in Fig. 2.21. Inthis setion we present some important onlusions about it.After this review of parallel omputing models the main onlusion is thatSA is a key omponent of a PCM for its expressive power and analyzabilityfeatures. Spei�ally, the CS axis beomes the most related to the omplexityof the assoiated ost model. SP and NSP lasses show important di�erenes.The analysis omplexity of the NSP strutures beomes too hard for anythingbut toy problems. Restriting the CS strutures seems neessary for ahievingthe PCMs/PPMs requirements proposed in setion 2.1.5. SP models appearto be good andidates for their simpliity of programming and analyzability.However, we must determine the expressive power of these models, whih types ofappliations may or may be not inherently SP, and hek if it exists a systematiform to map more unstrutured parallel omputations into SP forms. Morerestrited CS sublasses of SP, as lokstep or bulk synhrony, provide only betteranalyzability if important expressiveness restritions are assumed (as PRAM),where programmer �nds even more troubles to map NSP appliations.We have lassi�ed PCMs in NDS or DS struture from the point of view ofthe synhronization strutures reated at programming level. Highly restritedmodels (lokstep and bulk-synhronous CS) appear to be highly stati and data-independent. However, the implementation of the restrition mehanisms (lok-step or barrier) is the responsible of hiding the dynamis of the ommuniationinluded by the programmer, to keep the struture stati. In this sense, re-strited PCMs provide only stati synhronization strutures, but they anywayallow the programming of dynami or data-dependent appliations. It would bea risky restrition not to support data-dependent ommuniation strutures, asmany appliations need them (see setion 2.6). All PCMs, exept PRAM model,onsider a �xed number of proessors. Appliations that dynamially generatethreads may need extra programming to pre-shedule the threads into the �xednumber of proesses. This shows that PCMs are oriented to the mapping level,where ost models beome important. Models in full SP lass inlude a dynamislevel not whih does not appear in bulk-synhronous and lokstep SP sublasses.
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Figure 2.21: SA lassi�ation of PCMsThe origin is the possibility of data-dependent ontrol of the parallelism nesting.This dynami makes the stati ost analysis muh more diÆult and not alwayspossible. Programming tehniques that do not allow dynami ontrol of nestingin SP models, would be more desirable with respet to ost analysis.Only more restrited PRAM models do not allow ME, beause it is inherentlyavoided by the lokstep system and ontention solving poliies. However, thissituation restrits some of the expressive power in the model. Some appliationsthat need mutual exlusion (see setion 2.6) an not be diretly programmedin these restrited PRAM models. The PCMs studied that inlude ME meha-nisms have something in ommon: Instead of using primitives with impliit MEsemantis (as loks), the ME is programmable by queuing up memory aesses ormessages, assuming non-deterministi orderings. Some restritions to the queuelengths may diretly or indiretly help in ost modeling (for example limited



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 61bandwidth, limited number of messages among proessors, or limited number ofmessages in the same omputation step). The reason is that ontention queuesmodel real mahine e�ets produed in the lowest level.It seems that exists a onvergene in the restritions that PCMs assumeto provide an aurate ost analysis for generi appliations. Nowadays, bulk-synhrony is a typial feature whih allows the transformation of dynami andomplex synhronization strutures in stati and analyzable ones. ME is sup-ported by programmable ontention through (somehow limited) queue systemsof non-deterministi reeption. However, the ompletely unrestrited message-passing oriented models, as LogP, are popular beause they model the urrenttrends of high-performane programming, where omplex synhronization stru-tures are generated due to manual low-level optimizations.2.5 Parallel programming languages and modelsOur trip is taking us now to the mountain shoulders, where PPLs provide theprogrammer with higher abstration levels. In the shadowy depth of narrowvalleys, near the quik waters, we will �nd lassial approahes that lead diretlyto the PCMs low lands. Trekking up-hill through the more dangerous rokypaths, we will make to the more abstrat PPLs. In hidden glaier valleys newmodels with di�erent oneptual proposals feed the rainbowed waterfalls, whihimpressive view we enjoyed from the valleys.We review many popular and oneptually interesting parallel programminglanguages. They have been designed from the higher abstration levels, butthey also impliitly impose a PPM. Most of the time, languages that have beendeveloped with other design priniples in mind than to be good parallel om-putation models present di�erent approahes and solutions to the analyzabilityvs. expressiveness problem. We will study some of them in terms of their SAand other harateristis related to the deisions taken during the model de-sign. The expressiveness vs. analyzability trade-o� is onsidered in eah ase.A more detailed study of parallel programming languages and a omprehensivelassi�ation an be found e.g. in [174℄.2.5.1 Class (SP,NME,DS): Pure nested parallelismSome languages inlude only pure nested parallelism strutures of synhroniza-tion. A well-known example is Cilk [19, 42℄ (see other examples ommentedin [187℄). This language proposes a multi-threaded model, where spawning andjoining of threads is only possible hierarhially. The only possible synhroniza-tion between threads is through the spawning/joining proess. Thus, the possiblesynhronization strutures are always in SP lass and no ME exists in the model.However, spawning of new threads an be data-dependent, with no restrition



62 CHAPTER 2. CONCEPTUAL APPROACHfor the number of threads that are spawn at any time (the programmer doesnot onern about the number of real proessors). Thus, the SA is in lass(SP,NME,DS).The good point of Cilk is that it uses the analyzability advantages of theSP struture to implement a run-time work-stealing sheduling algorithm. Itahieves good performane even with highly dynami strutures. Many applia-tions with typial non-strutured solutions have been programmed in SP stru-tured Cilk, experimentally showing minimal loss of performane [42℄. The SPstruture an be further exploited with other simple sheduling poliies to beeÆiently adapted to wide-area and hierarhial networks [187℄.2.5.2 Class (SP,ME,NDS): Nested parallelism with METhe nested parallel SP programming languages that support ME inlude spei�primitives with ME semantis. We �nd in this lass an important programmingset of primitives oriented to shared-memory arhitetures (OpenMP), as well asmore abstrat proposals (as SPC). Both are oriented to stati and non-data-dependent synhronization strutures. Nevertheless, both examples may reateless restritive SA strutures when mehanisms not promoted but supported inthe models are used.OpenMPThe OpenMP [149℄ programming tool has beome a major trend for program-ming in shared-memory mahines (and possibly distributed-memory in the fu-ture, as several proposals for mixed message-passing and shared-memory supportare appearing [36℄). The main advantage of OpenMP is that it provides the pro-grammer with a portable and easy to understand interfae of pragma diretives toparallelize sequential ode (for reusability purposes), getting pro�t of the sharedmemory apabilities of the underlying implementation. OpenMP is the result ofa ommon e�ort of several vendors and orporations, thus, it is well supportedand is widely being used.Shared memory aesses should be ontrolled to avoid rae onditions. Thetypial way is to inlude a dynami non-deterministi aessing mehanism toreate ME. OpenMP provides two types of ME diretives to reate ritial se-tions: (1) For ode piees, or (2) for atomi aess to a given variable for asingle operation. At the same time it allows a parallel setion of ode to delaretheir own private variables for programming exibility (whih do not introduenew properties in the synhronization mehanisms). The main parallel ontroldiretives provide only nested parallelism for ode setions, or for loops in adata-parallelism fashion. However, urrent implementations may support onlyone level of parallelism, running sub-threads sequentially in the main thread



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 63that reates them. Thus, the main programming model is nested parallelism (SPlass), while most implementations relay on a more restrited BSP like model.Global redution operations3 and a barrier mehanism is also supported. Al-though not popular, designers of OpenMP inluded ompulsory support of anexternal library for lok-variable based synhronization. It has been added tolet the programmer to reate any kind of omplex CS strutures. Thus, the fullimplementation moves to NSP and DS lasses.Thus, the spirit of the OpenMP model is in the (SP,ME,NDS) lass, or eventhe (SP,ME,DS) lass if data-dependent ontrol of the (mostly unsupported)nested parallelism is allowed. But the use of the external lok variable mehanismallows all kind of unrestrited strutures: (NSP,ME,DS) lass.OpenMP does not propose a spei� ost model or software engineeringmethodology. However, while using only the nested parallelism (SP lass) on-dition synhronization sheme, the restritions inluded in the design allowsprogram ompilers to inlude interesting mapping and optimization features.However, the semantis of OpenMP nested diretives are omplex and poorlyde�ned [44℄.Beause OpenMP is designed to operate in shared-memory environments,proesses have diret aess to the full memory spae. Thus, in NUMA mahinesany variable usage may imply a bounded but unpreditable ost for the memoryaess or ommuniation. Shared memory aesses, not marked by a dynamisynhronization mehanism, ould produe inherent ommuniations and syn-hronizations that hange the apparent struture or produe non orret results.These perturbations an only be deteted by the ompiler using data-dependeneanalysis of the sequential ode and internal data deployment information.The OpenMP standard does not inlude data distribution diretives. Al-though interesting for the uni�ation with a distributed-memory environment [17℄,reent studies laim that for state-of-the-art NUMA shared memory omputers\reasonable balaned page plaement shemes inur modest performane losses,and the OpenMP runtime environment an use page migration for implementingimpliit data distribution and redistribution shemes without programmer inter-vention" [144℄. Thus, the programmer an work in a proper abstration level toahieve portability.SPC programming modelThe SPC (Series-Parallel & Contention) model [71℄ proposes a restrited SP syn-hronization arhiteture that allows improved analysis tehniques to be usedduring the implementation path. SPC is a nested parallelism model plus non-deterministi oordination expressed as mutual exlusion restritions. An an-3Redution an be fored to be non-synhronized. But in this ase, the values of the redutionvariable are unde�ned until an expliit synhronized diretive is issued.



64 CHAPTER 2. CONCEPTUAL APPROACHalyti ost estimation model is assoiated with SPC programs [71, 170℄. Theauray depends on the level of detail of the target mahine model used. SPCis designed to obtain bene�ts from expliit and strutured synhronization. Itis a programming paradigm with respet to the oordination of the programparallelism, based on a proess-algebrai spei�ation model. The model is pre-sented as a oordination language. Thus, its onstruts an be used to expressparallelism and oordination, using any sequential programming language foromputation.An SPC program onsist in a olletion of proesses equations, mutual ex-lusion delarations and omputation parts assoiated with proesses. Computa-tions are funtional units delared in any sequential language, thus their syntax isnot spei�ed in SPC. The set of proess equations onstitutes one parallel proessexpression through substitution. (By onvention, the expression tree is rooted bya speial proess alled main). Proesses an be omposed with serial (;) or paral-lel (jj) operators. For orret binding of ompound proess expressions, delimitersare allowed (f; g). Parallel omposition works with obegin/oend semantis [9℄,thus, it implies a full synhronization after tasks ompletion. No hidden ondi-tion synhronization is allowed. The programmer must avoid data-dependenesbetween di�erent proesses for program orretness.Conditional and iterative exeution of tasks are supported, although theyan introdue a kind of probabilisti (data-dependent) e�et that produes dy-nami synhronization strutures, a�eting the performane analysis (see disus-sion below). Resoures are omputation providers that introdue limitations onthe parallelism exploited. A resoure an be logial (e.g. a ritial setion, aserver) or physial (e.g. a proessor). In SPC, they are modeled with a globalname. The programmer spei�es whih resoures are needed to proeed witheah task. Mutual exlusion is assoiated with task to resoures assignment(task ! r1; r2; :::; rn). Tasks ontending for a resoure will be serialized in thesheduling phase.The SPC model restrits CS strutures to those whih the assoiated taskgraph is Series-Parallel [184℄. The non-deterministi ontention for global namedresoures has impliit ME semantis. Thus, the SA is in (SP,ME,NDS) lass. Ifonditional and iteration statements are allowed in the proess equations, thendynami strutures are possible: (SP,ME,DS) lass.The ost estimation in SPC is based on several performane modeling teh-niques [70℄: When the model allows only series-parallel stati synhronizationstrutures a simple analyti ost alulus an be introdued, based on ritialpath analysis of the generated graph. (See the equivalent alulus for nested BSPin [172℄). The mutual exlusion e�et in performane an be only approximated.Algorithmi tehniques that keep lower/upper bounds are provided in the ostmodel [70℄. Although syntatially not yet provided, the use of resoures withseveral units is allowed in the assoiated ost modeling language Pamela [69℄. In



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 65the ase of iterative or onditional onstruts that are data dependent, with nopossible probability derivation, only lassial simulation tehniques are availableto get performane approximations. However, the stati and dynami part of theappliation performane model an be substituted by the analyti and approx-imation expressions obtained by the previous tehniques, highly improving thesimulation performane.Using only expliit strutured synhronization (SP + ME), interesting analy-sis tehniques are possible to help deisions during the implementation trajetory.Full ost-driven mapping to any arhiteture is possible exept for irregular data-dependent appliations with no load-balaning or salability properties.2.5.3 Class(NSP,NME,NDS): Mapping oriented modelsIn this setion we disuss features of models oriented to express synhronizationstrutures generated by typial appliations (like neighbor synhronization, statiaess patterns and spei� data mappings). We study two important examples:HPF as example of the long-ago introdued data-parallelism programming model,and some new proposals evolved from the skeletons world.HPF and data-parallelismLanguages based on the data-parallelism paradigm are originated on the SIMD(Single instrution, multiple data) model. In this model, the operands of a givenparallel instrution are a set of data piees with the same type, and all proessorsexeute the same operation on a di�erent subset of them.In the 1980s there was a signi�ant researh in parallelizing ompilers. How-ever, sequential languages obsure or eliminate the parallelism inherent to anappliation with sequential onstruts as loops or reursion, that are diÆult toanalyze for parallelism detetion. Writing a parallel program in a sequential lan-guage is not a natural approah. In the early 1990s, there appeared extensions ofsequential languages that ould express the parallelism assoiated with exeutingthe same operations on di�erent piees of a data struture partition (e.g. ViennaFortran [40℄, Fortran D [104℄). Compilers and environments for data-parallelismwere widely studied [1℄. The most famous language derived from these e�ortswas HPF (High Performane Fortran) [27, 108℄.Data-parallel languages typially inlude parallel onstruts suh as parallelarray operations, forall and where statements, and intrinsi funtions.ME typially annot be exploited in these languages. The data-parallel modelallows the programmer to reate repetitive stati CS strutures. The tasks as-soiated with the data operations are synhronized with next tasks through a�xed pattern, as the model simply repliates the same operation, with the samedependenes, in eah piee of data. Thus, the generated synhronization stru-



66 CHAPTER 2. CONCEPTUAL APPROACHture presents a repeated synhronization pattern between eah onseutive pairof task layers. In some situations this property an alleviate the analysis problemderived from the NSP struture, but typially any new pattern must be studiedand analyzed.Compilers take advantage of this struture regularity to optimize the odes.Stati mapping and sheduling is typially easy. One problem with the model isthat the exat synhronization pattern must be extrated analyzing the ode in-side parallel onstruts. Many times the programmer must help the ompiler withdata-distribution or alignment information. The tehnique is sensible to hangeswith the target mahine arhiteture and ommuniation system. The seondproblem is the restritions of the model. Only data-parallelism (�ne-grain paral-lelism) an be eÆiently expressed. Many appliations (oarse-grain, less regular,dynami, fault prone ...) present task-parallelism that annot be eÆiently ex-pressed in this model [32, 33℄. Many e�orts to ombine data-parallelism with orwithin more generi task-parallelism languages exist [66, 94, 41, 15, 11, 150℄.Nevertheless, data-parallelism is an interesting and produtive model [30,145, 110℄. Many omputing intensive appliations or parts of bigger appliations(mainly lattie and matrix omputations) an be eÆiently exploited by data-parallelism methods.From skeletons to strutured languagesAlgorithmi templates or skeletons try to identify and exploit the struture ofa family of algorithms. Parallel strutures that have ommon properties an beused as a skeleton or a programming paradigm. The programmer must identifythe skeleton that �ts with her/his appliation, and �ll in the exat omputationdetails. Spei� ompiler transformations and tehniques an then be fully ex-ploited. Skeletons are usually implemented in high-order funtional languages,where a skeleton funtion that enapsulates the parallel behavior an reeive asparameters other funtions that are internally used as the omputation part ofthe generated tasks.Several libraries or sets of program skeletons have been proposed and stud-ied [43, 53, 26℄. Identifying parallel strutures present in appliations are a key foronstruting suh sets [31, 152℄. More information about skeletons an be foundin [45℄. A further re�nement of the skeletons idea, known as arhetypes [132℄,ombines broadly-de�ned omputational patterns with data-ow onsiderationsfor systemati development of parallel programs.Skeletons are �xed-struture templates. Thus, the ME and CS struturesallowed are the ones de�ned in eah set or library. Eah skeleton enapsulatesthe abstrat desription of a very onise synhronization struture. Many par-allel skeletons proposed are stati well-known synhronization strutures, suh aspipeline or neighbor synhronization. They are spei� examples of high regular



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 67NSP strutures that have been individually studied and analyzed. There areskeletons that support ME. It is at least typially supported in a given skeletonalled farm (see setion 2.2.2 for the lose relation between ME and the farmparadigm). This spei� skeleton is in SP and ME SA lasses. Data-dependentand data-independent versions are possible.What skeleton libraries propose is a set of given synhronization arhitetureshemes for whih interesting appliations an be derived, and for whih eÆientspei� mapping, sheduling and optimizing methods are well-known. In thissense, the skeletons model is the most restritive one, sine only a given set of�xed strutures an be programmed. However, many parallel appliations �ts inthese skeleton strutures. The skeletons key is that they apture the ommonparallel struture of many appliations, and an produe eÆient and reusableomponents (see e.g. [54℄).Strutured languagesA further step in parallel struture analysis leads to the strutured languagesapproah. In these languages several parallel onstruts, based on typial stru-tures found in appliations, an be omposed to form a more omplex appliationstruture (see e.g. P3L [152℄). The key of the appliability of this languages is aost model whih is able to ompose the preditions based on the basi strutures.At the same time, omposition of basi strutures leads to software developmentbased on well-de�ned deomposition tehniques of the problem.There are still appliations that do not properly �t in the basi struturesproposed. They must be modi�ed and mapped by the programmer. The ostalulus is also not so simple and the di�erent tehniques of omposition inreasethe omplexity of the analysis.Skeletons in the nested parallelism frameworkA new approah to skeletons idea is introdued in the Frame language [44℄. Inthis language a nested parallelism skeleton is implemented as a set of primitivesthat an be omposed generating high-level SP strutures. This sheme provideslear semantis and a familiar syntati framework for programming (SP advan-tages). In a further step, the programmer has the option of using inside the highlevel nested parallel struture other low level unstrutured omputations. Thisan be done with other skeletal elementary units, or by allowing the programmerto aess the underlying ommuniation or parallel software layer in a ontrolledform. Thus, the programmer has aess to the advantages of both, SP program-ming semantis and speialized and optimized non-SP parallelism. We see thisoption as a promising researh diretion. Currently, Frame does not support MEin the high level struture.



68 CHAPTER 2. CONCEPTUAL APPROACH2.5.4 Class (NSP,ME,DS): Message passingThe message passing model is based on ommuniation models [107, 34, 188℄.Standard interfaes and implementations of this model like MPI [48, 140℄ orPVM [178, 155℄ are widespread used, and it is nowadays one of the most ommonmodels for general parallel programming environments.Its suess is derived from the generi approah it uses, giving only the meh-anisms to ommuniate and expliitly synhronize isolated proesses throughabstrat hannels. Thus, it allows the programmer to reate and exploit anykind of parallelism that �ts a problem solution. At the same time it is a low-levelmodel, for whih eÆient and highly optimized implementations in real hard-ware are possible. In fat it is highly related to the implementation level and themessage-passing mahine model (see setion 2.3.1).In the message-passing model a proess is an independent ative element. Itexeutes a sequential ode and it uses a loal memory spae. Proesses an bereated and destroyed dynamially, either by other proesses or externally bythe system (typially in the ontext of distributed omputing). Abstrat namedhannels an be established between proesses for ommuniation. The sequentialode an send data through a named hannel, or try to reeive data through anamed hannel. Sent data is kept in the hannel until the target proess is in astate in whih it tries to read it. Synhronization is produed when a blokingreeive operation waits for the arrival of a message. Proesses an san severalhannels at the same time for data, reating in di�erent ways depending on whihhannel data is reeived �rst.This kind of point-to-point ommuniation is enough to express any omputa-tion and ommuniation sheme. Nevertheless, extended primitives for olletiveommuniations (redution, broadast, san, barrier synhronization ...) are in-luded in interfaes and implementations. For these olletive operations, usingrestrited proesses groups is typially possible, in order to reate virtual om-muniation topologies. To hide many ommuniations in one primitive is a morehigh level abstration. Thus, it simpli�es programming and allows better opti-mized implementations of the olletive operations. Furthermore, programmingwith olletive operations an lead to even more high-level transformations forperformane improvement and software development tehniques [90, 88℄.The model allows any ondition synhronization sheme. Thus, it is in theNSP lass. There are no ME primitives, but non-deterministi ontention exist,beause a proess an be waiting for data from di�erent soures at the same time,reating in di�erent ways depending on the order in whih messages are arriving.This feature an be exploited to produe programmed ME. The sending andreeiving of messages an be data-dependent. Thus, dynami synhronizationstrutures are allowed. In many interfaes even the number of ative proessesmay hange. Thus, the SA is in (NSP,ME,DS) lass.



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 69The ounterpart of the model advantages is that being a so low-level model,the programmer faes problems about parallelization grain, data-partition, mapand sheduling of any new appliation onsidered. As the stati or dynami stru-tures allowed are ompletely unrestrited, no speial heuristis or tehniques anbe exploited by the ompiler or run-time environment for a generi appliation.The ompiler an not math the send and reeive primitives for syntati orsemanti validation or reasoning.The theoretial models on whih message-passing is based, provide a alulusto derive possible or forbidden states of the system. Nevertheless, the fast growingomplexity of the searh spae makes suh tests intratable for anything but toyproblems. Extensions of LogP also try to model the internal features of message-passing interfaes (see setion 2.4.4), but they o�er no help in software design.They an predit the ommuniation behavior of a given ommuniation pattern,but do not provide a systemati proedure to analyze a full subset of the possiblesolutions or design searh spae, due to the NSP SA.However, the message-passing interfaes hide the ommuniation details, andan be used as an eÆient abstrat ommuniation layer when aurate measuresof given ommuniation patterns are a�ordable. More high-level programmingtehniques an be applied or integrated in an environment that, underneath, usesmessage-passing for ommuniation [87, 182, 191℄.Other authors omplain about the non-deterministi behavior of message-passing interfaes. It leads to non-reproduible and more diÆult to debug de-velopments, that is antithetial to sienti� methods. An interesting approahto eliminate the non-determinism in a message passing model is FortranM [67℄.It is based on extensions to sequential languages (in this ase, Fortran) withsemanti and syntati restritions in the reation and manipulation of ommu-niation hannels. Nevertheless, FortranM provides non-deterministi onstrutsfor appliations where it is needed. Thus, the programmer an restrit the useof non-determinism and she/he has more ontrol on the type of SA used (NMEor ME). Its modular or objet-oriented approah make it easy to ouple withdata-parallel modules (see setion 2.5.3).2.5.5 Class (NSP,ME,DS): Maximum abstrationIn this setion we disuss two more abstrat example models that �t in the SAlass with maximum expressive power: Conurrent objet-oriented programmingand tuple spaes. They present a PPL/PPM with powerful semantis. ManyPPL solutions inlude both of them. The ounterpart is the problems of ostanalysis and eÆient implementation.



70 CHAPTER 2. CONCEPTUAL APPROACHConurrent objet-oriented programmingIn a pure onurrent objet-oriented model, a omputation is a olletion ofproesses that aess and use shared objets with a ontention mehanism toavoid rae onditions. Thus, it an be viewed as a model without CS that reliesonly in the ontention mehanism to ontrol the parallelism. The ontention isontrolled by monitors assoiated with objets. A monitor also implements amehanism to wait for or notify the suess of a guarded ondition [106℄. Thus,ondition synhronization is a�ordable if a omplete monitor implementation isprovided in the language.For example, the JAVA synhronization model is based on inherent monitorsassoiated with the objets. Not only methods, but also ode piees an be mademutually exlusive using the monitor assoiated to a given objet. The primitiveswait, notify, and notifyAll, assoiated with the Thread objet, an be used insidesynhronized methods, along with spei� ondition �elds, to reate and ontrolondition synhronization.The underlying model for onurrent objet-oriented programming is also amessage-passing model when non-shared-memory arhitetures are used. Remotemethod invoations reate ommuniation hannels for the data interfae whenaessing objets information aross proesses. Three main di�erenes (advan-tages) an be observed with respet to pure message-passing:� The remote method invoation is done aross a shared name spae of ob-jets.� ME an be diretly used as it is impliit in method invoations ontrolledby monitors.� Data are assoiated with objets and methods. Although data partitioningdeisions are still faed by the programmer, they an be helped by thisarrangement.From the previous disussion it follows that a basi onurrent objet-orientedmodel has no CS and uses only ME to ontrol parallelism. The impliit on-tention mehanisms (alls to monitor proteted methods) have ME semantis.The SA is always in lass ME. However, monitors allow the reation of ondi-tion synhronization and ertain implementations make use of remote methodinvoation to reate other CS mehanisms. Both lead to NSP strutures. Con-dition synhronization struture is unrestrited and dynami. New objets arereated and unpreditably used during exeution of the system. Compilers andrun-time systems do not get muh help to deide where to loate objets, or howto shedule proesses to proessors from the unknown and non-SP struture. Themain synhronization ontrol in this model relies on monitors and mutual exlu-sion, then, in an impliit dynami synhronization system. However, analyzing



2.5. PARALLEL PROGRAMMING LANGUAGES AND MODELS 71dynami mutual exlusion is not as easy or aurate as ondition synhroniza-tion analysis [70℄. SA in NSP lass inhibits analyzability also in the dynamisynhronization spae.The monitor system and the global name/address spae makes this model amiddle point between pure message-passing and the more omplete global tuplespae model desribed below.Coordination languages a la Linda. Global tuple spaes.The tuple-spaes are a oordination and ommuniation system, independent ofthe omputation language [37, 38, 68, 148℄. Tuple-spaes provide a PPM witha high-level abstrat virtual mahine, separated from the omputational issues.The PCM is onsidered to provide a global shared spae of data piees alledtuples. A tuple is a named olletion of data �elds of any nature. Proesses workasynhronously and exhange data by writing, reading, inserting and extratingtuples in the tuple spae. The language also provides primitives for heking thepresene of tuples and information in the global spae.The ondition synhronization is done through heking, writing, and readingtuples. There is no restrition about whih proesses synhronize and when theydo it. Multiple proesses an hek the same tuple at the same time. Thus,the language is rih in expressive power and full of possibilities for onditionsynhronization strutures. The ounterpart is that it leads to NSP SA lass.Operations of heking and reading/writing/modifying tuples an be atomi.Thus, the languages provide primitives with ME semantis. The SA is in theME lass. There are no restritions to the use of the synhronization mehanismor even to the manipulation of threads. The system is fully dynami and data-dependent (thus, the model is in the lass DS).Due to the NSP ondition synhronization sheme, the ost model presentsthe problems assoiated to any NSP model. EÆient implementations on realarhitetures are not so simple, as the ommuniation problems that arise tomaintain the shared tuples are omplex. However, the tuple syntatis are lean,and the ompiler an do some semanti heking and veri�ation. They providea good abstration for a maximum expressive power PPL/PPM.2.5.6 Conlusions about PPLs/PPMs SAIn Fig. 2.22 we show the loation in the SA spae of the more relevant modelsreviewed in this setion. The arrows represent a possible hange in the SA lasswhen some extensions are added to the basi model. The main onlusionsobtained previously for PCMs and bridging models (reall setion 2.4.5), areon�rmed and extended in this more abstrat level. SA is an important featureof the PPLs/PPMs for its expressiveness and analyzability features.
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2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 73or skeleton based models, that are all in the (NSP,NME,NDS) lass. On theother hand, full NSP models are oriented to maximum expressive power, likeonurrent objet-oriented programming, tuple spaes or message-passing, all in(NSP,ME,DS) lass. In these models, the programmer gets little help to under-stand or predit the system behavior. Mapping and optimization deisions mustbe taken manually and must be based mainly on the programmer's experiene.At the opposite side of the CS axis, we �nd SP models. In this ase, there isnot suh an extreme diversi�ation. In fat, the most popular SP based models,either do not support ME (pure nested parallel languages suh as Cilk), or areoriented to stati synhronization strutures (as OpenMP or SPC). The reasonis that restriting the SA to the SP lass is always introdued in a model toinrease the analyzability harateristis of the model. In the ase of Cilk, thedynami sheduling algorithm works with the CS information available. Thus,no ME mehanism exists but data-dependent synhronization is available. In thease of OpenMP or SPC, ME mehanisms are onsidered, but no data-dependentstrutures are promoted to still get mapping bene�ts derived from the stati SPstruture. However, is important to notie that both SPC and OpenMP allowalso dynami onstrutions to let the programmer implement any kind of ap-pliation. In the ase of using data-dependent strutures, the programmer isresponsible for expliitly programming some kind of sheduling and mappingtasks. Therefore, the bene�ts of using SP strutures regarding automati map-ping are prevented. OpenMP goes even further, allowing the programmer toreate NSP strutures with the lok-managing external library. For a modernand ommerial oriented language it would be a real shortoming if the so manyunstrutured-mind oriented programmers ould not implement their ideas with-out restritions. Manual mapping and optimization is still urrent pratie inparallel programming.2.6 Synhronization arhiteture of appliationsFinally, we are to limb the highest peaks of abstration, where appliations liesurrounded by the louds of parallel algorithmis. For this upper perspetive,we will ontemplate all the lands we have previously traveled along. PPLs andPPMs are interfaes to express the parallelism of an appliation. Thus, we studythe SAs present on typial parallel appliations, kernels, and parallel problemssolutions. We also disuss how do they map to restrited SA lasses.This lassi�ation of the SA of appliations is intended to help the readerto understand the real purposes, bene�ts and disadvantages of the di�erent re-strited and unrestrited PPMs. At the same time it will point us to ase-studyappliations for the mapping problem (systematially transformation of synhro-nization strutures aross di�erent SA lasses). In the following lassi�ation



74 CHAPTER 2. CONCEPTUAL APPROACHwe are not trying to be exhaustive, but we are only presenting some well-knownexamples of parallel solutions and appliations whih are representative of eahSA lass. The graphial representation of this lassi�ation is shown in Fig. 2.26.2.6.1 Class (SP,ME,NDS/DS)There are two typial programming paradigms or problem solutions that arebased on the use of ME: Farms and non-ordered maro-pipelines.Farms: Many irregular and dynami appliations are diretly programmed us-ing a pure ME sheme through a workers-farm or work-stealing paradigm(entralized or deentralized load balaning sheduling algorithms). Thus,many highly irregular appliations, derived e.g. from graph explorationor ombinatorial searh [156, 189℄, are transformed to this struture. Thesheduling module is then reported about the possibility of non-deterministisynhronization between omputation piees. Appliations of this type aretypially dynami (tasks generate new data piees to proess), but thenumber of tasks may also be statially determined by the problem nature.ME-Maropipeline: Maro-pipeline is a wide-aepted name for a synhro-nization struture that represents a generi solution for many problems.Consider maro-pipelines representing problems based on the parallel exe-ution of n proesses omposed by m tasks or stages, suh that the stage iof a proess needs ME with the i stages of all the other proesses (typ-ially due to the use of a shared resoure). An example ode of suha maropipeline programmed with semaphores is presented in Fig. 2.23.These maro-pipelines an be programmed as a olletion of task serieswith no CS between di�erent series and ME among the i-depth tasks.Other maro-pipelines not based on resoure restritions are not in thislass and will be disussed below. The number of stages is known in almostall situations. If the number of proesses is also known the struture willbe stati, else it will be dynami.(1) MEmaropipeline() f(2) Semaphore s[m℄;(3) reateSemaphores(s);(4) initializeSemaphores(s,1);(5) spawnThreads(n);(6) proess(...);(7) synThreads(n);(8) g
(1) proess(...) f(2) int stage;(3) for(stage=0; stage<m; stage++) f(4) P(s[stage℄);(5) do(stage);(6) V(s[stage℄);(7) g(8) gFigure 2.23: Example of a ME-Maropipeline



2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 75If the programming model seleted for implementation diretly supports MEprimitives, the appliation struture is formed by spawning n tasks that synhro-nize only by ME to obtain more data piees in the farm, or to avoid onurrentaess to the same resoure in ME-Maropipelines. If ME is not supported, afalse order originally not present in the problem de�nition should be introduedwith CS (see setion 2.2.6). The solution probably will inur in high losses if SPsynhronization is fored.It is arguable whether this kind of solutions must be expliitly programmedwith ME or they an be even automatially deteted and sheduled by a ompiler.2.6.2 Class (NSP,ME,NDS/DS)No typial parallel appliations are found in these lasses. In problems where MEis used to provide a solution, it is frequent that no CS is needed exept to reatesequenes of proesses that use only ME to avoid interations, or full barriersto synhronize between iterations. Thus, they an be programmed in a nested-parallel restrited model (SP,ME,NDS/DS). We are not taking into aount hereimplementations that use ME only to simplify ommuniation phases when usinga shared-data spae. In this ase the original appliation does not really need MEand they an also be programmed in their relative (NSP,NME,NDS/DS) lasses.2.6.3 Class (SP,NME,NDS)In this lass we found appliations that diretly map to CS strutures in the SPlass. The problem or solution is hierarhial or highly synhronous. Thus, it anbe programmed with hierarhial self-synhronized proesses groups. The stru-ture is also stati, dependent only in the input data-size or number of proessors,and possibly �xed in ompilation phase.Types of appliations to be found in this lass are trivial parallel ompu-tations, stati strutures derivated from divide & onquer or branh & boundparadigm (sometimes as a data-partition sheme), and synhronized loops.Trivial parallel omputations: Appliations that are easily and diretly par-allelized by a wise data-partitioning avoiding ommuniation between tasksduring normal omputation phases. The only synhronization needed is todistribute data and ollet results. They do not need a powerful NSPlanguage or model to be programmed. Some examples are found in imageproessing algorithms: Geometrial transformations of a set of di�erent ob-jets in n-dimensional spaes, ray-traing and other rendering algorithms.Other examples are searhing and optimization methods like simple MonteCarlo or hill limbing methods, spei�ally when parallel random numbergenerators are used [31, 189℄.



76 CHAPTER 2. CONCEPTUAL APPROACHRedution trees: Parallel pre�x sums, maximum or leader identi�ation, et[73, 156℄.Some sorting algorithms: Merge-sort and radix or buket sort [189, 120℄.Parallel multigrid methods: The overall struture of V-yle and multigridsimulation programs based in ellular automates (not the ellular automataitself) is hierarhial. Grid loal operations to solve partial di�erential equa-tions, or SOR methods in general, present a divide & onquer SP struturethat an be implemented with only one synhronized ommuniation phaseper iteration. Many typial solutions to simulation programs in grids usesynhronized phases (see e.g. [111℄).Some numerial algorithms: Numerial integration [189℄. The overall stru-ture of Strassen matrix multipliation [156℄ (although loal dependenesan be exploited in a ompliate NSP form).Synhronized parallel loops: Many appliations are programmed with par-allel loops or similar strutures. After a omputation phase, proessesinterhange boundary information with neighbors, or ommuniate in anunpreditable pattern with other proesses. If the problem semantis needa full barrier synhronization after the ommuniation phase, they an bediretly programmed in an SP form.Beause of the easy of programming and understanding of suh synhro-nized strutures have, they are used in most situations, even when thesynhronization is not in the original problem semantis. For example, theOpenMP [149℄ model assumes this kind of behavior for its main primi-tives for parallel loops and setions, although variable-loks an be use toprodue NSP patterns at programmer disretion. For well-balaned appli-ations the delay introdued by proesses waiting for other proesses tosynhronize is negligible.2.6.4 Class (SP, NME, DS)Divide & onquer may be used as a load balaning tehnique. In this ase data-partitions should be dynamially onstruted. Many appliations also present anadaptable hierarhial struture that is further or reursively spawned in a data-dependent form. For example, solutions that are reursive over seleted piees ofdata (like quiksort algorithm) fore dynami struture. However, appliationsthat split data into equal size hunks generate a stati struture if the data sizeis known from the beginning (like mergesort). Some examples of dynami SPappliations are:Unbalaned sorting: Quik-sort [189℄.



2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 77Some geometri problems: Convex hull or Voronoi diagrams [56℄.N-body simulations: Barness-Hutt, Fast Multipole Methods and other non-adaptative hierarhial algorithms for N-body simulation are based on ahierarhial divide & onquer paradigm. (See e.g. [136, 189℄). They areintuitively programmed in SP, as they basially onstrut and evaluatedynami trees.2.6.5 Class (NSP,NME,NDS)In this lass we disuss appliations whih their problem natures imply statinon-hierarhial CS strutures. The exat synhronization pattern is quite dif-ferent for di�erent appliations. For example, many high regular and salableappliations are generated by repliation of a loal ommuniation pattern. Mostof them are well-known data-parallel solutions, where proesses reeive a piee ofa data-struture partition and proeed in two phases: Computation and ommu-niation of boundaries of the data struture with neighbor proessors (in a virtualtopology de�ned by the problem, the data partition, and the mapping). They arewidely used in simulation and engineering �elds and they are spei�ally studiedto obtain spei� high-performane optimized solutions. Iterations of a neighborsynhronization pattern de�nes an NSP CS struture. Many of them present awell-known repetitive synhronization struture that sales-up easily.
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78 CHAPTER 2. CONCEPTUAL APPROACHStati dependent pipelines: Pipelines produed by stati ode dependenesleads to a typial NSP strutures. For example, the data-parallel looppresented in Fig. 2.25 reates a maro-pipeline struture that annot beexpressed by ME.(1) FOR i=1,n-1 parallel=8(2) V [i+ 1℄ = V [i+ 1℄ + f(V [i℄)(3) ENDFORFigure 2.25: Example of stati dependent pipelineSimple neighbor synhronization: Cellular-automata and other grid/lattiesimulation programs based on stenils or loal synhronization patterns [162℄.Example appliations inlude many physis and hemistry simulations orimage proessing programs.Problem solving networks: Many appliations based in a spei� topologyexhange network as FFT [153℄, odd-even redution or sorting networks [156℄.Matrix sienti� omputing: Most dense matrix sienti� omputing algo-rithms like Gaussian elimination, matrix multipliation, QR and LU re-dutions [79, 78℄ an be programmed in an NSP form to exploit all possibleparallelism. The synhronization strutures generated for these applia-tions is not so symmetri as in previous examples. However, they areregular and easily salable.For most of these problems, the omputation phase is exeuting the same piee ofode on a approximately equal sized piee of data for every proess. Synhronizediterations (see setion 2.6.3) are very popular for these very regular and high-balaned omputations. The performane degradation e�et of programmingthem in an SP PPM is very small [86℄.Moreover, speifying these regular omputations in a hierarhial synhro-nization struture, with �ne grain parallelism, may allow automati mappingtehniques that perform a good data-partition and load balane, minimizing po-tential performane degradation.Another solution is to enapsulate an eÆiently programmed solution basedon the NSP ommuniation struture into a skeleton [45℄ or a given languageonstrution [152℄. Thus, it an be used ompositionally as a language primitiveand inside a hierarhial nested-parallel sheme [44℄.



2.6. SYNCHRONIZATION ARCHITECTURE OF APPLICATIONS 792.6.6 Class (NSP,NME,DS)In this lass we �nd appliations that generate non-repetitive spei� NSP om-muniation patterns depending on the input data and partial omputation re-sults. Appliations in this lass inlude:Sparse linear-algebra algorithms: Although most sparse linear solvers try toredue their behavior to regular vetor operations [99, 186℄, in many spe-i� tehniques the synhronization struture is dependent on the matrixdensity struture (e.g. [124℄). In these appliations all the struture may bepredited if the matrix struture is known. Sparse linear solvers are an im-portant ategory of algorithms for many di�erent domain appliations, anddiret solving methods for sparse linear systems is an important researh�eld (see e.g. [96℄).Simulations in graphs: Many strutural engineering appliations and similarproblems based on iterative PDEs solvers. A graph partitioning algorithmis applied to the input graph to distribute data among proessors, minimiz-ing the ommuniation needed due to interations between points assignedto di�erent partitions [154℄.Adaptative grids: PDEs solvers where an adaptative grid is dynamially re-�ned [147℄. These problems need dynami evolution of the data partition,that an lead to dynami modi�ation of ommuniation patterns.Dynami simulations: Adaptative N-body simulations [136℄ and hemistry orphysis simulations, where partiles or points are in motion, hanging thedata elements with whih they interat to [115℄. In some solutions, thedata partition must evolve dynamially.When the irregular synhronization struture is preditable, one the data stru-ture (e.g. an sparse matrix struture) is known, sophistiated algorithms an beused to transform the strutures to SP form trying to minimize the losses [85℄.These algorithms may be used even as a pre-sheduling phase. Multilevel graphpartitioning may also be used to reate nested dissetion orderings for solvingsparse linear systems of equations [154℄.The highly dynami solutions to simulation problems where ommuniationpatterns evolve along iterations are still a big hallenge on themselves. In mostases these solutions are heuristi hard-wired load-balaning tehniques highlydependent on the problem. Most of the time omplex knowledge about the appli-ation behavior and deomposition is needed. Good results may be obtained bythe hierarhial appliation of di�erent sheduling polies for proesses that showdi�erent synhronization roles instead of only one plane poliy [115℄. However,the identi�ation of suh proesses lasses is not diret and it is not lear how ahierarhial spei�ation of the original problem ould help.
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Figure 2.26: Classi�ation of example appliations2.6.7 Conlusions about appliations SAIn Fig. 2.26 we show a diagram that summarizes the lassi�ation of some ex-ample appliation types desribed in this setion. Dashed lines indiate typi-al transitions between lasses to map appliations struture into restrited SPPPMs.An important observation is that ME is used only to program appliationsmainly based on two SP paradigms that impliate a spei� load-balaningsheduling solution, useful for many dynami appliations. In fat, some dy-nami NSP appliations may be transformed to �t into the farm paradigm, andonsequently into SP lass. It is important for a PPM to support ME to easilyprogram this kind of dynami solutions.Most appliations do not need ME. We have found many of them suitable forSP PPMs. For the appliations that do really have NSP CS struture we haveidenti�ed representative examples for any SA lass. Simple possible mappingsolutions to onvey their synhronization struture into SP SA lasses have beendisussed.



2.7. SUMMARY 812.7 SummaryIn this hapter we have presented the synhronization arhiteture onept andits relevant lasses aordingly to three important riteria: CS, ME and data-dependene. Then, we have explored the di�erent programming abstration lev-els to detet the SA lasses of PCMs, PPMs, PPLs and appliations.At the lowest abstration level, exeution models provide maximum expres-sive power and synhronization opportunities. However, as we travel up to thehigher abstrations proposed by parallel programming models, we notie thatlow-level based implementation models (as e.g. message-passing interfaes) arebeing substituted by higher level models with two main trends:1. High abstrations with maximum expressiveness power (as e.g. tuple spaes)2. Restrited models with eÆient mapping and software development initia-tives (as e.g. BSP).A parallel omputation is a muh more omplex objet than a sequential om-putation. More and more parallel programmers are aepting that a higherlevel of abstration is needed to introdue software development and debuggingtehniques in parallel programming [89℄. However, implementation and map-ping problems plague the highly abstrat but unrestrited programming models.Nowadays, the programming models that look more promising are those whihanalyzability apabilities are improved by introdued expressiveness restritions.In our study we have found that the most relevant frontier in this analizabilityvs. expressive power trade-o� is the SP vs. NSP hoie in the ondition synhro-nization axis. Programmers who take the deission of rossing this frontier andfore the CS strutures to SP form (nested-parallelism), ahieve an importantinrease in their analizability apabilities, opening a full new world of ompil-ing and run-time tehniques for veri�ation, performane predition, mapping,sheduling, portability and software development in general.Although many typial parallel appliations are perfetly suitable for theseSP restrited models, some important ones still present a hallenge for beingeÆiently transformed to nested-parallel form. Intuition indiates that in manyases the impat of suh a transformation in the appliation performane is lim-ited. However, the potential performane loss produed by the SP restritionintrodued at the programming level, before the appliation is oded, has notbeen yet fully studied. The rest of this dissertation addresses this importantproblem. In hapter 2 we use graph theory to haraterize both NSP and SPstrutures and we study systemati transformations from NSP to SP forms. Wealso investigate the potential performane impat of suh transformations. Anexperimental framework to verify the propositions introdued in our study, thatan also be extended for quantitative evaluation of PPMs in general, is presentedin hapter 3.
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Chapter 3Theoretial approah\This is how I will do it: if there is a whelp ofthe same breed to be had in Ireland, I will rearhim and train him until he is as good a houndas the one killed; and until that time, Culain,"he said, \I myself will be your wathdog, toguard your goods and your attle and yourhouse." \You have made a fair o�er," saidConhubar. \I ould have given no betteraward myself," said Cathbad the Druid. \Andfrom this out," he said, \your name will beCuhulain, the Hound of Culain."Cuhulain of Muirthemne, 1902Lady GregoryIn the previous hapter we have lassi�ed SAs and identi�ed the SP (nested-parallelism) restrition as the most important frontier between expressivenessand analyzability. We have also determined that many appliations diretly mapto models in the SP SA lasses, but others do not. Although strategies for thismapping are proposed, two important questions arise:� How muh potential parallelism loss is introdued by a transformationwhih map NSP appliation strutures to SP form, and is it possible topredit it?� Is it possible to derive automati transformation tehniques to map NSPstrutures to SP form?The latter question is motivated by the fat that (1) tool support is an importantenabling fator in the use of SP models for NSP problems, and (2) suh toolsan be used to partially automate the experiments needed to address the �rstquestion. 83



84 CHAPTER 3. THEORETICAL APPROACHA formal approximation to the mapping of NSP strutures to SP form maybe developed with the help of graph theory. The synhronization strutures ofappliations have been for a long time represented with graphs. More preisely,DAGs (Direted Ayli Graphs) have been used to represent the Posets (PartialOrder Sets) or dependenes that CS introdue between tasks. These graphs donot diretly support spei�ation of ME dependenes or alternative struturesof data-dependent programs. They may be used to represent only one possi-ble struture reated during the exeution of a given program in a given PPM(when ME and data-dependenes are transformed to CS). Nevertheless, we areinterested mostly in the CS strutures, as long as we have previously show thatCS and ME are orthogonal, and we have determined the impat of ME in theexpressiveness vs. analyzability trade-o�. To represent the strutures reated bydata-dependent programs we an use several graph representations of the pos-sible strutures generated by the program. A omplete study of how to extrattask graphs from appliations is presented in setions 4.2.2 and 4.2.3.Hene, we will study graph transformations to approximate NSP struturesto SP form. The devised transformations will try to minimize the potential par-allelism loss introdued by added dependenes, that may be responsible of theperformane degradation. We study not only the topology impat of a trans-formation, but the potential impat in the performane through ritial pathanalysis. For suh an study, the workload distribution of the graph nodes is riti-al. At the highly abstrat level of programming, no exat (or even no) workloadinformation is typially available. In our study, several syntheti workload mod-els are onsidered. In an experimental study with real appliations, presentedin setion 4.2, we validate and re�ne these workload models to onsider realexeution workloads.In this hapter we use graph theory to formally present de�nitions and prop-erties of NSP and SP graphs. We also study and ompare basi tehniques andfull algorithms to transform NSP synhronization strutures to SP form, min-imizing the potential parallelism loss. The impat of suh transformations istheoretially analyzed and disussed.
3.1 Graph preliminariesWe present here a olletion of mathematial notations used throughout the restof this dissertation. They are organized in setions about spei� subjets: Basigraph onepts, transitive losure and redution, simple topologial parameters,and task graphs.



3.1. GRAPH PRELIMINARIES 853.1.1 Basi graph onepts and notationsSine graph-theoretial de�nitions di�er somewhat in the literature, we de�nehere the basi onepts. De�nitions are mainly adapted from referenes [12, 28,93, 184℄. A reader who is familiar with graph theory may skip this setion andrefer to these de�nitions later if it is needed.In this dissertation we denote sets with upper ase alphabeti haraters(A;B;C; :::), and elements of a set with lower ase (a; b; ; :::). Calligraphi upperase alphabeti haraters denote set partitions:De�nition 3.1.1 The symbol P denotes a partition of a set in non-overlappingsubsets: PS = fS1; S2; :::; Sng : Si � S;\i Si = ;;[i Si = S 2De�nition 3.1.2 A direted graph G is a pair (V;E), where V is a �nite setof nodes or verties and E � V � V is a set of ordered pairs alled edges. Thenumber of nodes in a graph is denoted by n = jV j, and the number of edges bym = jEj.There an be multiple edges between the same nodes. Graphs with multipledireted edges are alled multidigraphs. Self-yles (nodes in the form (v; v)) willnot be used in our study. 2De�nition 3.1.3 Two graphs G1 = (V1; E1) and G2 = (V2; E2) are isomorphi(G1 � G2) if there exists a bijetive funtion f from V1 to V2 suh that (v; v0) 2E1 () (f(v); f(v0)) 2 E2.For the following de�nitions let G = (V;E) be a direted graph.De�nition 3.1.4 For eah edge (v; v0) 2 E, v is the soure of the edge and v0is the target of the edge. 2De�nition 3.1.5 For eah node v 2 V , indeg(v) is the indegree or number ofedges for whih v is the target and outdeg(v) is the outdegree or number of edgesfor whih v is the soure:indeg(v) = jfe 2 E : e = (v0; v)gjoutdeg(v) = jfe 2 E : e = (v; v0)gj 2



86 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.1.6 A root or soure of a graph is a node v with indeg(v) = 0.R(G) is the set of all roots in G: A leaf or sink of a graph is a node v withoutdeg(v) = 0. L(G) is the set of all leaves in G.R(G) = fv 2 V : indeg(v) = 0gL(G) = fv 2 V : outdeg(v) = 0g 2De�nition 3.1.7 The suessors set of a node v is the set of target nodes ofedges for whih v is the soure. The predeessors set of a node v is the set ofsoure nodes for whih v is the target:Su(v) = fv0 : (v; v0) 2 EgPred(v) = fv0 : (v0; v) 2 Eg 2De�nition 3.1.8 A subgraph of G is another graph S = (VS ; ES) in whihVS � V and ES � E. 2De�nition 3.1.9 A Path from a given node to another p(v; v0) is non-empty asequene of nodes onneted by edges that de�nes a possible way from v to v0:p(v; v0) = v; v1; v2; :::; vp; v0;(v; v1); (v1; v2); :::; (vp; v0) 2 EThe length of the path is the number of edges p in the path:length(p(v; v0)) = jp(v; v0)j � 1A non-diret path is a path with length more than 1:pnd(v; v0) = p(v; v0) : length(p(v; v0)) > 1A Full path is a path p(v; v0) where v is a root and v0 is a leaf. Pf (G) is the setof all possible full paths in G:Pf (G) = fp(v; v0) : v 2 R(G); v0 2 L(G)gA Cyle is a path from/to the same node: p(v; v). 2



3.1. GRAPH PRELIMINARIES 87De�nition 3.1.10 A node v0 is said to be reahable in the graph G from anothernode v i� exists p(v; v0) or v = v0:v �G v0 () 9p(v; v0) _ v = v0Where it is obvious by the ontext in whih graph is this relation de�ned, we omitthe name of the graph G and we use the symbol � alone. 2De�nition 3.1.11 A node v0 is said to be stritly reahable in the graph G fromanother node v i� exists p(v; v0) and v; v0 are di�erent:v �G v0 () 9p(v; v0) ^ v 6= v0Where it is obvious by the ontext in whih graph is this relation de�ned, we omitthe name of the graph G and we use the symbol � alone. 2De�nition 3.1.12 Two nodes v; v0 are onneted in the graph G i� one of themis reahable from the other:v��Gv0 () v �G v0 _ v0 �G vv���Gv0 () v 6�G v0 ^ v0 6�G vWhere it is obvious by the ontext in whih graph is this relation de�ned, we omitthe name of the graph G and we use the symbol �� alone. 2De�nition 3.1.13 For any node v 2 V , the depth level or d(v) is the length ofthe longest path from a root to that node:d(v) = max(length(p(r; v)) : r 2 R(G)) 2De�nition 3.1.14 A direted ayli graph (DAG) is a direted graph G =(V;E) with no yle. For any node v there is no p(v; v):G 2 DAG () 8v 2 V :6 9p(v; v) 2In this dissertation we only study direted ayli graphs. From here on, theword \graph" always refers to a DAG.De�nition 3.1.15 A two-terminal direted ayli graph, also alled standardtwo-terminal or STDAG is a DAG suh that there is only one root and only oneleaf in the graph:G 2 STDAG () G 2 DAG; jR(G)j = 1; jL(G)j = 1 2



88 CHAPTER 3. THEORETICAL APPROACHProposition 3.1.16 Properties of STDAGs:1. Any node in an STDAG is reahable from the root.2. The leaf of an STDAG is reahable from any node in the graph.3. Any STDAG is a onneted graph.4. For any node v 2 V exists at least one full path that ontains v.Proof: A node v 2 V , is the root or it has at least one predeessor. If it isnot the root, take any predeessor of v and proeed by indution. Use the samerationale for suessors and the leaf. The rest is trivial using the de�nitions. 2De�nition 3.1.17 The normalized STDAG G of a DAG G is a two-terminaldireted ayli graph, onstruted from G, adding at most two nodes and O(n)edges to resynhronize the possible multiple roots and possible multiple leaves ofG, as follows:Let G = (V;E) be a DAG, G = (V 0; E0):V 0 = V [ fvrg if jR(G)j > 1V 0 = V [ fvlg if jL(G)j > 1E0 = E [ f(vr; v) : v 2 R(G)g if jR(G)j > 1E0 = E [ f(v0; vl) : v0 2 L(G)g if jL(G)j > 1 2Proposition 3.1.18 The normalized STDAG G of any DAG G an be on-struted in O(n) time omplexity.Proof: Deteting the R(G) and L(G) sets implies heking only the in-degreeand out-degree of every node in V . Eah node appears at most one on eah set.Thus, eah set has O(n) nodes. When the two sets are known, at most two newnodes are added, and exatly one edge per node in eah set. 23.1.2 TransitivitiesThe reahability relation established by edges in the graph is transitive. Thus,we de�ne the following onepts as in [137℄:De�nition 3.1.19 An edge in a graph e = (v; v0) 2 E is a transitive edge i�there is a non-diret path between the nodes pnd(v; v0). 2



3.1. GRAPH PRELIMINARIES 89De�nition 3.1.20 The transitive losure of a graph G = (V;E) is another graphG+ = (V;E+) suh that E+ ontains an edge (v; v0) i� exists a path p(v; v0) inG. 2De�nition 3.1.21 The transitive redution of a graph G = (V;E) is a subgraphG� = (V;E�), minimal under inlusion, whose transitive losure oinides withthat of G. 2De�nition 3.1.22 A topologial order of a graph G = (V;E) is any total order�t of V suh that if (v; v0) 2 E then v �t v0. Eah DAG has at least onetopologial order. 23.1.3 Topologial graph parametersWe de�ne the following basi graph topology parameters that we will use toharaterize the graphs.De�nition 3.1.23 We de�ne Maximum Degree of Parallelism as the maximumnumber of nodes in a graph that are not dependent on eah other:mP (G) = max jL 2 V=���jThis number an be approximated by the ardinality of the biggest layer (subsetof nodes with the same depth level) in the graph. We all it simply Degree ofParallelism: P (G) = maxi jfv : d(v) = igj 2De�nition 3.1.24 The Depth of a graph is the maximum depth level of anynode in it: D(G) = maxv2V d(v) 2De�nition 3.1.25 Synhronization Density of a graph G is the amount of edgesrelative to the number of nodes: S(G) = jEj=jV j 2In a graph G, the S parameter (number of edges related to the number of nodes)may provide information not only about dependenes, but about the overall shapeof the graph. For very high sizes of jEj, the graph will have so many dependenes



90 CHAPTER 3. THEORETICAL APPROACHthat most nodes will be serialized. For very low number of edges, most nodeswill be disonneted and the degree of parallelism will be higher. We may de�nea more topology-independent parameter to represent the overall number of edgesin a graph.De�nition 3.1.26 We de�ne Relative Synhronization Density as the synhro-nization density relative to the number of nodes:Rs(G) = S(G)=jV jOr in other words, the amount of edges relative to the square of the number ofnodes. It represents the amount of edges relative to the maximum number ofpossible edges in a DAG with jV j nodes:Rs(G) = jEj=jV j2 23.1.4 Task graphsIn this thesis we use ativity on nodes (AoN) graphs. The nodes represent anativity and the edges a preedene order for the exeution of the ativities. Morespei�ally we introdue the following de�nitions:De�nition 3.1.27 For a given system, a task is an atomi ativity whih mod-i�es the global state of the system and an be exeuted independently of the loalstate of other ativities (tasks), provided a olletion of preonditions. After theexeution of the ativity a task may produe a olletion of postonditions (de-pending on the system state), in order to allow ativation of other tasks. 2De�nition 3.1.28 A task graph T = (V;E) is a DAG in whih a node v 2 Vrepresents a task and an edge e = (v; v0) 2 E represents the preedene relationestablished between two tasks when a postondition of v is a preondition of v0.2De�nition 3.1.29 In the ontext of task graphs, the reahability property is alsoalled dependene. A node v0 is dependent on another node v i� v �G v0. 2A task graph represents a possible evolution of a system given an initial state.In the ase of a parallel program, a task graph represents the dependenes of thetasks generated by the program when exeuted with spei� input data. Thetask graph generated by a parallel program for a given initial state (input data)is unique only if the program has no rae onditions, and the evolution of thesystem state is independent of the sheduling of the tasks.



3.1. GRAPH PRELIMINARIES 91A task graph is some times transformed to an STDAG adding a root and aleaf that represent the starting and ending points of the whole system ativity.Then, properties of STDAGs an be exploited.De�nition 3.1.30 The load of a node is a positive number that represents theost or span of exeuting the task in a given parameter axis. The load distribu-tion of a graph is the funtion that maps nodes to their load values:� : v 2 V ! R+ 2A typial parameter for whih load is de�ned is time, where load representsthe exeution time of the ativity. The total ost of a graph (the summation ofall its node's load) is assoiated with the ost of the omputation represented bythe graph. The notions of path ost, and ritial path are also de�ned.De�nition 3.1.31 The ost or load of a graph G, is the sum of the loads of allits nodes: �(G) = Xvi2V �(vi) 2De�nition 3.1.32 The ost or load of a path, is the sum of the loads of all itsnodes: �(p(v; v0)) = Xvi2p(v;v0) �(vi) 2Let us onsider some usual onepts in distributed omputing. In ompleteasynhronous ommuniation models, the omplexity of an appliation is relatedto the largest hain of messages [122℄. Modifying the synhronization strutures,the hains of messages are altered, and probably, also the length of the largesthain. The omputation times should also be inluded if they are signi�ant [122℄.Appliation and program synhronization strutures are modeled with taskgraphs. In our ase we use AoN graphs, with nodes representing tasks or om-muniations. Thus, the aumulated load value of the nodes in a full path rep-resents the estimated performane time of exeuting this hain of nodes, withthe preedene restritions expressed by the whole graph. The maximum loadof any full path, or ritial path value (pv) of the graph, represents the largesthain of ommuniations or dependenes, with omputation times onsidered.Consequently, the pv of a graph may be used as an indiator of the modeledappliation performane.



92 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.1.33 For a given graph G = (V;E) and a given load distribution,the Critial paths of the graph P(G) are the full paths with maximum load. TheCritial path value pv(G) is the load of any ritial path.P(G) = fp 2 Pf (G) : �(p) = max(�(Pf (G))gpv(G) = �(p) : p 2 P(G) 23.2 Series-parallel graphs3.2.1 De�nitionsSeries-parallel DAGs, their onstrution and their relation with general DAGs arethe main fous of this hapter. We present here formal de�nitions and propertiesof this kind of graphs. The following de�nitions are adapted mainly from [14,184℄.SP-graphs preliminariesThe lass of edge series-parallel direted graphs is de�ned reursively as follows:De�nition 3.2.1 Edge series-parallel multidigraphs (ESP):1. A DAG with a single edge joining two nodes is ESP.2. If G1 = (V1; E1) and G2 = (V2; E2) are ESP multidigraphs, so are theDAGs onstruted by eah of the following operation:� Two-terminal parallel omposition: Identify the root of G1 with theroot of G2, and the leaf of G1 with the leaf of G2.� Two-terminal series omposition: Identify the leaf of G1 with the rootof G2. 2De�nition 3.2.2 Series-parallel graphs (SP-graphs):A DAG is SP i� its normalized STDAG is ESP:G 2 SP () G 2 ESP 2De�nition 3.2.3 Non-series-parallel graphs (NSP-graphs):A DAG is NSP i� it is not in the lass of SP-graphs. 2



3.2. SERIES-PARALLEL GRAPHS 93The lass of SP-graphs an be haraterized by not exhibiting a forbiddensubgraph. This subgraph represents the basi topologial harateristi assoiatedwith an NSP struture. We use the term homeomorphi to refer to graphs withsimilar topologial features, or in other words, graphs that ontains nodes withthe same partial order relation. We �rst introdue a formal de�nition of thehomeomorphi term to help us to haraterize the relation of a graph with theforbidden subgraph.De�nition 3.2.4 An indued subgraph G0 = (V 0; E0) of another graph G =(V;E), is a subgraph obtained by eliminating some nodes from V and eliminatingfrom E the edges inident to those eliminated nodes:G � G0 () V 0 � V;E0 = f(u; v) 2 E : u; v 2 V 0g 2De�nition 3.2.5 A graph G = (V;E) is homeomorphi to another graph G0 i�its transitive losure does ontain G0 as an indued subgraph:G w G0 () G+ � G0 2Theorem 3.2.6 A DAG is an SP-graph i� it is not homeomorphi to the Wgraph of Fig. 3.1; or using an equivalent haraterization, i� its transitive losuredoes not ontain the W graph of Fig. 3.1 as an indued subgraph. (See proofin [59℄). 2
Figure 3.1: The forbidden subgraph for SP-graphsSP graphs are a sublass of planar graphs, and also a sublass of k�terminalgraphs (see e.g. [28℄). SP graphs are equivalent to partial 2-trees, a sublassof bounded tree-width graphs (see e.g. [21, 28℄). Based in the properties ofthese graph lasses, linear time omplexity algorithms to reognize SP-graphsare possible.



94 CHAPTER 3. THEORETICAL APPROACHProposition 3.2.7 The reognition of a series-parallel digraph an be done inlinear time. (See proof in [184, 168℄). 2EÆient parallel reognition algorithms also exist for SP-graphs and derivatedlasses (see [98, 61, 22, 105, 23℄).An interesting property of SP graphs, that justi�es the tight omplexitybounds of many algorithms for these graph lass, is the bounded number ofedges:Lemma 3.2.8 Let G=(V,E) be an SP-graph with no multiple edges. The numberof edges is bounded by (see e.g. [168℄):jEj � 2jV j � 3This lemma is easily proven by indution on the SP-graphs de�nition. 2Lemma 3.2.9 Let G=(V,E) be an SP-graph with no multiple edges and no tran-sitive edges (G = G�). The number of edges is bounded byjEj � 2(jV j � 2)A proof may be found in [84℄. 2SP redutionTwo operators whih redue the series or parallel strutures in a graph to a singleedge have been proposed [14℄. The result of the use of these operators in simplegraphs is shown in Fig. 3.2.
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Figure 3.2: Redution operatorsDe�nition 3.2.10 The series redution operator or s�, is a mapping,s� : STDAG � V ! STDAG, aording to:Gs�v = (V 0; E0);indeg(v) = outdeg(v) = 1;E0 = E n f(s; v); (v; t)g [ (s; t);V 0 = V n v 2



3.2. SERIES-PARALLEL GRAPHS 95De�nition 3.2.11 The parallel redution operator or pÆ, is a mapping,pÆ : STDAG �E ! STDAG, aording to:GpÆ(v; v0) = (V 0; E0);jf(v; v0) 2 Egj > 1;E0 = E n f(v; v0) 2 Eg [ (v; v0) 2De�nition 3.2.12 A trivial graph is a graph with only two nodes and one edge:Gt = (V;E); V = fv; v0g; E = f(v; v0)g 2De�nition 3.2.13 The symbol ` denotes a sequene of one or more redutionoperations in a graph: `� fs�; pÆg+`s�� fs�g+`pÆ� fpÆg+ 2De�nition 3.2.14 A series graph is a graph whih an be redued to a trivialgraph using only series redution operations:G 2 SG () G `s� G0 � Gt 2De�nition 3.2.15 The minimal SP redution graph of G, is another graph [G℄obtained by using all possible series and parallel redution operations in G:G ` [G℄;�G0; [G℄ ` G0 2Proposition 3.2.16 A graph G is an SP-graph i� its normalized STDAG, anbe redued to a trivial graph by series and parallel redution operations.G 2 SP () [G℄ � GtThis result is easily proven by indution on the ESP and redution operationde�nitions. 2



96 CHAPTER 3. THEORETICAL APPROACH3.2.2 Distane from NSP to SP graphsIn this setion we present formal methods to de�ne and measure the distanefrom an NSP to an SP approximation graph. These de�nitions motivate sometransformation tehniques and a distane onept to be used later to try tomeasure the impat of NSP to SP transformations.We an measure the distane from an NSP to an SP form by the numberof indued forbidden subgraphs it has. This distane has shown to be a veryimportant parameter of a graph. Many graph analysis problems that show tobe feasible when the graph is bounded to an SP form, are NP-hard to solvein a generi NSP graph. Nevertheless, it is possible to derive algorithms thatare exponential in the distane from the graph to an SP form, instead of in thenumber of nodes [14℄.Node redution and omplexityThe number of forbidden subgraphs in a graph G an be algorithmially mea-sured by redutions or path expressions [14, 143℄. The redution system usesseries and parallel redutions to eliminate the parts of the graph that are al-ready SP. After that, only nodes and edges assoiated with forbidden subgraphsremain. To eliminate one node and its assoiated forbidden subgraph, a newoperator alled node redution operator is introdued. It operates on a node thatis onneting one to many or many to one nodes. In the �rst situation, it substi-tutes a node with only one predeessor for a olletion of edges between its onlyone predeessor and its suessors. In the seond situation it substitutes a nodewith only one suessor for a olletion of edges between its predeessors and itsonly one suessor. The e�et of a node redution in both ases (indeg(v) = 1and outdeg(v) = 1), is shown in Fig. 3.3.De�nition 3.2.17 The node redution operator or n?, is a mapping,n? : STDAG � V ! STDAG, aording to:Gn?v = (V 0; E0); indeg(v) = 1 _ outdeg(v) = 1;If indeg(v) = 1;E0 = E n f(s; v); (v; ti) : ti 2 Su(v)g [ f(s; ti) : ti 2 Su(v)gV 0 = V n fvgIf outdeg(v) = 1;E0 = E n f(v; t); (si; v) : si 2 Pred(v)g [ f(si; t) : si 2 Pred(v)gV 0 = V n fvg 2
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1 2 n 1 2 nFigure 3.3: Node redution operatorAfter all possible series-parallel redutions are applied all nodes exept theroot and the leaf are assoiated with a forbidden subgraph. Any one an behosen for elimination. At least the hildren of the root have indeg(v) = 1,and at least the parents of the leaf have outdeg(v) = 1. Thus, there are alwaysnodes that an be node redued. After applying a node redution, new series andparallel redutions are usually possible. They should be applied before new noderedutions.Dupliation of nodesAlthough previous works whih present the node redution do not rationale it,this operator is intrinsially related to an NSP to SP transformation based onthe dupliation of nodes, also disussed in setion 3.3.1. See Fig. 3.4. The noderedution operation intrinsially reates multiple instanes of the node that isbeing redued. A di�erent path from/to the unique parent/hild is onstrutedthrough any of the multiple opies. The dupliated nodes are inherently reduedby serial redution. Thus, the node redution does not add new dependenes tothe graph, and the non-SP onit (the forbidden subgraph) disappears.We may de�ne a distane from any graph G to an SP form based on theredution omplexity of G:De�nition 3.2.18 The redution omplexity of a graph G, denoted by �(G), isthe minimal number of node redutions suÆient to redue G to a trivial graph.�(G) = min(); [:::[[[G℄n?v1℄n?v2℄:::n?v℄ � Gt 2De�nition 3.2.19 The sequene of �(G) nodes (v1; v2; :::; v) that redue thegraph G to a trivial graph is alled the redution sequene. 2As was shown by Bein, Kamburowsky and Stallman in [14℄, it is possibleto ompute �(G) and the redution sequene in polynomial time omplexity.
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Figure 3.4: Intrinsi operations in node redutionAt the same time the maximum distane of a graph to an SP form (redutionomplexity) is limited by the number of nodes:�(G) � n� 33.3 Transformation problem (NSP to SP)In this setion we investigate the foundation of full transformation methods toapproximate the strutural di�erenes between NSP and SP graphs. The usualasymptoti notation is used for omplexity bounds throughout the following se-tions. We use O, and � notation as de�ned in [13℄.3.3.1 SP-izationWe are interested in methods to approximate NSP graphs to an SP form thatboth: (1) keeps the dependenes information of the original graph; and (2) min-imizes the potential parallelism loss. Di�erent approahes are possible:Dupliation of nodes: As shown in setion 3.2.2, a method to transform anNSP graph into an SP form by the dupliation of nodes is possible. The



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 99main interest of this transformation is that it does not add dependenesto the task graph, and it produes no potential parallelism loss. However,the dupliation of tasks inreases the total ost of a omputation (it is nota work-preserving transformation). In spei� irumstanes it an tradeommuniation osts for omputation and memory osts. Dupliation oftasks (in other proessors) inrements the total omputation and resouresost, but it may lead to a higher loality degree, reduing the number of syn-hronization or ommuniation operations among proessors that exeutethe dupliated tasks. Task dupliation is known to have a favorable e�eton minimizing the total exeution time in distributed systems sheduling(see e.g. [158℄).The ost inrease is determined by the number of node dupliations. Takinginto aount that every node redution dupliates the node a number oftimes equal to the number of inident edges minus one, the number ofnode dupliations an be O(m)! In ases of small degree of parallelism,very low �(G) and spei� topologies where the nodes to redue have avery small indeg ; outdeg , the bene�ts obtained may ompensate the globalost inrease. Let �(G) be the total ost of a omputation represented byG. Let G0 be the SP version of G produed by dupliating nodes withany redution sequene. Then, if maxv2V (indeg(v); outdeg(v)) = k, thefollowing result an be derived:�(G0) � k�(G)Also, in the ase where all nodes in G have the same load, 8v 2 V; �(v) = ,we an exert the result: �(G0) � k�(G) + �(G)Although a linear time algorithm for deteting the shorter redution se-quene exists [14℄, it does not assure that the nodes with less inident edgesare the ones seleted. The problem of seleting a redution sequene whihminimizes the edges a�eted (node dupliations) is, as far as we know, notstudied.Another problem with this approah is that we are only onsidering theCS problem. However, if the PPM supports mutual exlusion mehanisms,the nodes to dupliate may need to ontend with others for exeution priv-ilege. The dupliation of a node involved in a mutual exlusive operationan inrease the ritial path, as the opies of a dupliated node annot beexeuted in parallel, leading to more ontention and more synhronizationosts. Indeed, most of the time, dupliation only minimizes exeution timeif additional (CPU) resoures are available. Moreover, a task that uses a



100 CHAPTER 3. THEORETICAL APPROACHpreviously non-shared resoure annot be safely dupliated without mod-i�ation; dupliated operations on the resoure may lead to a orretnessfault.For general parallel omputing, espeially in massive parallel omputing orappliations with many inter-task dependenes the total ost inrease aneasily be una�ordable. The appliability sope of this tehnique is narrow.Adding dependenes: The alternative mehanism to transform an NSP graphto SP form without dupliating nodes and without inreasing the totalomputation ost is adding new dependenes. These work-preserving teh-niques are not diretly based on redution sequenes, and the number oftopology modi�ations may be not related to �(G). Indeed, graphs withhigher �(G) may need less added dependenes to be transformed to SP.We study in setion 3.6.2 an algorithmi metri of the impat, in a givengraph, of a given tehnique based on adding dependenes. The main draw-baks of these tehniques are that: (1) they serialize previous potentiallyparallel tasks, and (2) the seletion of dependenes to add is guided byheuristis whih should make assumptions about the task workloads, inorder to minimize the potential impat of the task serialization.Mixed tehniques: Mixed tehniques that mainly add dependenes but strate-gially selet a small subset of nodes to dupliate ould be interesting.However, no onvenient one has yet been proposed. A good starting pointto devise suh tehniques will be: (1) the methods based on adding depen-denes studied in this thesis, and (2) the works about reduing expensiveommuniation osts by omputation redundany, or sheduling with re-dundany in UTC (Unit Time Cost) graphs [24, 60, 141℄.In this work we study new methods and heuristis to transform NSP to SPgraphs by adding dependenes, trying to minimize the potential loss of parallelismintrodued by them. We denote suh transformation methods as SP-izations.De�nition 3.3.1 An SP-ization is a graph transformation tehnique T whihtransforms any generi STDAG into an SP form, keeping the same nodes anddependenes as in the original graph, and possibly adding new zero loaded nodes(resynhronization points) and edges (dependenes).T : STDAG �! SP ;T (G) = (V 0; E0);V � V 0; V 0 n V = fw; �(w) = 0g8u; v 2 V; u �G v =) u �G0 v 2



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 1013.3.2 Loal resynhronizationSeveral SP-ization tehniques may be proposed. We will fous �rst in the ap-proximation of graphs ontaining in its transitive losure only one basi NSPproblem, or in other words, only one instane of the forbidden subgraph pre-sented in theorem 3.2.6. Then, more elaborated tehniques for omplex NSPproblems (ombinations of several instanes of the forbidden subgraph) will bestudied.In the following examples and �gures we will not present full NSP graphs,but only the indued subgraph whih ontains nodes related to the NSP problemwe want to illustrate. Thus, every edge in the example graphs may represent afull SP-reduible subgraph of the original graph, and the propagated dependeneis not eliminable by a transitive redution. We name these edges as SP branhes.De�nition 3.3.2 The SP branhes of a graph G are the subgraphs S � G thatare themselves SP graphs, S 2 SP. 2Consider for example the graphs in Fig. 3.5. The graphs on the right siderepresent the forbidden indued subgraphs found in the transitive losure of theleft side graphs. The light-grey edges represent SP branhes of the original graph.Thus, the original left-side graphs are homeomorphi to the forbidden subgraph,and the transformation solutions presented below an be applied to both of them.We present three di�erent methods to resynhronize the forbidden subgraph.The �rst two methods an be applied in two di�erent forms. The �nal �vetransformations are illustrated in Fig. 3.6. Any of them an be used to eliminatean isolated NSP problem. The four nodes related to the forbidden subgraph arenamed s; v; v0; t, aordingly to their role to simplify the referenes in the text.Up synhronization: An SP branh is resynhronized hanging the leaf of thebranh for an anestor of the original leaf. This transformation an beapplied to two di�erent SP branhes related to the forbidden subgraph(v; t) or (s; v0).� G0, resynhronizing (v; t): New dependenes are reated from thenodes in the SP branh represented by (v; t) to v0 and, thus, to nodesin the SP branh represented by (v0; t). New dependenes added arede�ned by: fw : v � w � tg � fw0 : v0 � w0 � tg� G00, resynhronizing (s; v0): New dependenes are reated from thenodes in the SP branh represented by (s; v0) to v and, thus, to nodes
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G W

Figure 3.5: Example graphs homeomorphi to the W forbidden subgraphin the SP branhes represented by (v; t) and (v; v0). New dependenesadded are de�ned by:fw : s � w � v0g � � fw0 : v � w0 � v0gfw0 : v � w0 � tgDown synhronization: An SP branh is resynhronized hanging the rootof the branh for a desendant of the original root. This transformationan be also applied to two di�erent SP branhes related to the forbiddensubgraph (v; t) or (s; v0).� G0, resynhronizing (s; v0): New dependenes are reated from thenodes in the SP branh represented by (s; v) to nodes in the SP branhrepresented by (s; v0). New dependenes added are de�ned by:fw : s � w � vg � fw0 : s � w0 � v0g� G00, resynhronizing (v; t): New dependenes are reated from thenodes in the SP branhes represented by (s; v0) and (v; v0) to nodes
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Figure 3.6: Methods for resynhronization of graphs homeomorphi to Win the SP branh represented by (v; t). New dependenes added arede�ned by: fw : s � w � v0gfw : v � w � v0g � � fw0 : v � w0 � tgAross synhronization: In this third more general transformation, the threeSP branhes (s; v0); (v; v0); (v; t) are splited in two parts. The �rst part ofthe three branhes is resynhronized over a new zero loaded node. Edgesfrom this node to the seond parts of the three branhes are added toonnet the graph. Let S1; S2; S3 be the subgraphs orresponding to thethree SP branhes:S1 � G : S1 2 SP ;R(S1) = fsg;L(S1) = fv0gS2 � G : S2 2 SP ;R(S2) = fvg;L(S2) = fv0gS3 � G : S3 2 SP ;R(S3) = fvg;L(S3) = ftg



104 CHAPTER 3. THEORETICAL APPROACHLet A1; A2; A3 be the sets of nodes in the �rst part of the three branhes,and B1; B2; B3 be the sets of nodes in the seond part of the three branhes.The �rst part will ontain at least the root of the branh, and the seondpart will ontain at least the leaf of the branh:Ai; Bi � Si : Ai [Bi = Si;Ai \Bi = ;;8w0 2 Bi; w0 6� w 2 AiThe transformation works adding the node and dependenes de�ned by:V = V [ fgw 2 Ai �  � w0 2 BiIt is possible to eliminate any NSP problem (or ombinations of them) byapplying several up/down synhronizations in order to eliminate loal problems.With no information about the workload of the impliated nodes it is not possibleto deide when up or down synhronization may inur in a higher penalty in theritial path. On general graphs, the up/down synhronization may serialize bigsubgraphs with high probabilities of many added dependenes.The aross synhronization an be applied in only one way in the ontext ofthe basi NSP problem or forbidden subgraph elimination. However, when theedges represent non-empty SP branhes, we must propose a rule or strategy todeide whih nodes will be in the �rst and seond parts of the branh. In Fig. 3.7we show an example of two di�erent strategies for utting subgraphs duringan aross synhronization (dotted edges represent original graph edges whihdegenerate in transitivities, and an be eliminated). The deision relies again inthe information we have about the workload of the nodes in these subgraphs. Ifproperly applied, aross synhronization may derive in lesser amount of addeddependenes ompared with up/down synhronization, espeially when appliedto ombined NSP problems, as the ones presented in next setion.3.3.3 Combinations of NSP problemsWhen a graph presents several NSP problems, the indued forbidden subgraphsmay be omposed. (In [14℄ three omposed forbidden subgraphs are studied todeide whih nodes must be hosen to minimize the redution sequene. Someof those graphs are somehow related or inspiration for our resynhronizationsolutions).We present here di�erent ompositions of the basi NSP problem suitableto be resynhronized with the three previous methods. Further ombinations ofthese ompositions may reprodue any NSP graph topology.To simplify the mathematial notation of preedenes, for the following de-sriptions we assume there exists a soure and a target node s; t 2 V that are
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Figure 3.7: Example of di�erent strategies for aross synhronization



106 CHAPTER 3. THEORETICAL APPROACHrespetively before and after all nodes related to the NSP problems in the om-bination (denoted by W � V ): s � fw : w 2Wgfw : w 2Wg � tSeries NSP omposition: There exists two similar problems, haraterized bya series omposition of several v or v0 nodes.Problem1 : W = fv; v01; v02g; v � v01 � v02; v �Gnfv01g v02Problem2 : W = fv1; v2; v0g; v1 � v2 � v0; v1 �Gnfv2g v0This ombination an be eliminated by several up/down synhronizations.Both problems an also be eliminated by a ombined aross synhroniza-tion. See in Fig. 3.8 an example of eah type of transformation whereG0 and G00 represent solutions with up/down synhronizations respetively,and G000 the aross synhronization solution.
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Figure 3.8: Resynhronization of graphs homeomorphi to Series-NSP



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 107Parallel NSP omposition: There exists two similar problems, haraterizedby a parallel omposition of several non-dependent v or v0 nodes.Problem1 : W = fv; v01; v02g; v � v01; v � v02; v01���v02Problem2 : W = fv1; v2; v0g; v1 � v0; v2 � v0; v1���v2The omposition an be eliminated by several up/down synhronizations.Both problems an also be eliminated by a ombined aross synhroniza-tion. See in Fig. 3.9 an example of eah transformation where G0 and G00represent solutions with up/down synhronizations respetively, and G000the aross synhronization solution.
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Figure 3.9: Resynhronization of graphs homeomorphi to Parallel-NSPChain NSP omposition: An NSP problem is hained with another NSP prob-lem when the v0 node of the �rst of them is inserted between the v and tnodes of the seond.W = fv1; v2; v01; v02g; v1 � v01; v2 � v01; v2 � v02; v1���v2; v01���v02Several problems may be onseutively hained. Suh a hain of NSP prob-lems an be eliminated by a full aross synhronization. See an example



108 CHAPTER 3. THEORETICAL APPROACHof two hained NSP problems and their resynhronization with aross syn-hronization in Fig. 3.10.Up/down synhronizations may be also used to eliminate a hain of NSPproblems. However, it is a ompliate operation that must be done in sev-eral phases, eah of them with several hoies for up/down synhronization.For example, a hain of two NSP problems has three NSP problems. Thetwo original ones and the problem originated by the hain omposition. Wemust eliminate �rst the loal problems (eah of them with up or down syn-hronization), before the problem originated by the hain is exposed andan be eliminated itself (with two up or two down synhronization possi-bilities). Apart from the amount of hoies, other problem assoiated withthis up/down synhronizations is that the hained problems, will be om-pletely serialized, probably loosing a big amount of the original parallelism.
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Figure 3.10: Resynhronization of graphs homeomorphi to 2 Chained-NSPCrossed NSP omposition: Two NSP problems are rossed when both v0nodes are inserted between the v and t nodes of the other problem. Multi-ple NSP problems may be rossed with one or several of the others to formmultiple rossing NPS ompositions.W = fv1; v2; v01; v02g; v1 � v01; v02; v2 � v01; v02; v1���v2; v01���v02A olletion of rossed NSP problems an be solve with aross synhroniza-tion. See an example of this resynhronization on a rossed omposition oftwo NSP problems in Fig. 3.11.As in the hain problem, many hoies for up/down synhronizations exist,but �nally they serialize all the v nodes, and all the v0 nodes impliated in
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tFigure 3.11: Resynhronization of graphs homeomorphi to 2 Crossed-NSPthe rossing, leading to a high loss of the original parallelism due to addeddependenes.For simple ombinations of NSP problems (series or parallel NSP problems)any tehnique may be appropriate, and no lear lues about whih one to hoosean be given without workload information or full topology inspetion. For om-plex ombinations (hain and rossed NSP problems) we detet that if up/downsynhronizations are used, the serialization of nodes inreases with the numberof loal NSP problems impliated. For these problems it seems more appropriateto try the aross synhronization method. However, the utting strategy mustbe arefully seleted, as it ould have an important impat on the results.3.3.4 Simple SP-ization tehniquesWe present here two simple graph transformations that orrespond to SP-izationtehniques. They introdue the idea of SP-ization and motivate the presentationof our omplex algorithms in the following setions.Tehnique 1: SerializationThis �rst tehnique is a trivial example of what an SP-ization an be, but uselessfor pratial purposes. It onsists in a full serialization of the graph nodes,transforming the partial order de�ned by the graph in any total order that honorsthe original partial order. The result is a series graph, that is also SP.De�nition 3.3.3 Let �t be any topologial order of G = (V;E). Then, an SP-ization Ts an be de�ned by:



110 CHAPTER 3. THEORETICAL APPROACHTs(G) = (V;E0);E0 = f(v; w) : v �t w;�; v �t  �t wg 2An example of the appliation of this tehnique is shown in Fig. 3.12. Withthis transformation most of the information provided by the original dependenesis lost, and so many new dependenes are added that all parallelism expressed inthe original graph disappears.
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One topological order: 1, 2, 4, 6, 5, 7, 10, 8, 9, 3, 12, 11, 13, 15, 14, 16, 17, 18
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Figure 3.12: Tehnique 1 - Serialization based on topologial orderTehnique 2: WSSynh (Simple layering synhronization)The seond tehnique onsists in a full barrier synhronization of node layers.For this tehnique the information provided by the graph dependenes is usedonly to determine the layers with a wide or breadth �rst searh of the graph.Thus, the name WSSynh (Wide �rst Searh Synhronization). The wide �rstsearh of a graph visits the nodes in level or depth order. Eah layer ontainsthe nodes with the same depth.De�nition 3.3.4 Let G = (V;E) be a graph, with a maximum depth level k =D(G). The Wide �rst searh layering LWS (G) is a partition of the graph nodesaording to:LWS (G) = PG = fl1; l2; :::; lkg; li = fv : d(v) = ig; i = 1:::k 2



3.3. TRANSFORMATION PROBLEM (NSP TO SP) 111Based in the previous layering de�nition, we de�ne the WSSynh or layeringtransformation as follows. An example of the appliation of this tehnique isshown in Fig. 3.13.De�nition 3.3.5 Let G = (V;E) be a graph, then an SP-ization Tp an bede�ned by: Tp(G) = (V 0; E0);LWS (G) = fl1; l2; :::lkgV 0 = V [ fb1; b2; :::; bk�1gE0 = f(v; bi) : v 2 lig [ f(bi; v0) : v0 2 li+1g 2The tehnique does not exploit the possible short distane of the graph to anSP form. The number of dependenes added an be really high for graphs withlow redution omplexity �(G). Spei�ally it destroys the SP subgraphs of Gthat ould be preserved.The advantage of this tehnique is that there exist fast algorithms with lowtime omplexity bounds O(max(n;m)) to ompute the level of the nodes andthe layering (see e.g. [29℄). Moreover, the result is the only possible SP-izationfor many spei� regular strutures related to ommon appliations (see 4.2). Infat this tehnique has been previously exploited with modeling tehniques forsalability and performane analysis of ommon parallel strutures [130℄. At thesame time it an be used to trivially map suh strutures to the BSP model ofomputation.
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Figure 3.13: Tehnique 2 - Full barrier synhronization based on layering



112 CHAPTER 3. THEORETICAL APPROACHOther layering tehniques not based in wide �rst searh (or node level) arepossible, and for some graphs the inrease of the number of dependenes an belesser. However they are spei� for the graph topology.3.4 Algorithm 1: Loal explorationWe present here our �rst full SP-ization algorithm, introdued in [83℄ and fullyexplained in [82℄. It was the result of our introdutory exerises to the NSPto SP transformations, and it was quikly superseded by our seond algorithmpresented in setion 3.5. Thus, a formal proof of orretness was never devised.Instead, an implementation was heuristially tested with about twenty thousandrandom graphs with up to hundreds of nodes. Its main interest is the loalstrategy used. The algorithm searhes for the less omplex or more loal NSPproblem ombinations, to solve them before ontinue in an inside-outside style.The tehnique uses a mixed approah of up and aross synhronizations. Theore of the algorithm is the searh tehnique that identi�es the nodes related to aloal NSP problem. Depending on the input order (node labeling) the solutionsan be di�erent. In this setion we will present some new notations used in thealgorithm, a formal de�nition of the transformation, and a full explanation ofthe algorithm strategy with an example.3.4.1 NotationsDe�nition 3.4.1 We lassify nodes in three broad ategories in terms of theirsynhronization role in the graph:Fnodes(G) = fv 2 V : jSu(v)j > 1gJnodes(G) = fv 2 V : jPred (v)j > 1gJFnodes(G) = Fnodes \ Jnodes 2The algorithm gathers information of NSP problems and their ompositionfrom a minimal SP redution ([G℄) of the original graph. During the omputa-tion of [G℄, several series or parallel redution operations are applied to redueSP branhes to a single edge (see setion 3.2.1). We use an annotation sys-tem to keep trak of the ending edges of an SP branh, to modify them in theresynhronization phase.De�nition 3.4.2 We assoiate a Set of edges Z to any edge in the graph:Z : E 7! 2E



3.4. ALGORITHM 1: LOCAL EXPLORATION 113After a series redution operation, let e be the new edge introdued by Gs�v, and(s; v); (v; t) the edges that disappear, thenZ(e) = Z(e0); e0 = (v; t)After a parallel redution operation, let e be the new edge introdued by GpÆ(v; v0)then Z(e) = [fZ(e0) : e0 = (v; v0)g 23.4.2 SP-ization tehniqueHere, we de�ne formally the transformation applied by the algorithm. It is basedon the appliation of a resynhronization operation on a olletion of nodes re-lated to a ombination of NSP problems. The strategy we propose now worksproperly when the input is the transitive redution G� of the graph to be trans-formed. Edges whih represent transitive dependenes onfuses the algorithmand makes it serialize unneessary nodes. Thus, a previous phase must omputethe transitive redution of G.We de�ne the handles (F; J) of an NSP problem, as a pair of node sets withthe properties to be de�ned below. The F and J sets will ontain the v andv0 nodes related to an NSP problem ombination, whih is suitable to be solveby one aross synhronization. We present �rst the properties of these sets, andthen the searh strategy to �nd them.De�nition 3.4.3 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its mini-mal SP redution. (F; J) is a pair of node sets (F � VR; J � VR), alled handleswith the properties: (a) All nodes in F are onneted with at least one node inJ , and all nodes in J are onneted with at least one node in F ; (b) all nodes inF have all their suessors in J , exept suessors that are desendents of othernodes in J , and suessors that are also in F ; () all nodes in J have all theirpredeessors in F , exept predeessors with an anestor in J .Let us denote the nodes in (F; J) sets with f 2 F ; j; j0 2 J . Then,J � Jnodes([G℄); F � Fnodes([G℄);8f;9j : (f; j) 2 ER;8j;9f : (f; j) 2 ER;8f;8t 2 Su(f); t 2 J _ 9j0; j0 � t8j;8s 2 Pred(j); s 2 F _ 9j0; j0 � s 2



114 CHAPTER 3. THEORETICAL APPROACHThe searh strategy to �nd a pair of (F; J) sets an be desribe as follows (allthe graph operations are related to the minimal redution graph [G℄):1. Selet an initial F node related to an NSP problem. The only ondition isthat it must have a suessor that is a J node.f0 2 Fnodes([G℄) : 9j 2 Su(f); j 2 Jnodes([G℄)2. Create empty set pairs. One for exploration (F 0; J 0) and one for �nal nodes(F; J). Put f0 in the initial F 0 set:F 0 = ff0g; J 0 = fg; F = fg; J = fg3. DO UNTIL F 0 = fg(a) Loate suessors of F 0 nodes. The new J 0 set has those suessorswhih are not in J , and are not dependent on other J nodes:J 0 = fj0 2 Su(f 0 2 F 0) :6 9j 2 J; j � j0g(b) Eliminate J and J 0 nodes dependent on other new J 0 nodes:J = J n fj : 9j0 2 J 0; j0 � jgJ 0 = J 0 n fj0 : 9j00 2 J 0; j00 � j0g() Move explored F 0 nodes to F :F = F [ F 0(d) Eliminate F nodes whih has no more suessors in J and J 0 due toelimination: F = F n ff : (J [ J 0) \ Su(f) = ;g(e) Loate predeessors of J 0 nodes. The new F 0 set has those predeessorsthat are not in F and are not dependent on any J node:F 0 = ff 0 2 Pred(j0 2 J 0) : f 0 62 F ; 6 9j 2 J; j � f 0g(f) Move explored J 0 nodes to J :J = J [ J 0



3.4. ALGORITHM 1: LOCAL EXPLORATION 115At the end of this proedure, the (F; J) sets have the properties de�ned previ-ously. We de�ne now a resynhronization operator that modi�es G suh thatthe olletion of [G℄ edges with its soure node in F and its target node in J aresubstituted for: (1) a new synhronization node, and (2) a olletion of edgesfrom the nodes in F to the new node, and from the new node to the nodes in J .De�nition 3.4.4 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its mini-mal SP redution. For a given pair of node sets (F; J), let A = f(f; j) 2 ER :f 2 F; j 2 Jg be the set of edges with the soure in F and the target in J . Wede�ne the resynhronization operator . as follows:G . (F; J) = (V 0; E0);V 0 = V [ frgE0 = E n fZ(e) : e 2 Ag[f(s; r) : (s; t) 2 Z(e); e 2 Ag[f(r; t) : t 2 Jg 2To improve the SP ompositional looking of the result, we may synhronizethe branhes of any node in the F set with its own dummy synhronization point,and then, synhronize all dummy nodes over the general resynhronization point.This similar, although more omplex, resynhronization operator may be de�nedas follows.De�nition 3.4.5 Let G = (V;E) be an STDAG, and [G℄ = (VR; ER) its min-imal SP redution. For a given pair of node sets (F = ff1; f2; :::; fng; J), letA = f(f; j) 2 ER : f 2 F; j 2 Jg be the set of edges with the soure in F and thetarget in J . We de�ne the resynhronization operator . as follows:G . (F; J) = (V 0; E0);V 0 = V [ fri : i = 0; :::; ngE0 = E n fZ(e) : e 2 Ag[f(ri; r0) : i = 1; 2; :::; ng[f(s; ri) : (s; t) 2 Z((fi; j) 2 A)g[f(r0; j) : j 2 Jg 2



116 CHAPTER 3. THEORETICAL APPROACHDe�nition 3.4.6 Let G = (V;E) be a graph, then an SP-ization TAlg1 an bede�ned by the reursive appliation of a resynhronization operator . for any(F; J) sets until the result is an SP graph:TAlg1 (G) = ( (((G . (F; J)) . (F 0; J 0)) ::: . (F n; Jn) ) 2 SP 2This strategy leads to some troubles in speial situations that must be onsidered.They are disussed in the following setions.3.4.3 JF ombinationsA JF ombination is a topologial feature of a graph haraterized for dependenerelations desribed as follows (See an example in Fig. 3.14):JFombination = (f; j); f 2 Fnodes(G); j 2 Jnodes(G) :9f 0; j0; f 0 2 Fnodes(G); j0 2 Jnodes(G);f 0 � j � f � j0
j

f

j’

f’

f/j

j’

f’

Figure 3.14: Example of JF ombinationsIn a JF ombination, the relation j � f implies that all j0 nodes suh thatf � j0, will be erased from J set beause of transitive relation with other nodesin the J set (j � f � j0). Consequently, f will have no suessors in the J setand it will be also erased from the F set. The only nodes in handles sets will be�nally f 0 and j0.However, deteting a JF ombination as soon as possible ould avoid some for j reursive exploration from nodes that we know they are going to disappearfrom the set. Or even we an mix two di�erent NSP problems as we explain inthe following setion.



3.4. ALGORITHM 1: LOCAL EXPLORATION 1173.4.4 Mixing problems through JF ombinationsSometimes, the topology of the graph presents a JF ombination in whih thef node has two j nodes assoiated to di�erent NSP problems. See Fig. 3.15.Depending on the order in whih the nodes are explored and introdued in the
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f’

j

1j’ j’2Figure 3.15: Example of mixed problems through a JF ombinationsets, we an add J nodes and F nodes from the di�erent problems in the exploringsets, before deteting and eliminating the JF ombination. In the Fig. 3.15example, if node f is added to F set and is explored, j01; j02 are added to J set.In the next phase, new nodes in J set are explored to �nd their F handles. Theexploration of j01 will add nodes ; d to F , and j02 exploration will add f 0 to Fset. In next phase the transitivity relation from f 0 to j; f; j0 will be disoveredand f; j will be eliminated from their sets. But at this point, we have in Fset the non-dependent nodes ; d; f 0, that are related to two di�erent loal NSPproblem ombinations named problem A, and problem B in the �gure. If theexploration begins with f 0 or ; d instead of f , this situation does not happen. Inthis ase, the way the resynhronization is done is not inorret but non-optimal.In Fig. 3.16(a) is shown what is the result after resynhronizing problem A �rst,and then problem B in a natural way. Fig. 3.16(b) shows how the algorithmresynhronizes the branhes when it mixes the problems.Deteting and eliminating JF ombinations as soon as possible minimizes theprobability of mixing the problems. Eah time we add a new f or j node to thesets, we an hek for the transitivity relation from j nodes to f nodes. Thus,the JF ombinations are deteted and the wrong f node eliminated. Althoughthis tehnique minimizes the probabilities of mixing the problems it may stillhappen. The loal searh for J,F nodes, in whih the algorithm is based, an notavoid this problem.
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Figure 3.16: Solutions of a mixed problem through a JF ombination3.4.5 ExampleWe demonstrate the way our algorithm works with an example graph shown inFig. 3.17(a). Its minimal SP redution graph, shown in Fig. 3.17(b), has theedge annotations presented in Table 3.1.
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(a) (b)Figure 3.17: Example NSP graph and its minimal SP redutionThe evolution of the J and F sets during the problem handle detetion phasean be seen in Table 3.2. The �rst olumn of this table (hekpoint number N)desribes the event sequene. The algorithm would then proeed as follows:We an hoose as initial F node either nodes 3, 4, 5 or 7. All of them have



3.4. ALGORITHM 1: LOCAL EXPLORATION 119e Z(e)(4,9) (6,9)(5,9) (8,9)(7,18) (10,18)(3,17) (12,17) (16,17)Table 3.1: Edge annotations in the minimal SP redution graphSP branhes to at least one J node. If we suppose that node 7 is the initialNSP problem, we would add it to the F set and explore it to loate its related Jnodes 9 and 18, whih should be inluded in the J set (hekpoints 1 ! 2). Inhekpoint 3, we explore the J nodes just added in the previous step and theirrelated F nodes 4, 5 and 17 |whih is taken as an F handle beause it is also theorigin of an SP branh. In hekpoint 4, we explore the next unexplored nodein the F set, e.g. 4, and a new J node is obtained for the J set, namely node 7.In hekpoint 5, we test transitivities in J set, whih implies the elimination ofnodes 9 and 18, sine node 7 represents their transitive losure and is the onlyone kept in the J set. In hekpoint 6, we detet how node 7 is also present inthe F set, whih represents a J{F ombination to be ruled out from the F set.In hekpoint 7, the F handle 17 is taken out from the F set beause there is noJ node related to it in the J set. In hekpoint 8, we explore the next F node(5) and introdue a new J node in the J set (11). As a onsequene, a new Fnode has to be added to the F set (3) after the exploration of this last J node;when this new F node (3) is explored, a new J node is added to the J set (17)whih is then ruled out beause of the transitivity relation with node 11. Whenwe reah this point, we are at hekpoint 11 and there are no more J or F nodesunexplored, whih onludes the searh of the handles.N F set J set1 7 -2 7 9,183 7,4,5,17 9,184 7,4,5,17 9,18,75 7,4,5,17 76 4,5,17 77 4,5 78 4,5 7,119 4,5,3 7,1110 4,5,3 7,11,1711 4,5,3 7,11Table 3.2: Deteting the problem handles



120 CHAPTER 3. THEORETICAL APPROACHAfter the resynhronization phase, both graphs, original and the minimalSP redution with the same transformation, looks like Fig. 3.18(a) and (b) re-spetively. Computing the new minimal SP redution graph, we obtain a trivialgraph, beause it is already SP. No more algorithm iterations are needed.
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Figure 3.18: Solving the NSP problem in the original and SP redued graph3.4.6 ComplexitySpae omplexityWe use no more than two graphs at the same time; the original one and itsminimal SP redution. Any graph needs spae for the nodes and for the edges.The nodes spae is O(n) and the edges O(m). During the algorithm work weadd a �xed amount of extra information in the nodes O(n), and we also addannotations in the edges whih represent SP branhes. Annotations are non-overlapping subsets of the edges from the original graph. Thus, the whole amountof edges information is bounded by O(m).On the synhronizations we are adding more nodes. For eah F node that issynhronized we add a new node. And one more node for eah resynhroniza-tion. The number of F nodes an be (n � 1). (All the nodes exept the leaf).The number of resynhronizations depend on the number of independent NSP



3.4. ALGORITHM 1: LOCAL EXPLORATION 121problems, bounded by the number of F nodes, at most (n � 1). So the numberof solves we need is in the worst ase (n� 1). (All the nodes exept the leaf).The number of �nal nodes on the SP graph is at most n + 2(n � 1) that isO(n). The �nal graph is SP, and it does not ontain redundant edges and/ortransitivities. Thus, the number of �nal edges is also O(n) (see lemma 3.2.9).The �nal spae omplexity bound is:O(n+m)Time omplexityThe omplexity of the di�erent operations that the algorithm does are:� Computing the transitive redution of the graph: Transitive edgesmislead the algorithm to resynhronize non neessary parts of the graph.To improve solutions, transitive edges should be eliminated.Transitive losure and redution is a well studied problem. The typialalgorithm to ompute transitive losure/redution is Warshall's algorithm,based on Floyd's, with time omplexity O(n3). However, faster algorithms,based on Strassen's matrix multipliation algorithm have been devised toobtain omplexity O(n2:81). See for example [29℄.� Compute the minimal SP redution graph: A node is series-reduedonly one, eliminating two graph edges and introduing another (redutionsfor the whole graph are done in O(n)). When a node is series-redued, itis possible to hek if the edge already exists in the graph, avoiding in-luding redundant edges and also parallel redution operations. When aseries redution is performed, the soure and target nodes an be hekedto detet if the new hange makes them available for series redution reur-sively. Considering this strategy the total number of heks and redutionoperations is done in O(n), but the annotations update may need O(m)time omplexity.� Choose an NSP Problem: Any F node an be heked. For any hekednode we must traverse through any leaving edge looking for suessors. Inthe worst ase, all edges of the graph are evaluated to detet an F nodewith only J nodes as suessors. Thus, the operation an be done in O(m).� Identify problem handles: This proess is repeated until the problemis fully deteted. We do not know how many nodes are related to theproblem as F nodes or as J nodes, and some nodes an be explored in thetwo ways before the J/F problem is deteted.To ompute the upper bound we onsider that any node ould arrive atthe F or J set, or both. Eah time a node arrive at a J set we must hek



122 CHAPTER 3. THEORETICAL APPROACHdependenes in both diretions. Dependenies for all the graph an bepreviously pre-omputed, during the transitive redution phase. Thus, thisphase an be done in O(n).The hek for old F nodes implies looking forward the suessors of all Fnodes in the set. As we onsider that any number of nodes ould be in theset, in the worst ase we must traverse all the edges in the graph. Whenwe look for predeessors of new J nodes, and suessors of new F nodes weuse the same onsiderations, so �nally we an explore all the edges in thegraph in both diretions (O(m)).Identify problem handles an be done in O(n+m).� Solve problem: The resynhronization moves the SP branhes involveddeleting their �nal edges (original edges from the graph) and adding onenew edge to the synhronization point for every SP branh. In the worstase all the nodes minus one are in the F set, and all the leaving edges areSP branhes, so all the edges in the graph are realloated in O(m).Then, the algorithm adds one edge from the synhronization point to any Jnode in the set. As no more than n�1 nodes an be J nodes, the operationan be done in O(n).All the operations desribed above are done one for any NSP problem. Thealgorithm does several operations with a maximum order O(n + m). We donot know how many non-related NSP problems may be in a graph. We mayassume a bad upper bound in whih any F node is assoiated to a di�erent NSPproblem. The �nal number of detetion and resynhronization iterations wouldbe n � 1. In eah resynhronization we add one dummy node, so the numberof nodes is growing in eah iteration from n to 2n � 1. The number of nodesis always O(n). The number of resynhronizations is O(n). The number ofoperations for eah resynhronization is O(n +m). The time omplexity of allproblems resynhronization operations is: O(n2 + n�m). In a onneted DAG,O(m) � O(n). Hene, the time omplexity is bounded by: (1) the transitiveredution omputation (optional but strongly reommended), and (2) the graphresynhronizations O(n�m). Algorithm time omplexity is:O(n2:81 + n�m)Considering that transitive redution is more neessary as the number ofedges grows, and that O(m) � O(n2), when the produt n �m is in O(n3) theproblem solving dominates the transitive redution. On the other hand, whenn �m is in O(n2:81), the transitive redution ould be skipped with minimumpenalty for the algorithm solution. Thus, we onlude that the algorithm timeomplexity is dominated by: O(n�m)



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1233.5 Algorithm 2: Loal layering tehniqueIn this setion we introdue a new SP-ization algorithm with the following inter-esting features [85℄:� A redued time omplexity: O(m+ n logn).� Loal resynhronization of minimum number of nodes, guided by globaltopology information.� It does not inrease the ritial path for UTC (Unit Time Cost) graphs,keeping the nodes layering struture of the original graph.� The solution of the algorithm is the same for a given topology independentlyof the input order (node labeling).The algorithm is based on a depth level searh, solving loal NSP problemswhile it traverses the graph. At any time, the already proessed subgraph is SP.A tree representing the minimal series-parallel redution graph of the proessedsubgraph is used to help in the searh for handles, transitivity heks and op-erations that have lesser omplexity bounds in a tree than in a generi DAG.Evaluation of edges that express dependenes aross several layers is delayeduntil the targeting layer is proessed. A full implementation in JAVA languageould be provided by the author upon request.3.5.1 NotationsLet G = (VG; EG) be the input graph:De�nition 3.5.1 We de�ne d-edges as the subset of edges whih soure andtarget have non-onseutive depth levels:(u; v) 2 EG : d(v) � d(u) > 1 2De�nition 3.5.2 A Layer is the subset of graph nodes with the same depth level:Li � VG;Li = fv 2 VG : d(v) = ig 2



124 CHAPTER 3. THEORETICAL APPROACH3.5.2 Algorithm desriptionInitialization phase:i. Transform the input DAG into an STDAG using the method presented inde�nition 3.1.17.ii. Layering of the graph. Compute a partition of VG, grouping nodes with thesame depth level.iii. Initialize an anillary tree T = (VT ; ET ) to L0. This tree will represent theminimal series-parallel redution of the step by step proessed subgraphs.Graph transformation:For all layers (sorted) i from 0 to D(G)� 1:a. Split layer in lasses of relatives: Let us onsider the subgraph S � Gformed by Li [ Li+1 and all edges from G inident to two nodes in thissubset. We onstrut the partition of this nodes into onneted subgraphs.We de�ne relatives lasses as the subsets of nodes that belong to the sameonneted omponent of S and the same layer, as in Fig. 3.19.
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D 2Figure 3.19: Example of relatives lasses indued between two layersPU = fU1; U2; :::; Ung will be the up lasses (of nodes in Li) and PD =fD1;D2; :::;Dng will be the down lasses (of nodes in Li+1). Eah lassU 2 PU indues a lass D 2 PD that belongs to the same onnetedomponent (U ! D).b. Tree exploration to detet handles for lasses of relatives: We look inthe tree for handles. For eah U lass, the U-handle (h0(U)) is the nearestommon anestor of all nodes in U :H 0(U) = fv 2 VT : 8w 2 U; v �T wgh0(U) = h 2 H 0(U) : 8h0 2 H 0(U) : d(h) � d(h0)



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 125We de�ne KT (U) as the set of soure nodes to the indued lass D (itinludes U and soure nodes of d-edges targeting D): Soures of edgesshowing transitive dependene to D through the U-handle are to be dis-arded from KT (U):KT (U) = fv 2 VT : (v; w) 2 EG; w 2 D; v 6�T h0(U)g [ fh0(U)gThe handle node of lass U , h(U) is de�ned as:H(U) = fv 2 VT : 8w 2 KT (D); v �T wgh(U) = h 2 H(U) : 8h0 2 H(U) : d(h) � d(h0)We also de�ne the forest of a lass, as the set of omplete sub-trees belowh(U) that inlude nodes in KT (U):SubF (U) = fu 2 VT : v �T u; (h(U); v) 2 ET ; v �T w : w 2 KT (U)gIn Fig. 3.20 we show a diagram of all onepts de�ned in this setion.
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Figure 3.20: Example of handles and forest for an U lass



126 CHAPTER 3. THEORETICAL APPROACH. Merge lasses with overlapping forests: Classes with overlapping forestsare merged in an unique U and D lass. They will be synhronized withthe same barrier.8U;U 0 2 PU : SubF (U 0) \ SubF (U) 6= ;U = U [ U 0;PU = PU n U 0U ! D;U 0 ! D0;D = D [D0;PD = PD nD0d. Capture orphan nodes: We de�ne orphan nodes as the leaves of the treeT that are not in any U lass (they are nodes in layers previous to i withonly d-edges to layers further than i+ 1). These nodes are inluded in theU lass of the forest they belong to.8v 2 SubF (U); v 2 L(T ); v 62 U ;U = U [ fvge. Class barrier synhronization: For eah �nal U ! D lasses:� Create a new synhronization node bU in the graph and the tree.VG = VG [ fbUgVT = VT [ fbUg� In G, eliminate all edges targeting a node in D. Add edges from everynode in U to bU and from bU to every node in D (barrier synhroniza-tion). EG = EG n f(v; w) : w 2 DgEG = EG [ f(v; bU ) : v 2 UgEG = EG [ f(bU ; w) : w 2 Dg� Substitute every d-edge (v; w) with soure v 2 SubF (U) and targetinga node w 2 Lk : k > i + 1 (a further layer) for an edge (bU ; w). Thisoperation eliminate d-edges from the new synhronized SP subgraph,but avoiding the loss of dependenes in the original graph.dE(U) = f(v; w) 2 G : v 2 SubF (U); w 2 Lk; k > i+ 1gEG = EG [ f(bU ; w) : (v; w) 2 dE(U)gEG = EG n dE(U)� Substitute the forest SubF (U) in T for an edge (h(U); bU ) represent-ing the minimal series-parallel redution of the new synhronized SPsubgraph. T = T n SubF (U)ET = ET [ f(h(U); bU )g



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1273.5.3 ExampleAn example of the algorithm applied to a given graph is shown, step by step,in Fig. 3.21,3.22,3.23. For eah step, the �rst and seond olumns present thegraph and tree respetively, as a result of the previous step. For step 1 we presentthe original graph with a layering diagram and the root initialized tree. The thirdolumn is a diagram of the exploration phase on the tree. U and D node lassesare shown with di�erent grey shades, showing the graph related edges (not inthe tree) by dashed lines.We also mark with names the orphan nodes, d-edges to further layers and thetransitive/non-transitive property over the U-handle, of the d-edges arriving at Dlasses. U-handles are marked with h0(U) and �nal handles with h(U). Forestsunder eah handle are surrounded by trapezoids. New added synhronizationnodes are represented with smaller irles.We omment now the remarkable algorithm features in the example. Step1 presents a ase with only one U lass with one node in the U lass (handle)and two nodes in the indued D lass. A new node 19 is added to the graph tosynhronize over the nodes in the D lass. In step 2, there are two U lass tosynhronize, being the handles the nodes in U lasses. A d-edge appears from anode in the seond lass, and it soure node 3 is hanged in the original graph tothe new synhronization node 21. Exploring phase in step 3, detets node 20 asthe U-handle of the �rst U lass as the nearest ommon anestor of all nodes inU lass (4,5). However, a d-edge to a node in the indued D lass (21,11), whihsoure node 21 is not transitive through the U-handle node 20, fores to explorefurther. The handle for lass 1 is not equal to the U-handle, but the nearestommon anestor of nodes 20 and 21, namely node 19. Moreover, forests underthe handles of lasses 1 and 2 overlaps in node 13, and they are merged andsynhronized together. Notie how the orphan node 12 is inluded in the mergedU lass and synhronized over the new node 22. Step 4 presents a situationwhere two U lasses have the same handle node 22, but non-overlapping forests.Thus, they are not merged, but synhronized with di�erent nodes 23 and 24. Instep 5 there is only one U lass, beause nodes 9 and 10 have only d-edges tofurther layers. The U-handle is the same node 16 in U lass. Nevertheless, thereare d-edges from previous layers. Edge (22,17) is disarded due to its transitiveproperty through the U-handle 16. However, edge (23,17) is not transitive. Thus,the handle node is the nearest ommon anestor of nodes 16 and 23, namely node22. The forest inlude now orphan nodes 9 and 10. In last step 6, there is onlyone U lass and two disarded transitive edges. The resulting graph is showntogether with the �nal tree, that is always a series graph in whih eah edgerepresents the minimal series-parallel redution of a full SP subgraph.
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3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 1313.5.4 CorretnessSine any tree an be easily transformed to a trivial SP STDAG, any graphwhih minimal series-parallel redution is a tree, will be SP. As an be easilyshown by indution on the depth of the STDAG, the minimal series-parallelredution graph at eah step is always a tree and, thus, has the SP property.We de�ne TDAG as the subset of DAGs that are one-rooted onneted trees.Proposition 3.5.3 A tree is SP:T 2 TDAG) T 2 SPProof: The STDAG of T (alled losure of T ) is the original T with an addedleaf bU onneted to all the leaves L(T ). Applying series redution to all originallyleaves of T and parallel redutions where there were several leaves with the sameparent, the result is equal to the losure STDAG of T 0, being T 0 the tree obtainedeliminating L(T ) from T . Proeed reursively until only the root of T and thenew leaf bU remain and the redution is the trivial graph. 2Proposition 3.5.4 A graph G whih series-parallel redution is a tree is SP.Proof: Compute the series-parallel redution of G until it is a tree. As provedpreviously the series-parallel redution of the losure of a tree is the trivial graph.Thus, the STDAG of the original graph an be series-parallel redued to the trivialgraph and is also SP. 2Corretness proof:1. The result does not loose dependenes: No node is eliminated from thegraph. During synhronization, all times an edge (v; w) is eliminated it issubstituted by two edges (v; bU ) and bU ; w). Thus, the original depen-dene is transitively keep through bU . All times a d-edge (v; w) : v 2SubF (U); v 2 Lj; j � i ^ w 2 Lk; k > i + 1 is moved down to the syn-hronization node, the original edge disappears and another edge (bU ; w)is added. After adding edges from U to bU , 8u 2 SubF (U); u � bU andv � bU � w.Thus, during the synhronization phase neither, the substitution of edgesor moving down d-edges eliminate original dependenes in G. No otheredge alteration is done in G.2. The result is SP: We all Si the subgraph of G that inludes all nodes inlayers L0; L1; :::; Li and all G edges inident to both nodes in Si.



132 CHAPTER 3. THEORETICAL APPROACHWhen the algorithm begins (for i = 0) T is initialized with the root of G.S0 is a one node tree. For i = 1 the losure of T and S0 is omputed andnodes in L1 are hanged from the new synhronization node. T and S1 aretrees and, thus, they are SP.In eah subsequent iteration (for i = i+ 1), we ompute PU , PD and theirhandles. Then we merge lasses with overlapping forests. Eah forest isomposed by trees that represent the series-parallel redution of a subgraphof Si. Eliminating in G edges from U to D and d-edges from SubF (U) forall lasses, Si gets disonneted from the rest of the graph, being a tree (ora graph that is a tree after series-parallel redutions). New synhronizationnodes and edges are added to losure every tree in T and G inluded in aforest of an U lass. Thus, after synhronization, Si+1 is a tree or a graphthat is a tree after series-parallel redutions. Si+1 is SP. T represents theseries-parallel redution of Si+1.Proeed by indution until the last iteration. In last iteration (for i =D(G) � 1), Li+1 is formed by the only one leaf of G. There is only one Ulass and one D lass. All resting sub-trees in T (and G) are losed togetherwith only one synhronization node and only one node (the leaf of G) isadded hanging from that new node. T , that represents the series-parallelredution of G is a series of nodes, its series redution is the trivial graph.Thus, G is SP.3.5.5 Critial path property for UTC graphsAn interesting feature of the algorithm is that it does not inrease the ritialpath value if the original graph has unit time ost per node. Transforming a graphto SP form, this property minimizes the possibilities for ritial path inrementwhen no knowledge of the task load distribution is available.Proposition 3.5.5 For an UTC (Unit Time Cost) input graph G, the result G0is not UTC (nodes added by the algorithm arry no load), but despite the addeddependenes, the ritial path is not inreased.Proof: For UTC graphs, the ritial path value of G is equal to the maximumnumber of nodes that an be traversed from a root to a leaf (pv(G) = 1+D(G)).The algorithm adds zero loaded synhronization nodes between layers. Theonly way of inreasing the ritial path is due to added dependenes that make anode from a layer i dependent on a node from layer j, being j > i. However, thealgorithm keeps the layers struture.Moving d-edges soures to a node in a layer previous to the target node layer,does not hange the depth level of any node. Substituting edges from nodes in U



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 133lasses to nodes in D lasses to inlude bU nodes keeps the depth level of U nodesand adds one to the depth level of every node in D lasses.In the resulting graph, all even layers are populated by zero loaded nodes andodd layers by nodes in the original layers. The longest path from the root to theleaf alternatively rosses nodes with unit and zero time ost. The number of unittime ost nodes in the longest path is at most 1 +D(G), and, thus, the ritialpath value in G0 is the same as in G. 23.5.6 ComplexitySpae omplexityLet n be the number of nodes and m the number of edges in the original graph.The number of nodes in the graph inreases with one more node for eah U lass.Every node appears just one in an U lass over the full algorithm run. Thus, thetotal number of nodes is upper bounded by 2n. The number of edges is upperbounded beause the proessed subgraph (after eah iteration) is SP, and thenumber of edges in an SP graph is bounded by m � 2(n� 2) (see lemma 3.2.9).Other anillary strutures (as the tree) store graph nodes and/or edges. Thus,spae omplexity is: O(m+ n)Time omplexitySTDAG onstrution an be done in O(n) and getting layers information in O(m)with a simple graph searh.Classes of relatives for two onseutive layers an be omputed testing aonstant number of times eah edge. Thus, all the lasses along the algorithmrun are omputed in O(m).Exploration of the tree for handles an be self-destrutive: Nodes are elimi-nated during the searh. While searhing for the handle of a lass, all the forestan be eliminated and orphan nodes and other lasses to be merged deteted (seesetion 3.5.7 for a desription of suh an implementation).Chek and eliminate a transitive edge an be done in O(1) if appropriate datastrutures are used for the tree [21℄, but assuming tree modi�ations are done inO(log n). O(n) nodes and edges are inserted and eliminated in the tree. Thus,all tree manipulation has a time omplexity O(n logn).The synhronization phase adds O(n) nodes, eliminate O(m) edges and adda bounded number of edges (O(n) beause it is an SP graph). The movement ofd-edges an be traed in O(n log n) with a tree-like groups joining struture toavoid real edge manipulation (see 3.5.7 for details).



134 CHAPTER 3. THEORETICAL APPROACHThus, time omplexity is: O(m+ n logn)3.5.7 ImplementationWe propose an implementation for the tree exploring phase. This implementa-tion is based on a self-destrutive searh of the tree that eliminates the alreadyused forests from the tree and detet handles with only one hek per node.This implementation is needed to bound the time omplexity as explained insetion 3.5.6.Searhing for handles: For any given U lass, we reate an exploration stru-ture all explorers (E). This struture stores nodes in sets indexed by depth level.E = (m;VE);m 2 N; VE = fV1; V2; :::; VmgWe initialize it with the nodes in any hosen U lass.8v 2 U : Vd(v) = Vd(v) [ fvgm = max d(v) : v 2 UFor all nodes in E with maximum depth, we eliminate them from the tree,and we add the parent of the eliminated node to the explorers struture (avoidingrepetition by marking the parent node when �rst visited).To eliminate a tree node, we hek previously if it is a leaf. If it is not,we proeed to eliminate all sub-trees hanging from it. The leaves of these sub-trees will be orphan nodes (that we immediately add to U) or nodes in other Ulasses. In this last ase, both lasses are merged, adding the new U nodes tothe explorers struture.When the explorers struture has only one node, this node is the U-handleh0(U). Then we hek the transitive ondition of all d-edges arriving at D in thetree with h0(U) to ompute K 0T (U). Non-transitive d-edges soures are addedto explorers and the searh is ontinued until the struture has again only onenode. This last node is the handle h(U), and is marked in the tree (a node anbe handle of several lasses at the same time).During exploration, a node that is proessed to be eliminated an also bemarked as handle of other previously explored lass or lasses. In this ase theselasses are also merged with the one being explored.When this exploring operation is performed for all U lasses, all handles havebeen deteted and marked, related lasses already merged, and forests SubF (U)deleted from the tree.



3.5. ALGORITHM 2: LOCAL LAYERING TECHNIQUE 135Traking of d-edges: During the elimination of tree nodes we keep trak ofd-edges from these nodes to further layers. Eah lass maintains a set of thesesoure nodes. When lasses are merged, these sets are also merged. When a lassis synhronized, this set will provide information for d-edges to be moved to thenew synhronization node.To keep trak of d-edges movements without performing modi�ations in thegraph, we use a modi�ed version of a disjoint-sets data struture with union byrank and path ompression (see e.g. [47℄). The struture will map any node labelto the node label of the �nal soure of the assoiated d-edges. A joining operationof a pair of node labels (i; j) will indiate that d-edges with soure i are to bemapped to soure node j. The struture has the property that for any sequeneof joining operations (i1; j1); (i2; j2); :::; (in; jn) where i1 6= i2 6= ::: 6= in all joiningoperations take O(n logn) to be performed, and any mapping query takes O(1).De�nition 3.5.6 We de�ne the Joining struture J = (~I; ~W; ~S), where ~I; ~Ware arrays of indexes and ~S is an array of sets of node labels (we de�ne N as theset of all possible node labels). Let n = jVGj:N = fi : N; i 2 [1::2n℄g~I; ~W : N2n~S : S2n; Si � fv : NgThe J struture is initialized as follows:Ii = i;Wi = i;Si = figIt supports a joining operation indiating that i must be mapped to j de�ned as:J t (i; j) : J ! J 0;J = (~I; ~W; ~S); J 0 = (~I 0; ~W 0; ~S0);I 0(Wi) = I(Wj)big = � Wi if jSWi j � jSWj jWj otherwisesmall = � Wi if jSWi j < jSWj jWj otherwiseW 0i =W 0j = bigS0big = Sbig [ Ssmall8k 2 Ssmall : W 0k = bigThe query funtion is de�ned as:J : VG ! VT ;J(i) =Wi 2



136 CHAPTER 3. THEORETICAL APPROACH3.5.8 Improvement: Unneessary synhronization nodesSome synhronization nodes may be eliminated. In situations where the U lass,the indued D lass, or both, have only one node, the new synhronization nodeis not neessary. The lonely node an play that role. This redues the number ofnodes and edges added, produing a ompletely equivalent graph result in termsof struture and dependenes between nodes from the original graph.We modify the algorithm synhronization phase along the following lines. Foreah �nal U ! D lasses:� Detet/reate synhronization node, and eliminate/add edges:1. If U = fug, bU = u:In G, eliminate all d-edges targeting a node in D.EG = EG n f(v; w) : w 2 D; d(v) < ig2. Else if D = fdg, bU = d:In G, eliminate all d-edges targeting a node in D.EG = EG n f(v; w) : w 2 D; d(v) < ig3. Else (normal ase where jU j > 1; jDj > 1): Proeed as in the originalalgorithm reating a new synhronization node bU , eliminating in Gall edges targeting a node in D, and adding edges from every node inU to bU and from bU to every node in D (barrier synhronization).� Substitution of d-edges with soure v 2 SubF (U), as in the original algo-rithm.� Substitute the forest SubF (U) in T for an edge (h(U); bU ), as in the originalalgorithm.In Fig. 3.24 we show the solutions obtained with the normal and the improvedalgorithms for the same graph example used previously. The dependenes stru-ture reated on the original graph nodes is the same for both solutions, althoughthe improved algorithm uses less nodes and edges.3.6 Measuring the SP-ization impatWe disuss now methods to evaluate the SP-ization impat in terms of struturalmodi�ation of the original topology and potential loss of performane after thetransformation. We study di�erent possible alternatives of the transformationimpat. The objetive is to propose a measure whih allows us: (1) to evalu-ate how di�erent SP-ization tehniques perform on a given graph, in order to
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Figure 3.24: Solutions obtained by the normal and improved algorithmsompare the tehniques themselves, and (2) to study, for an ideal transformationalgorithm, whih topologial or workload parameters of the graph are related tothe potential parallelism or performane loss indued by the added dependenes.After proposing a measure, we try to relate the potential transformation impatto simple topologial graph parameters as the depth level, the degree of paral-lelism or the synhronization density (see formal de�nitions on setion 3.1.3).Analytial models and experimental measures are disussed.3.6.1 Potential performane impatIn this setion we fous into the analysis of the potential impat of an SP-izationin the �nal performane of the appliation through ritial path value (pv ) anal-ysis. We say potential beause we are applying transformations at the program-ming level of abstration. The program will su�er subsequent transformations inorder to optimize and map it to a spei� mahine. The transformation path willbe quite di�erent in NSP and SP ases, leading to unexpeted bene�ts or lossesin the �nal performane. However, we are interested in the potential impat ofthe programming high-level transformations, as it will be an important part ofthe �nal performane e�et.We use the ritial path value pv to measure the performane of an ap-pliation, modeled as a task graph, for a given workload distribution � (see



138 CHAPTER 3. THEORETICAL APPROACHsetion 3.1.4). Thus, for the analysis of the performane degradation of an ap-pliation when programmed in an SP PPM, we ompare the pv of the graphsthat model: (1) the original synhronization struture of the appliation and (2)the struture produed by an SP-ization.De�nition 3.6.1 Given two graphs G;G0 modeling the same appliation, and aload distribution � , we de�ne the Relative ritial path di�erene between the twographs G;G0 or � (G;G0), as:� (G;G0) = pv(G0)pv(G)The mean of the relative ritial path di�erene between two given graphs G;G0,for several workload distributions, is de�ned as:(G;G0) = nXi=1 �i(G;G0)nThe upper bounds of the performane loss orrespond to very unlikely asesof highly unbalaned omputations, where pathologial workload distributionsappear. However, parallel appliations are designed with load-balane and regu-lar work distribution in mind. Also for dynami odes, where struture and taskworkloads are generated by proesses taking random or data dependent hoies,an average ost study is more appropriate [122℄.The average ost will be studied as a funtion of the topology harateristis,workload model and SP-ization tehnique used for the transformation.De�nition 3.6.2 Let T be an SP-ization tehnique, we de�ne:T� (G) = � (G;G0) : T (G) = G0T (G) = (G;G0) : T (G) = G0From now on, we will use  as T when the transformation tehnique used isobvious from the ontext. As this measure is dependent on the transformationapplied, it an be also used to evaluate and ompare how di�erent transformationtehniques may a�et performane (see setion 3.6.3).This indiator, , is de�ned for a given graph and transformation tehnique.Thus, it is an experimental measure. Several  measures may be distinguisheddepending on the level of detail or abstration level at whih the graph model ofa given appliation is derived (see Fig. 3.25). A program is an expression of analgorithm to solve a problem in an spei� PPM. At this �rst level, the graphrepresents the synhronization struture that the program reates; or may reatefor a given input data in ase of dynami appliations (see setion 2.6). When a
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Figure 3.25: Implementation trajetory. Abstration levelsprogram is mapped to a given mahine, with a �xed number of resoures (suhas proessors), the graph struture may hange. We say that these modi�edgraphs are modeling the appliation at mapping level. Graph models may beonstruted even for lower levels of detail, inluding even spei� ommuniationand synhronization tasks. Then, they are modeling appliations at implemen-tation or mahine level, where the underlying ommuniation system is relevant.Thus, we distinguish several  levels: 1 for programming level; 2 for mappinglevel; and 3 for implementation level.Our study is mainly foused at 1. Transformations made to an appliation



140 CHAPTER 3. THEORETICAL APPROACHby ompilers and implementation systems during the mapping and the implemen-tation phases are diÆult to predit and in general are favored by a restritedPPM as disussed previously. Thus, our interest is to determined (analytiallyor experimentally) the potential performane degradation at programming level.How, or how muh, the underlying tehnology may improve 1 estimations isnot part of this work. However, for experimental measurement of  a suÆientlevel of detail should be onsidered in the graph model to assure enough au-ray. Thus, sometimes it will be neessary to measure 2 or even 3 values withmapping or implementation level graphs. Appliation modeling with graphs atdi�erent detail levels is disussed in setions 4.2.2 and 4.2.3.To determine the auray and relevane of  preditions, we must hekour results against measurements of real performane when appliations are im-plemented through di�erent PPMs. We de�ne � as a measure of the real per-formane degradation when the same algorithm or appliation is programmed,implemented and exeuted through di�erent PPMs.De�nition 3.6.3 Let imp1; imp2 be two di�erent implementations of an applia-tion or kernel algorithm for a given mahine; and t(imp1); t(imp2) the exeutiontimes of these implementations as measured in the real mahine. We de�ne theRelative real performane degradation � as:�(imp1; imp2) = t(imp2)t(imp1)A full experimental framework, omparing � measurements with more ab-strat level  preditions, is presented in hapter 4.3.6.2 Strutural impatIn this setion we explore measures of the strutural impat of an SP-izationin the graph topology and we will try to relate them to the ritial path valueinrement represented by . A �rst approximation to a measure of the impatof an SP-ization in a graph may be the distane to SP form (as de�ned in se-tion 3.2.2). Another ould be the number of loal barrier synhronizations addedby the transformation. However, these indiators are not good measures. Theloss of parallelism is produed by the added dependenes that serialize poten-tially parallel tasks, and the number of dependenes added by eah tehniquefor a loal resynhronization an be ompletely di�erent even if the number ofresynhronizations is the same. The possible impat on the �nal performane isrelated to the probability of a ritial path inrease, indued by new dependenes.Generally, as long as we do not have information about the exat workloadof the graph nodes, our �rst proposal for a measure to represent the probabilityof ritial path inrease is the number of added dependenes itself. The number



3.6. MEASURING THE SP-IZATION IMPACT 141of node dependenes in a DAG is the number of edges m in the transitive losureG+. Hene, the number of added dependenes is the di�erene in the numberof edges between the transitive losure of the SP transformed graph and thetransitive losure of the original NSP graph. The edges from/to new nodeseventually introdued by the transformation does not aount for the number ofadded dependenes.De�nition 3.6.4 The transformation distane �(G;T ) produed by the SP-izationT in the graph G is the di�erene of the number of edges (only related to nodesin V ) between the transitive losure of G0 and G.G = (V;E); G+ = (V;E+);G0 = T (G) = (V 0; E0); G0+ = (V 0; E0+);�(G;T ) = jf(v; w) 2 E0+ : v; w 2 V gj � jE+jThis transformation distane an be used to ompare how di�erent SP-izationtehniques perform for a given graph topology without knowledge of spei�workloads. The Fig. 3.26 shows an example graph of low synhronization densitytransformed with four di�erent tehniques: Layering; both algorithmi tehniquesproposed in hapter 3 (Algorithm1,Algorithm2) and a manual solution obtainedby applying down synhronizations guided by personal experiene. The nodelabels show the number of dependenes from other nodes. Dark nodes are addedfor synhronization and they are not onsidered in the dependenes ount. Thetransformation distanes obtained, point to the manual solution as the transfor-mation with the lower strutural impat (� = 1:5). However, an important graphparameter, the maximum depth level (D), has been dupliated. Our transfor-mation algorithms are the seond option (� = 1:64), while layering tehniquehas a great strutural impat (� = 1:93). However, our seond algorithm doesnot inrease the maximum depth level of the original graph (always disardingnew synhronization nodes), while the �rst algorithm tehnique does inrease it.In fat, the maximum depth level value is an important parameter for ritialpath values in a graph, (see disussion about the transformation algorithms insetion 3.6.3).In Fig. 3.27 we show the results obtained in an experiment onduted torelate the � indiator with the mean inrease of the ritial path value (pv). Weselet random workloads with four di�erent Gaussian random distributions (seesetion 4.1.1): �(v 2 V ); N(�; �) : � = 1:0; � 2 f0:1; 0:2; 0:5; 1:0gThe di�erent deviations represent di�erent load balaning situations. From verywell balaned (� = 0:1) to highly unbalaned (� = 1:0). For eah example graph,
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Figure 3.27: Experimental pv measurements for the example graphindiator of the potential performane impat. Other fators, as the maximumdepth level D or the workload deviation are as important as � to determine thepotential inrement of the ritial path value of a transformed graph.For low deviated workloads the D parameter is a key fator of ritial pathvalue inrease. Thus, keeping the original pv for UTC (Unit Time Cost) graphsis an interesting design priniple for SP-ization tehniques (see 3.5). For moreunbalaned workloads, no relation between the inrement of the ritial pathvalue and a ombination of strutural impat parameters have been yet foundfor any graph topology or size. It is still an open problem.3.6.3 Algorithms omparisonIn this setion we ompare the tehniques and algorithms previously desribed.Complexity, suitability for any kind of graphs, and mean inrement of the ritialpath value  are to be onsidered to evaluate the appliability of these tehniques.The �rst tehnique presented in setion 3.3.4, whih serializes all nodes intopologial searh order, is not suitable for parallel omputing purposes, as allthe parallelism is lost after the transformation. For simpliity we will refer tothe other three tehniques as Layering, Algorithm1 and Algorithm2. Results aresummarized in Table 3.3.Experimentally transforming many strutures from highly regular applia-tions (see setion 4.1.3), we have found that, for these highly regular stru-tures, the three tehniques obtain similar results. Nevertheless, the SP formsobtained di�er for more irregular strutures. While the simple layering teh-nique (Layering), has the lower time omplexity bounds it does not o�er good
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Figure 3.28: Comparison of algorithms inrease in pv for random graphs sampleresults for irregular strutures. Algorithm2 minimizes the expeted ritial pathvalue inreases as ompared with the layering tehnique due to the apabilityto exploit loal resynhronizations instead of using only global barriers. Exper-iments with random generated topologies and workloads have been ondutedto ompare whih algorithm produe SP approximations with lower expetedritial path value inrement (see setion 4.1.2). We study mean values of the indiator (as de�ned in setion 3.6.1). All our experiments with di�erent graphsizes and workload models on�rm the  trends for eah algorithm. For example,Fig. 3.28 illustrates how Algorithm2 typially �nds better solutions for two dif-ferent samples of 128 and 256 nodes graphs respetively. The size of eah sampleis 1000 graphs. The syntheti random workload model used for this example ishighly deviated �(v); N(1; 1). Details about the experiments design and more



3.6. MEASURING THE SP-IZATION IMPACT 145results are shown in setion 4.1.Spei�ally, for synhronization density S values below 2, the highly unstru-tured graphs are muh better transformed by Algorithm2. For small S values, thedistribution of the loads aross the same topology has an important impat on ,inrementing the dispersion of the results for any tehnique onsidered (see dis-ussion about Fig. 4.6 in setion 4.1.2). For these random irregular graphs bothfull SP-ization algorithms o�er very similar results (if not the same). Neverthe-less, the Algorithm1 presents higher time omplexity and ould generate di�erentresults depending on the input order of the graph nodes. The seond SP-izationalgorithm (Algorithm2) presents interesting improvements: Its time omplexityis tightly bounded, the output is always the same, and it ensures no ritial pathvalue inrease for UTC graphs. Hene, we onsider Algorithm1 superseded byAlgorithm2 for general purposes.We onlude that for highly regular appliations, the solution obtained witha layering tehnique (or bulk synhronous parallelism) is similar to a nested-parallelism solution, but the layering tehnique omputes the solution faster. Formore irregular problems, nested parallelism is more appropriate and Algorithm2may obtain better results than the Layering tenique at only a logarithmi timeomplexity inrease on the number of graph nodes.Algorithm Spae Time UTC-pv Regular graph Irregular graphLayering O(m+ n) O(m+ n) Yes Good BadAlgorithm1 O(m+ n) O(m� n) No Good GoodAlgorithm2 O(m+ n) O(m+ n logn) Yes Good GoodTable 3.3: Algorithms omparison3.6.4 Analytial modelsDeriving an analytial model for the potential performane degradation, due tothe loss of parallelism introdued at the high abstrat level of programming, isnot an easy task. We must derive approximation models for the ritial pathvalue of SP and NSP DAGs.For SP graphs, analytial upper bounds and mean expeted value of pv maybe derived under ertain onditions. In absene of any workload information, weassume the simpli�ed ase where the load in eah node is an i.i.d. (independentidentially distributed) random value with a given distribution:�(v 2 V ); D(�; �)In this ase, we may apply order statistis results [95℄ to estimate the expetedvalue of the parallel omposition of m tasks. Results for serial omposition (ad-dition of i.i.d. variables) an be found in simple statistis literature (see e.g. [10℄).
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Transformed SP versionOriginal NSP graphFigure 3.29: Neighbor synhronization exampleThus, the serial omposition of n layers, eah of them formed bym parallel tasks,is easily derived. Thus, for very simple and regular SP graphs, we an derive for-mulae for the expeted pv . However, when the parallel setions have di�erentnumber of tasks, the formulae may not be so easily derived.Unlike in SP graphs, general ost estimation is analytially intratable un-less the workloads have a negative-exponential distribution [164℄. However, astask workloads are lose-to-normally distributed (partly as result of the CentralLimit Theorem), negative-exponential workload distributions are extremely rare.Thus, a full aurate analyti ost model is not possible. We an try to deriveapproximations to the pv of NSP DAGs. In [183℄ we presented an study aboutthe approximation of the pv of two example regular NSP DAGs (pipeline andneighbor synhronization strutures). These examples represent the basi mod-els of regular strutures, with D layers of P tasks, onneted with non-transitiveedges in an almost perfet distribution of S edges per node (S = 2 for maro-pipeline and S = 3 for neighbor synhronization). See setion 4.1.3 for a fullharaterization of this important lass of graphs and appliations. The SP ver-sions of these graphs are easily obtained with the Layering tehnique, applyingfull barrier synhronizations. For these regular strutures our resynhronizationalgorithms (Algorithm1, Algorithm2) obtain similar solutions. In Fig. 3.29 weshow an example of the original NSP neighbor synhronization struture and itsSP approximation. A full disussion of experiments with these regular struturesis presented in setion 4.1.3.Although other random distributions may be used, in the following disussionwe will assume all nodes exhibit an i.i.d. Gaussian distribution.�(v 2 V ); N(�; �)In the SP version, the formulae for the ritial path value of a layer (a parallelomposition of P nodes), and the full graph (series omposition of D layers) are



3.6. MEASURING THE SP-IZATION IMPACT 147approximated by [95℄: pvP = �+ �p2 log(0:4)PpvSP = D(�+ �p2 log(0:4)P )For normal distributions the approximation error is in the perent range.To apply the same order statistis approah to the NSP original graph, weapproximate its pv with the pv of a virtual ore SP DAG. This virtual ore isrelated with the synhronization density and width of the original graph. Theore is omposed by the same number of layers as the original graph D, synhro-nized by barriers; but the width of the layers di�ers. We ompute the theoretialwidth of the ore graph P 0 as a funtion of the original P and S parameter values.Notie that the ore does not really exist, and the P 0 value may be a non-integernumber: P 0 = S + log(P=2)Again, order statistis are used to derive a formulae that approximates the pvof the original NSP graph from the ore graph:pvNSP = D(�+ �p2 log(0:4(S + log(P 0=2))))The approximation error is now higher as a result of the ore approximation of theNSP graph. Making simple substitutions we obtain a  approximation that agreeswith our experiments within 10% and 25%, depending on the example graph, andhas similar asymptoti behavior. A oarse, but meaningful simpli�ation of theformulae for (typial) large P values is given by: � �+ �plog(P )�+ �plog(S)Indeed, for graphs representing this lass of regular appliations, the asymptotialinuene of P is learly logarithmi, while the e�et of S is inverse, whih is inperfet agreement with the results presented in setion 4.1.3. The e�et of theworkload distribution is also in agreement with our measurements (onsideringthe typial ases where P � S).Unfortunately, these analyti approximations may not be safely extended toany other, spei�ally more irregular topology, whih limits the generality of theanalytial study.3.6.5 Conlusions about SP-ization impatIn this setion we have propose a general measure , based on ritial path analy-sis, for the potential performane impat of an SP-ization on a given graph. TheSP-ization tehniques studied in previous setions have been evaluated in termsof their behavior and impat on di�erent graph lasses. The study shows that



148 CHAPTER 3. THEORETICAL APPROACHour Algorithm2 is a good general-purpose SP-ization tehnique, only mathed bythe simple Layering in spei� highly regular strutures, where both solutions aresimilar, but the time omplexity bound of the Layering tehnique is even lower.No strutural impat measure, obtained only from the topology of the originaland transformed graphs, has been yet found to be diretly related to the pvalteration, representing the modeled appliation performane. More omplexmodels, based on other topologial parameters (D;P; S), are more promising butstill not aurate enough. Moreover, even when simple random distributionsare onsidered for workload distributions, general analytial models for the pvmodi�ation are not possible; formulae for NSP graphs pv annot be derivedfor stohasti workloads. Approximations for some regular strutures have beenpresented, but they annot be extended for any graph topology. Thus, in manyases, only experimental work may give us an idea of the impat of a transfor-mation for given graph lasses. Fortunately, experimental measures are simple(measuring pv of original and transformed graphs). Nevertheless, modeling anappliation with a graph may be done at di�erent levels of implementation de-tail with di�erent auraies. Preditions obtained with graph models should beompared with measures obtained with real appliations to determine if generaltendenies are preserved.3.7 SummaryIn this hapter we have presented a theoretial approah to the NSP vs. SP om-parison problem. Appliation synhronization strutures have been representedby graphs. Thus, we have used graph theory to formally de�ne and study theharateristis of SP and NSP strutures. Simple methods to resynhronize loalNSP strutures have been studied. Furthermore, algorithms to resynhronize fullgraphs have been presented. These algorithms try to minimize the potential lossof parallelism reated by new added dependenes. Our last algorithm presentsinteresting features (no inrement of ritial path for unit time ost graphs, andtighter time omplexity bounds), that make it useful for experimental or produ-tion work.We have also introdued a study about measures of the NSP to SP transfor-mation impat in terms of strutural modi�ation of the graph, and ritial pathvalue inrement. In the absene of experimental workload information, a graphshould be provided with stohasti workloads. Order statistis are a useful toolfor deriving the mean pv of simple SP graphs, due to their ompositional nature.Although similar pv analysis is intratable for NSP graphs, some analyti ap-proximations to the pv modi�ation are possible for typial regular strutures.This analyti formulae predits the asymptotial behavior of the pv after a sim-ple transformation, as a funtion of basi graph and workload parameters. The



3.7. SUMMARY 149results, whih are in agreement with experimental results presented in the nexthapter, give us an idea of the general tendenies of performane when regularappliations are programmed in an SP PPM. Unfortunately, this kind of analysisannot be extended to generi, more irregular NSP graphs. As a onsequene,a further experimental study is neessary to state if the predited performanebehavior for regular strutures an be extended to other appliation lasses. Thisstudy is presented in the next hapter.The theoretial study of the NSP strutures has shown serious limitationsderived from their inherent omplexity. SP ompositional nature and limiteddependenes omplexity present many advantages for analytial study. This isthe origin of the many good properties of the SP PPMs, in terms of formalsoftware development tehniques, analyzability, and program ost modeling.Our theoretial study of the NSP and SP task graph strutures has pro-dued interesting results and tools (like the transformation algorithms), as wellas a deeper insight about the problems assoiated with NSP struturing. It hasalso provided lear diretions in whih way to ondut the experimental studypresented in hapter 4.
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Chapter 4Experimental study\My attention, for the last three years, hadbeen repeatedly drawn to the subjet ofMesmerism; and, about nine months ago itourred to me, quite suddenly, that in theseries of experiments made hitherto, therehad been a very remarkable and mostunaountable omission."The Fats in the Case of M. Valdemar, 1845Edgar Allan PoeIn this hapter we desribe the work we have arried out to experimentallymeasure the expeted performane impat when appliations are programmed inSP restrited PPMs, ompared with more generi (NSP) solutions. The spae ofNSP graph topologies is immense and impossible to hek exhaustively. More-over, most NSP graphs do not represent any useful parallel appliation. Thus,we diret our searh in two diretions to over the most interesting appliationsin parallel programming. We propose two experimental frameworks based on:1. Syntheti graphs: We onstrut sets of graphs representing a random sam-ple of the NSP graph spae, and randomly interonneted regular topolo-gies. We measure the e�et of SP-ization for simple graph parameter values.2. Empirial graphs: In this framework we fous on graphs obtained at di�er-ent abstration levels from real parallel appliations, overing the relevantNSP SA lasses. We are guided by the examples and lassi�ation of ap-pliations SA presented in setion 2.6.Our main interest is the overall e�et of programming appliations loated inthe NSP lasses using SP models. We are �rst trying to establish if the perfor-mane e�ets found in the theoretial study are general e�ets, and if they an151



152 CHAPTER 4. EXPERIMENTAL STUDYbe extended to all appliation lasses when an \ideal" transformation algorithmis used. The mean ritial path analysis is our basi experimental tool to mea-sure the performane in our graph models. An extended analysis of performanee�ets follows. This study overs several phases. We investigate empirial pre-dition mehanisms for the expeted performane e�ets when using SP forms torepresent generi NSP synhronization strutures. For simple graph strutureswe an further study the expeted performane e�ets of simple appliation modi-�ations, as saling up, adding more iterations, or hanging loal synhronizationpatterns when the appliation is in SP form. Thus, in our study we have seletedsimple graph parameters (see de�nitions of P;D; S in setion 3.1.3) to studythe impat of SP-ization tehniques in graphs whih present di�erent topologialharateristis. We experimentally relate their values with the potential and realperformane loss of appliations when mapped to an SP form. After study thesynhronization strutures of simple appliations in the more abstrat level, theproblem of extending the study to real appliations is takled. This study in-ludes an important methodology setion about how to model appliations withgraphs at di�erent detail levels, and how to transform them to SP form with ourtehniques, measuring the potential performane loss with ritial path analysis(see setion 3.6). Thus, the exploration of the SP-ization e�ets is open to repre-sentative graphs of more irregular appliation lasses. Indeed, we investigate thepropagation of the P;D; S predited e�ets on , to the lower run-time level �,before bene�ts of SP programming are exploited. We also researh the e�ets ofload balaning and other ommon parallel programming tehniques for irregularappliations when an SP programming framework is used. We ompare resultsobtained in more abstrat levels, with performane measures of the equivalentreal appliations, running in di�erent parallel arhitetures.4.1 Syntheti graphsIn this setion we present the �rst experimental framework. This part of thestudy is oriented to evaluate the mean performane e�ets of our \ideal" SP-ization transformation on random, irregular topologies, representing a sampleof the whole graph spae. We test if the  tendenies related to the simplegraph parameters P;D; S derived from the theoretial study (see setion 3.6),are general e�ets found in generi graphs.The experiments are based on onstruting sets of syntheti DAG topologies,generate di�erent syntheti workload distributions for the nodes, and omparethe pv in the original graph with the pv of an SP approximation generated witha suitable SP-ization tehnique. After the experiments we relate  measurementsto topology and workload harateristis.The phases of eah experiment may be summarized as:



4.1. SYNTHETIC GRAPHS 1531. Generate a syntheti topology G(V;E).2. Transform G to SP form: G0 = T (G). (We apply Algorithm2, whih usesno workload but only topologial information).3. Repeat:(a) Generate a syntheti workload distribution for the nodes in the origi-nal graph: �(v); v 2 V(b) Copy the same workload information to the transformed graph. Nodesintrodued by the transformation have zero load:� 0(v 2 V 0) = � �(v) if v 2 V0 if v 62 V() Compute omparison indiator: = pv(G0)pv(G)In the following setions we present tehniques to generate syntheti workloadsand topologies. Di�erent topology sets are presented and analyzed.4.1.1 Workload modelingSyntheti workloads must be supplied for the nodes in the generated graphs.No spei� patterns or regularities between topology and distributions should beused in this part of the experimental framework. Thus, the fairest assumption isto onsider eah node workload �(v) to be an i.i.d. (independent identially dis-tributed) random variable. Considering that we will use graphs with big numberof nodes, we will assume Gaussian distributions for the workloads:�(v 2 V ); N(�; �)The relative inrement of the ritial path value is not a�eted by propor-tional modi�ations of the mean and deviation parameters. Consider the examplegraphs in Fig. 4.1. G0 is an SP approximation for G. The number inside eahnode represent the workload �(v) of that node. The new grey node in G0 has beenintrodued by the transformation tehnique. Thus, it is only a synhronizationpoint with no load �(v) = 0. For the loads in the example we obtain the fol-lowing mean and deviation values: x = 1:1667; sn�1 = 3:1047. The ritial pathvalues are 4 and 5 for G and G0 respetively. Thus, the relative inrease of theritial path is � = pv(G0)pv(G) = 1:25. Consider now the same graphs, but assume
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Figure 4.1: Example of relative ritial path value inreasea workload distribution where � 0(v) = �(v)�2. The mean and deviation are nowdoubled: x = 2:3333; sn�1 = 6:2093. The ritial path values will be 8 and 10for G and G0 respetively. The relative inrement is the same: � 0 = 1:25. Thisexample illustrates that the exat values of the workload distribution parameters� and � are not so important on themselves. Their ratio is muh more relevant.Thus, we de�ne a unique parameter for task workload variability:De�nition 4.1.1 We de�ne the relative deviation or variability (&) of a randomworkload distribution as the proportion between the deviation and the mean:& = ��For our experiments we deide to generate di�erent workload distributionsbased on di�erent & values, representing from well-balaned omputations tohighly irregular workloads: & 2 f0:1; 0:2; 0:5; 1gFor simpliity, we always �x the mean to a onstant and hange the deviationaordingly to seleted & values. To make the result analysis more intuitive, wehoose 1 as the �xed onstant mean, being the orresponding �nal deviationsequal to the hosen variabilities:� = 1;� 2 f0:1; 0:2; 0:5; 1gFor eah generated topology and eah & value, we draw 25 random workloaddistributions (with 25 di�erent seeds for reproduibility of experiments). Theritial path is measured in both topologies, G and G0, with eah workload, andmean  omputed.



4.1. SYNTHETIC GRAPHS 1554.1.2 Random sample of the graph spaeIn the �rst experiment sets we test a sample of random task graphs, with nospei� topologial restritions, to obtain an idea of the general trends of SP-ization e�et in performane.Most DAGs in the graph spae do not represent typial parallel appliations(salable omputations with repliated patterns), but irregular strutures thatan only be generated by the most unstrutured, dynami and data dependentprograms. Our experiments will show general trends that will be improved whenmore realisti topologies are studied (see following setions).Random topology generation tehniqueTo sample the NSP topology spae we want to generate graphs with similarprobabilities for any topology to be seleted. After onsidering several methods,we have hosen a standard task graph generation tehnique originally devisedfor graphs representing heterogeneous parallel appliations [7, 181℄. In this teh-nique, every possible edge has the same probability to exist in the graph. Toassure that a DAG is generated, the nodes are numbered, and only edges with asoure node number lower than the target number are onsidered.Formally, let V = fv1; v2; :::; vng be the set of nodes in G and p the edgeprobability fator. Then, this tehnique produe edges in the graph with thefollowing probabilities P :P [(vi; vj) 2 E℄ = p; if 1 � i < j � nP [(vi; vj) 62 E℄ = (1� p); if 1 � i < j � nP [(vi; vj) 62 E℄ = 1; if i � jThe parameter p will let us diret the searh of the whole DAG spae alongthe edge density axis (measured by the synhronization density S). For a givenp, the mean number of predeessors/suessors beomes larger with the numberof nodes in the graph. However, the maximum number of edges for a given nis n(n� 1)=2. Thus, we an selet p as a funtion of n to generate graphs withapproximately the same synhronization density independently of the size:p = nSn(n� 1)=2The omplexity bounds of this generation tehnique is related to the graphsize. This tehnique traverses all possible edges in the graph, heking randomlyif the edge is or is not added to the graph. Thus, the time omplexity of thetehnique is �(n(n� 1)=2). It uses only the spae needed to store the graph.This tehnique may generate non-onneted graphs, espeially for low p val-ues. Reall in setion 3.3.1 that SP-ization tehniques work on STDAG graphs.



156 CHAPTER 4. EXPERIMENTAL STUDYWe use the tehnique presented in de�nition 3.1.17 to build a 2-terminal DAG,possibly adding two new synhronization nodes, to onnet the generated graph.The original disonneted subgraphs are then parallel setions of the �nal STDAG.Chosen parameter valuesWe generate graphs for a wide range of node numbers. From small ones (32nodes) to big ones (1024 nodes):n 2 f32; 64; 128; 256; 512; 1024gFor eah size, we want to test topologies ranging from very low to very highsynhronization densities. The maximum synhronization density is limited bythe graph size. For small graphs, the highest S values are to be disarded.S 2 f0:5; 1; 1:25; 1:5; 1:75; 2; 2:5; 3; 3:5; 5; 7:5; 10; 25; 50; 100gFor a given pair of (n; S) values we ompute p and generate 100 topologiesbased on a set of 100 seeds in order to guarantee reproduibility of experiments.Thus, more than 1000 topologies are generated for eah graph size.ResultsIn this setion we present remarks obtained from results observation. Exeptwhen it is otherwise stated, the points in the plots represent the  for all thetopologies whih x axis parameter is in a narrow histogram slot. They are drawnas urves to show tendenies, and for larity when several urves are drawn inthe same plot.1. General under-logarithmi e�et related to graph size:In Fig. 4.2 we show the general under-logarithmi  tendeny on the numberof nodes. This tendeny is similar to the one predited with the theoretialapproah in setion 3.6. Nevertheless, eah point of these urves representsthe mean values of  for hundreds of graphs with very di�erent shapes,leading to high deviations. A more detailed study is needed. We wantto know if, as in regular strutures, this tendeny is spei�ally derivedfrom P and S parameters. And if it is possible for a given graph size, tomore aurately predit the  values as a funtion of P;D; S or relatedparameters.2. Topologial parameters dependene on S:As we show in Fig. 4.3, in these irregular random topologies, the P andD parameters are highly orrelated with S. If S is low, many nodes or



4.1. SYNTHETIC GRAPHS 157

1

1.2

1.4

1.6

1.8

2

0 128 256 384 512 640 768 896 1024

γ

# nodes

Random samples

G(1,1.0)
G(1,0.5)
G(1,0.2)
G(1,0.1)

Figure 4.2: General  tendeny on graph sizesubgraphs are disonneted after the �rst stage of the generation tehniqueis applied. Thus, they are parallel setions of the onstruted STDAG(high P and low D). As S inreases, the probability of more nodes andsubgraphs to be serialized is higher (low P and high D). Thus, the researhis foused to the synhronization density related parameters.In these examples we measure the parameter S after transforming thegenerated DAGs to onneted STDAGs (the graph that is atually trans-formed). Although S is similar to the original edge density, it is slightlymodi�ed due to added edges when onneting the graph in an STDAGform. For very low values of edge density, many edges are added to on-net the highly sparse generated graphs.3. Correlation with & (workload model):The plots in Fig. 4.4 show  values obtained for medium (a) to big (b) sizedrandom graphs transformed with Algorithm2. Eah urve on the same plotorresponds to a di�erent workload model, with & values from unbalanedomputations & = 1 to highly balaned omputations & = 0:1. The work-load balane is a basi fator for the impat of SP-ization. Low values of& minimize the impat of SP-izations beause aumulated path values arevery similar along the graph. Thus, new synhronizations have few proba-bilities of serialize parts of two highly di�erent loaded paths. For randomworkload models with high &, unbalaned task loads are spread randomlyaross the whole graph. Thus, added dependenes may serialize highly un-balaned aumulated loads, modifying the ritial paths and inreasing
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Figure 4.3: Dependene of topologial parameters on Stheir values.In the plots, it an also be appreiated how the Algorithm2 SP-izationo�ers good solutions for graphs with an S value lesser than 2 (see alsosetion 3.6.3).4. General dependene on Rs:The plots in Fig. 4.4(a) and (b) ome from graphs with di�erent numberof nodes. The urves obtained for di�erent sized graphs with the sameworkload model, di�er not in the shape, but in the slope. We use theparameter Rs = jEj=jV j2, that measures the relative number of edges in agraph of jV j nodes, to predit the behavior of  more independently of thegraph size. In Fig. 4.5 we present smoothed urves for mean  relative to Rs,for all graph sizes tested and normal workload distribution (& = 1; N(1; 1)).Curves drop to the left due to the improved results obtained with Algorithm2for S values below 2. For bigger graph sizes, the Rs point that orrespondto S = 2 is lower. Thus, the maximum  value for a given graph size isfound approximately in a value of Rs = 2=jV j.5. Maximum dispersion of values around S = 2. Less preditability:In Fig. 4.6 we show one point for the  value of eah di�erent topology(mean of 25 di�erent workloads). As we may appreiate, the maximumdispersion of the points is found around an S value of 2, where the values are also the highest. This indiates that our preditions based on values are less aurate for the topologies with S values near 2. Topologialstrutures with S � 2 present many di�erent ways to be transformed to
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Figure 4.4: Dependene of  on S and &SP form. Only algorithms that make use of the workload information onthe nodes may �nd the best topologial transformation. In the lass ofalgorithms whih work without workload information, our Algorithm2 �ndsa ompromise solution by preserving the pv for UTC graphs and lookingfor loal synhronizations where possible.For low deviations (& = 0:1), the dispersion trend is the same, although lessnotieable than for high deviations (& = 1). The reason is the inreasedprobability of regular workload distribution aross the topology. The higherthe relative balane of the workload, the lower expeted  values and thehigher auray of our preditions.



160 CHAPTER 4. EXPERIMENTAL STUDY

1

1.2

1.4

1.6

1.8

2

0.001 0.01 0.1 1

γ

Rs

Random samples - Workload G(1,1)
1024 nodes
512 nodes
256 nodes
128 nodes
64 nodes
32 nodes

Figure 4.5: General trend dependene on RsWe onlude that for random graphs with n nodes, and a omplete ran-dom workload distribution, the general trends of SP-ization impat at program-ming abstration level () may be predited depending only in basi parameters:Topologial (graph sizes jV j and jEj to ompute Rs) and workload based (&).Preditions are more aurate the further the S parameter is from value 2.4.1.3 MeshesMost random topologies may represent highly dynami or even no real parallelappliation at all. However, parallel appliation design methods and paradigmstend to produe topology and workload regularities to exploit program salabil-ity. A typial parallel program is designed in a way that inreasing the numberof proessors more similar parallel tasks are exeuted to ompute a smaller partof the result. Many tasks represent running instanes of the same ode piees,working on di�erent data. Thus, a high orrelation between the exeution timeof tasks and their topology role is found in most parallel appliations. Unfortu-nately, it is not possible to realize suh a orrelation only from the task graphtopology. Nevertheless, many appliations present, after mapping, high regularstrutures that repliate omputation layers, as wide in tasks number as proes-sors are available.Consequently, we introdue a new olletion of experiment sets based in graphmeshes of tasks, organized in equal sized layers, onneted by random and repli-ated synhronization patterns. Motivation for the importane of these stru-tures is found in most appliations inside the (NSP,NME,NDS) SA lass (seesetion 2.6).
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Figure 4.6: Results dispersion for random graphsMeshes: de�nitions and notationsWe introdue here the de�nitions and notations needed to understand how tobuild a syntheti graph mesh from simple parameters.De�nition 4.1.2 We de�ne a Mesh to be a DAG built by a olletion of Dordered and numbered subsets of nodes (all layers) of equal size P , with edgesonly between onseutive layers:M = (V;E) : L = PV ; jLj = D; jLij = P;8i = 1; :::;D;8(v; w) 2 E; v 2 Li; w 2 Li+1Mesh sizes are de�ned by P (layer size) and D (number of layers) parametersdiretly. The edges of a mesh will be de�ned by a funtion that maps a node jin a layer i to nodes j1; j2; :::; jn in layer i + 1. Both, random and deterministifuntions are possible.De�nition 4.1.3 Let M = (V;E) be a mesh, L = PV the layers of the mesh,suh that jLij = P : i = 1; 2; :::;D. Let � : v 2 Li 7! N; �(v) 2 [1; P ℄ be anumbering of the nodes in a layer. We de�ne a Synhronization Funtion (�) as:� : � ! �a; a 2 [1; P ℄This funtion de�nes the set of edges between eah onseutive pair of layers inthe mesh: E = f(v; w) : v 2 Li; w 2 Li+1; �(w) 2 �(�(v))gIn Fig. 4.7 we show an example of a mesh generated by P = 4;D = 3 and adeterministi �, di�erent for eah �(v).



162 CHAPTER 4. EXPERIMENTAL STUDY
1 2 43

1 2 43

1 2 43

(4) = { 4 }ρ
(3) = { 1, 3, 4 }

(2) = { 1, 3 }

(1) = { 1, 2 }

ρ
ρ
ρ

D=3

P=4Figure 4.7: Example of a mesh graph de�ned by P;D; �Topologial parametersSyntheti meshes may be onstruted depending on D;P and �. The �rst twoparameters de�ne the graph sizes and the third the interonnetion pattern.The synhronization density S is equal to the mean arity of the synhronizationfuntion. All these three parameters may be modi�ed while the others are �xed.Thus, we an explore the e�et of eah one independently of the others.In meshes, the edges have soure and target nodes in onseutive layers.Thus, a mesh have no transitive edges: (v; w) 2 E ) �h 2 V : v � h � w.The onsequene is that graph meshes are equal to their transitive redutionsM = M�, and S parameter is a highly reliable indiator of the amount ofdependenes propagated through a node, layer by layer.Random meshesIn our �rst set of experiments with meshes we want to hek the e�et of P;D; Sparameters on , for random synhronizations between layers. The random meshgeneration tehnique hosen is based on reating the same number of outgoingedges for eah node [181℄. The number of edges per node is determined by thevalue of S parameter. The suessors will be randomly seleted among all nodesin next layer, based on an uniform random distribution U [1; P ℄.To assure onnetivity in the graph and a orret layer organization (nodes inthe same layer must have the same depth level), the �rst outgoing edge for anynode will be the edge (v; w) : �(v) = �(w). Only S � 1 edges will be randomlyseleted. When S is not an integer, we reate edges suh that all nodes hasbS or dSe outgoing edges, and the mean number per node in the layer is asapproximated to S as possible.Formally, the proedure to reate random meshes may be desribed as follows:Let A be the set of node numbers in a layer, and B a random subset of A with



4.1. SYNTHETIC GRAPHS 163the ardinality: A = [1; P ℄ � N;B � A : jBj = bP � (S � bS)The synhronization funtion seleted to build random meshes is:�(�(v)) = f�(v)g [ fi ; U [1; P ℄; i = 1; :::; sgs = � bS � 1 if �(v) 62 BdS � 1e if �(v) 2 BFor example, let us suppose a mesh with P = 10 and S = 2:36. The ardinal-ity of the B set will be jBj = b10� (2:36� 2) = b3:6 = 3. Let us suppose thatB set is randomly seleted to be jBj = f4; 8; 9g. The s value, that represents thenumber of randomly hosen edges for a node, is omputed as:s = � 1 if �(v) 2 f1; 2; 3; 5; 6; 7; 10g2 if �(v) 2 f4; 8; 9gThus, all nodes will have one predetermined edge (�(v); �(v)), seven of themwill have one random edge and three of them will have two random edges(�(v); U [1; P ℄). There will be 23 edges between eah layer. The �nal synhro-nization density for one layer will be S = 23=10 = 2:3 � 2:36Chosen parametersWe experimentally test sets of syntheti topologies with up to thousand nodeswith the following parameter values and motivation:1. Square meshes, to detet the e�et of S alone, for a given graph size:(P;D) 2 f(8; 8); (16; 16); (24; 24); (32; 32)gS 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 3:5; 5:0; 7:5; 10; 25g2. Fixed P , to detet the e�et of D:P = 16D 2 f4; 8; 16; 24; 32; 64gS 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 4:0; 5:0; 8:0; 12:0g3. Fixed D, to detet the e�et of P :P 2 f4; 8; 16; 24; 32; 64gD = 16S 2 f1:1; 1:2; 1:4; 1:6; 1:8; 2:0; 2:5; 3:0; 4:0; 8:0; 12:0; 16:0; 24:0; 32:0; 48:0g



164 CHAPTER 4. EXPERIMENTAL STUDYThe Layering and the improved Algorithm2 transformation tehniques obtain sim-ilar results for S > 2. In Fig. 4.8 we show an example of how both transformationtehniques obtain similar results when the high synhronization density preventsour algorithm to reate small loal synhronizations, but fores full barriers be-tween layers. This e�et always appears for S values higher than 2. Thus, forthese kind of graphs we an use the faster Layering tehnique safely. We ex-tend our study to huge graphs with up to hundred thousand nodes, that an bemanipulated in reasonable time with the Layering transformation tehnique:1. Square meshes, to detet the e�et of S alone:(P;D) 2 f(100; 100)gS 2 f2; 3; 4; 5; 10; 20; 30; :::; 100g2. Fixed P , to detet the e�et of D:P = 100D 2 f10; 25; 50; 75; 100; 200; 300; :::; 1000gS 2 f2; 3g3. Fixed D, to detet the e�et of P :P 2 f10; 25; 50; 75; 100; 200; 300; :::; 1000gD = 100S 2 f2; 3gIn all ases the workload distributions are omputed as desribed in 4.1.1.ResultsThe experiments show the following results:1. Dereasing impat for higher S values:The e�et of high synhronization density values (S > 2), is similar asdisussed for random topologies in setion 4.1.2. In Fig. 4.8 we show thise�et for di�erent values of S in a 16� 16 random mesh. Inreasing valuesof S indiate more dependenes already in the graph and shorter distaneto an SP form. Thus, the impat of SP-ization is quikly diminished whenS inreases.In omplete random topologies (see setion 4.1.2), P andD presented a or-relation with S due to the random sampling tehnique. Spei�ally, valueslower than 2 indiated few layers and a olletion of sparse nodes. Thus,the graph distane to SP form was short and  was quikly dereasing with
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Figure 4.8: E�et of high S values in random meshessmaller values of S. However, in meshes we are �xing P and D parameters,and hanging S independently. In Fig. 4.8 and Fig. 4.9 we may appreiatethe di�erent behavior obtained with Layering and Algorithm2 transforma-tion tehniques for random meshes. When Layering is applied,  ontinuesthe same exponential like inreasing tendeny for very small S values. Theappliation of our improved Algorithm2 transformation tehnique anelsthe exponential growing tendeny, and it ahieves even dereasing resultsfor low deviated load distributions. However, it does not ahieve the highdiminishing e�ets like in random topologies. In the plots of Fig. 4.9, we ob-serve the  dereasing e�ets only for very small values of S and espeiallyfor low P values. The reason is the small distane from these graphs to SPforms. Reall the random meshes generation tehnique used. It reates abase SP mesh graph with S = 1 and adds extra randomly hosen edges.The number of added edges for eah layer is an integer number omputedas: bP � (S � 1). For small values of the parameters very few edges oreven no extra edges are added to the base SP graph, leading to  valueslose to or even 1.2. No appliability of Rs parameter alone:A side e�et of the previous disussion is that Rs is not a good indiator ofthe potential impat of an SP-ization in a random mesh. In random graphsP and D were related to S. In random meshes this is not true. Thus, values are di�erent for the same value of Rs if P and D values di�er. Onlyvery general tendenies may be determined using the parameter Rs alone.We must further explore the e�ets of D;P parameters independently.
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4.1. SYNTHETIC GRAPHS 1673. Limited e�et of D:In Fig. 4.10 we an see how  stops to grow at a ertain value of D. Al-though diÆult to appreiate for small sized graphs, it an be also notiedin Fig. 4.9. Let us onsider the ith-node in layer j. Dependenes from this
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Figure 4.10: Limited e�et of D in random meshesnode are propagated to other nodes aross layers j + 1; j + 2; :::, until allnodes in a further layer j+ depends on the original node. At this point, anSP-ization tehnique is not adding dependenes from the ith-node of layerj to any other node in further layers j + d; d > , beause all of them werealready dependent on it. The speed by whih dependenes are propagatedto next layers is dependent on S. The number of nodes in a layer is P .The limiting e�et should ompletely appear for D > P=(S � 1). The ob-servations show that in general it appears even before. In the original NSPgraph, the number of dependenes propagated from the ith-node in layer jto other nodes in layers j+1; j+2; :::, is growing through eah layer. Thus,the diminishing e�et is beginning to work sine layer j + 2, reahing themaximum at layer j + .This limiting e�et is aneled in speial ases of unbalaned synhroniza-tion strutures desribed and disussed below.4. Logarithmi like e�et of P :In Fig. 4.11 (and also in Fig. 4.9 in a smaller sale) we may appreiate thatfor �xedD and S values, the SP-ization impat inreases with a logarithmilike funtion of P . This e�et presents similar slopes for all mesh topologieswith the same S value, and a D value enough to ahieve its limiting e�et
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Figure 4.11: Exponential like e�et of P in random meshes(see previous disussion about D e�et). The slopes are lower for exampleswith higher values of S, as expeted.5. Workload e�et:As it may be appreiated in Fig. 4.10 and Fig. 4.11, the most relevant fa-tor for the SP-ization impat is the variability of the workload &. Graphsrepresenting balaned omputations (& � 0:2) present almost no relevante�et when transformed to SP form. When omputations are highly un-balaned (& = 1), the probability of serializing highly loaded nodes duringthe SP-ization inreases. The e�et is highly preditable when the loadsare randomly distributed, as the probabilities inrease with equal hanesaross the same topology.Unbalaned synhronization meshesMotivated by the study of strange  e�ets in spei� appliation mesh topologies(as e.g. stati maro-pipelines, see setion 4.2), we have found a new topologialharateristi, with an important impat on . This harateristi is not diretlyrelated with the parameters we have studied previously. This study reveals moredetails about the deep relation of  and the way dependenes are propagatedaross layers through the edges.The problem appears in meshes were the edges are somehow oriented in thewidth axis, suh that dependenes from some nodes are not propagated to anyother part of the graph equally. Let us onsider the example in Fig. 4.12. Thenodes in the right side of the graph do not propagate dependenes to the left
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ρ
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D=3

P=4Figure 4.12: Example of unbalaned synhronization meshside of the graph, no matter how many layers are onsidered. This orienta-tion is graphially dependent on the numbering � hosen. We must introduesome more notation and terminology to formally haraterize this new problem.Beause this orientation e�et barely appears along several layers in random gen-erated meshes, we fous our study to analytial measurements in meshes withdeterministi � funtions.De�nition 4.1.4 For meshes with a deterministi � funtion, we de�ne the Syn-hronization harateristi graph of a mesh 
(M) as a direted graph (possiblyyli), build as: 
(M) = (V
; E
) :V
 = LiE
 = f(v; w) : v; w 2 Li; �(w) = �(�(v))gFor deterministi � funtions, the synhronization harateristi graph isunique for a given P value, and a hange on the nodes numbering funtion �,will produe an equivalent homeomorphi graph. An example of the 
 graph forthe example in Fig. 4.12 is shown in Fig. 4.13.
1 2 43

(4) = { 4 }ρ
(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
ρ(1) = { 1, 2 }

Figure 4.13: Example of synhronization harateristi graphWhen the synhronization harateristi graph of a mesh is disonneted, itindiates that two di�erent subgraphs are omposed in parallel. Eah subgraph



170 CHAPTER 4. EXPERIMENTAL STUDYshould be studied separately. The Algorithm2 transformation tehnique detetsthe onneted omponents as loal NSP problem ombinations and synhronizethem separately. However, Layering tehnique would resynhronize both sub-graphs together with full barriers in a non-eÆient way. For onneted 
 graphwe study the presene of nodes that annot be reahed from other nodes.De�nition 4.1.5 We denote by synhronization balane, !(M), the proportionof edges found in the transitive losure of the synhronization harateristi graphof a mesh M. Let be 
(M)+ = (V
; E+
 ) be the transitive losure of 
(M):!(M) = jE+
 j=jV
j2This value, that will be in the range !(M) 2 [0; 1℄, indiates the proportionof nodes that are propagating dependenes to other nodes independently of thenumber of layers traversed. The value 0 is only possible for ompletely dison-neted layers. The value 1 is found in graphs were all nodes an be reahed fromall other nodes. In Fig. 4.14 we show the transitive losure and the synhro-
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V 2 (4) = { 4 }ρ

(3) = { 3, 4 }

(2) = { 2, 3 }

ρ
ρ
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(M) = 0.625ω
= 10

= 16

Figure 4.14: Example of !(M) measure with the 
 graphnization balane value for the previous example mesh. A value of !(M) = 0:625indiates that many nodes annot be reahed from other nodes independently ofthe number of layers onsidered.Meshes with onneted 
 graphs and ! values of 1, do not present any  e�etdi�erent from the ones previously disussed, based on the topologial (P;D,S)and workload (&) parameters. However, meshes with onneted 
 graphs andlower than 1 synhronization balane values, will su�er the following pathologiale�ets:1. Limited e�et of S parameter:If we add edges to a mesh, that do not inrease the synhronization bal-ane, the synhronization density inreases, also the number of dependenespropagated, but not the number of nodes that are not reahed from otherertain nodes. Thus, the bene�ial e�et of these added edges is highlylimited.



4.1. SYNTHETIC GRAPHS 171To test this e�et, we have designed an experiment in whih we produemeshes with inreasing S values, but foring the new edges to target neigh-bors already reahable in the 
 graph through transitive dependenes. Wede�ne the following synhronization funtion for a given P and a new pa-rameter s: �(�(v)) = ft : �(v) < t � (�(v) + s) � PgAn example of meshes generated by this tehnique are shown in Fig. 4.15.
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Figure 4.15: Example of meshes with higher S and the same !The s parameter is very similar to the �nal S of the generated mesh, es-peially when s � P . As we are interested in the e�ets produed for Sranging from 2 up, for our experiments we will use P = 100, onsideringS = s.In Fig. 4.16 we show how inreasing the number of edges (indiated by theS parameter) in a omplete unbalaned mesh (plot (a)), does not produethe bene�ial negative exponential-like dereasing e�et on , found inrandom and typially balaned meshes of the same sizes (plot (b)). Thee�et is aneled after adding approximately 4 or 5 edges (the dependenesare quikly propagated in the only possible diretion).2. Non-limited e�et of D parameter:In Fig. 4.17(a,b) we show the e�et of D inrease, for unbalaned meshes.We present two examples. Both of them have been reated with the pre-vious disussed tehnique. They are strutures with unbalaned neighboredges with P = 100, and s = 3 and s = 5 respetively. Both graphshave the same number of non-reahable nodes, ! = 0:505. The plots showhow the limited e�et of D, found for other graphs with ! = 1, (om-pare with Fig. 4.10) does not appear. As ! value is the same, the �naltrend for high D values is the same. What hanges from S = 3 to S = 5
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Figure 4.16: Limited e�et of S in synhronization unbalaned meshesis how quik the dependenes are propagated in the only available dire-tion. Thus, S still measures how quik the general trend imposed by ! isahieved. In both ases, we observe some irregularities in the slope nearthe point D � P=S. At this point, the propagated dependenes have beenspread along the full layer width, and the limiting D e�et urve meetsthe general tendeny urve imposed by !. From this point on, both urves(S = 2; S = 3) are similar.With values of S lower than 2, the 
 graph is typially disonneted, andthe subgraphs should be studied separately. For onneted 
 graphs, the !lower values orrespond to graphs with S � 2. We onjeture that the extradispersion of  values related to S near 2, observed previously, is produed by
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Figure 4.17: Non-limited e�et of D in synhronization unbalaned meshesthese pathologial e�ets not previously aounted for.The pathologial e�ets are higher for lower values of !, although no diretrelation has been yet established, beause of the diÆulties found to automati-ally generate di�erent synhronization unbalaned topologies with the desired !values. It is an open question if D;P; S; &; ! parameters are enough to auratelyestimate  for graph meshes.Correlated workload meshesIn the previous study, due to the absene of real workload information for syn-theti graphs, we are assuming an i.i.d. workload for every node. In real appli-ations with not ompletely regular tasks loads, it is typial to �nd some kind



174 CHAPTER 4. EXPERIMENTAL STUDYof orrelation between the workload distribution and the topology. Consider, forexample, a mesh representing a maro-pipeline. If one of the pipe stages is moretime onsuming than others, we will �nd a olumn of tasks more loaded than theothers. If a ellular-automata like program needs to ompute some more omplexintermediate results after some normal iterations, we will �nd a mesh were somerows or layers of nodes are more loaded than the others.To detet if the presene of this orrelation between workload and topologyis bene�ial or negative for the SP-ization impat, we have designed some moreexperiments with random meshes. We will onsider meshes with �xed P , D andS values, and we will hange the workloads to reate suh vertial or horizon-tal orrelations. The modi�ed load parameters �; � will be proportional to theoriginal ones to keep the same variability aross the whole graph.Let us onsider the following workload models:Vertial orrelation: The load is modi�ed in a given olumn  in a given pro-portion p: �(v) = � x; N(�; �) if �(v) 6= x; N(p�; p�) if �(v) = Horizontal orrelation: The load is modi�ed in a given layer r in a givenproportion p: �(v) = � x; N(�; �) if d(v) 6= rx; N(p�; p�) if d(v) = rMultiple vertial orrelation: The load is modi�ed in a given proportion p,in a given number of olumns n, distributed along the graph with a �xedstride s = P=n:�(v) = � x; N(�; �) if (�(v) mod s) 6= 0x; N(p�; p�) if (�(v) mod s) = 0Multiple horizontal orrelation: The load is modi�ed in a given proportionp, in a given number of layers n, distributed along the graph with a �xedstride s = D=n:�(v) = � x; N(�; �) if (d(v) mod s) 6= 0x; N(p�; p�) if (d(v) mod s) = 0We are interested in deteting how the position of olumns or rows withmodi�ed load, and the load modi�ation are a�eting . Thus, we design thefollowing experiments. Let M be a random mesh with P = D = 64 and S = 3.We arry out the following experiments, were some of the parameters have beenadjusted in view of the results disussed below:



4.1. SYNTHETIC GRAPHS 1751. Vertial orrelation of one olumn, hanging the olumn position. As thegraph is symmetri, and the dependenes are randomly distributed arossthe full graph width, we expet symmetri results moving the olumn fromthe enter of the mesh to eah extreme:p = 2;  2 f1; 2; 4; 8; 16; 32; 49; 57; 61; 63; 64g2. Vertial orrelation of one �xed olumn, hanging the workload modi�a-tion. We test both, lower and higher values of the load in the seletedolumn:  = 32; p 2 f0:5; 0:8; 0:9; 1:0; 1:1; 1:2; 1:5; 2:0; 4:0g3. Horizontal orrelation of one layer, hanging the layer position. As thepv is aumulated through the graph up-down, we test modi�ed layers allalong the graph:p = 32; r 2 f1; 2; 4; 8; 16; 32; 49; 57; 61; 63; 64g4. Horizontal orrelation of one �xed layer, hanging the workload modi�-ation. In view of the results of our �rst experiments in this ategory,we detet that we need to inrease the load muh more than in vertialorrelations to get representative results:r = 32; p 2 f0:5; 1:0; 1:1; 1:2; 1:5; 2:0; 4:0; 8:0; 16:0; 32:0; 64:0; 128:0g5. Multiple olumn orrelation, with di�erent number of olumns to generateall the possible integer strides for P = 64:p = 2; n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 16; 21; 32; 64g6. Multiple layer orrelation, with di�erent number of layers to generate allthe possible integer strides for D = 64:p = 6; n 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 16; 21; 32; 64gAll the experiments will be arried out with di�erent workload variabilities& 2 f0:1; 0:2; 0:5; 1:0g, and drawing 25 times random workload distributions foreah topology. The results obtained from these experiments an be summarizeas follows. For the following disussion, keep in mind that  is minimum whenthe ritial path of the NSP graph has the more loaded nodes of eah layer:
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Figure 4.18: Independene of load orrelation position1. Independene of the olumn or layer position:As it is shown in Fig. 4.18, the position of the olumn or layer whih load ismodi�ed is not really important. In the ase of vertial orrelation, as alongas the edges in the mesh are hosen randomly, the dependenes are prop-agated with equal probabilities, independently of the olumn position. Inmeshes with deterministi synhronization funtions, it should be possibleto observe little  di�erenes when the modi�ed olumn position hanges.In the ase of horizontal orrelation, all full paths must ross the layer,independently of the layer position, getting the same probabilities of beinga�eted.2. Bene�ial e�et of the vertial orrelation:



4.1. SYNTHETIC GRAPHS 177In Fig. 4.19 we may appreiate the bene�ial impat of inreasing the work-load in one modi�ed olumn. A lower load than in other olumns does notsigni�antly modify the  values, beause the more loaded nodes in eahlayer are the normally loaded nodes. The maximum aumulated pathvalue through several edges, is always got from one of the normally loadednodes. On the other hand, when the modi�ed load is inreased above thenormally loaded nodes, the paths that ross the highly loaded olumn moretimes, get more and more probabilities to beome the ritial path. At thesame time, the nodes in the olumn get more and more probabilities tobe the more loaded nodes in the layer, espeially when the variability issmall. Thus, the ritial path in the NSP version gets more probabilitiesto have exatly the more loaded nodes in eah layer, minimizing . As it
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Figure 4.19: Bene�ial e�et of the vertial orrelation



178 CHAPTER 4. EXPERIMENTAL STUDYis also shown in Fig. 4.19, this bene�ial e�et immediately disappears ifthere are several olumns with the same load modi�ations in the mesh.The reason is that there are more probabilities for the ritial path to rossa highly loaded node (in one of the modi�ed olumns) whih is not exatlythe more loaded node in the layer (being in other of the modi�ed olumns).Fortunately, in appliations with vertial orrelation (like some pipelines)is typial that most olumns have di�erent mean load values. The existeneof this small load di�erenes between olumns lead to a middle point onthe bene�ial e�et.3. Bene�ial e�et of the horizontal orrelation:In Fig. 4.20 we an see that in the ase of horizontal orrelation, smallmodi�ations of the load does not a�et . Although all paths must rossthe modi�ed loaded layer, there are not so many probabilities for the ritialpath to ross exatly the more loaded node in that layer. However, when theload in the modi�ed layer is highly inreased, in a muh bigger proportionthan the other layer nodes, the paths that ross exatly the more loadednode in that layer have more and more probabilities of being the ritialpath themselves, as the other layers loads beome less signi�ant in thetotal path value. In the same �gure we an also appreiate that inreasingthe number of loaded layers is potentially bene�ial until a given point. Thereason is that the e�et previously disussed for one layer is applied moreand more times. However, when the number of layers inreases too muh,the extra loaded nodes beome too frequent, and they beome the normallyloaded nodes. Then, the full paths get the typial variability e�ets of thenow more ommon nodes in the mesh, eliminating the bene�ial e�et ofthe orrelation. This workload on�guration with many layers more loadedthan a few ones is not so typial in appliations.The important onlusion about this experiment, is that typial orrelationbetween topology and workload may produe bene�ial e�ets on  in manyirumstanes. Thus, our previous preditions with i.i.d. workloads an be on-sidered a worst ase for workload distribution, and previous  preditions an beonsidered upper bounds of the expeted  in typial appliation strutures.4.1.4 Conlusions about syntheti graph resultsAlthough not being a topologial feature, the workload balane is the graphharateristi with the higher impat in the potential performane loss measuredwith ritial path analysis (). Our main study is based on i.i.d. workloads due tothe absene of real workload information. Nevertheless, more irregular workloaddistributions with typial appliation orrelation in vertial and horizontal nodeinstanes may produe even lower expeted  results.
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Figure 4.20: Bene�ial e�et of the horizontal orrelationFor random or irregular graphs, the P and D parameters are typially or-related with S. Thus, S and Rs values easily determine the  values. Thedispersion of  values is maximum around the ritial point of S � 2 where values also reah their maximum.More strutured graphs, whih nodes are organized in layers onneted byrandom or repliative synhronization strutures, do not present a orrelationbetween the parameters S and P;D. If the synhronization struture aross layersis random, or balaned (as measured with ! for deterministi synhronizationstrutures), the  values an be estimated with the workload harateristis andthe simple topology parameters P;D; S. The values of  reah their maximumfor S � 2. Further inrease of S immediately limits the  inrease. The numberof layers in the mesh is only important until D � P=S. More layers do not



180 CHAPTER 4. EXPERIMENTAL STUDYfurther a�et the potential performane loss. Thus,  is highly preditable as afuntion of very simple topologial and workload parameters.For unbalaned synhronization strutures (! < 1), pathologial e�ets areobserved in the S and D e�ets. Future work should relate these observations to! values.4.2 Real AppliationsIn this setion we present an study of the performane e�et of using di�erentSP and NSP programming tehniques with real appliations. Our purpose is todetermine the potential performane loss produed at programming level due torestrit relevant synhronization strutures to SP form. We hoose appliationexamples whih are representative of important SA lasses (see 2.6). We usegraphs to model appliations at di�erent detail or abstration levels. Modelingtehniques and their auray are studied. Transformation tehniques and  pre-ditions previously disussed, are studied in strutures from real appliations. Wepresent results on how  is propagated to run-time level in real implementations�. The main trends of this loss are studied before applying any improvementderived from SP programming. Thus, no advantages of SP programming willbe exploited in our experiments during implementation or run-time. Finally, wespei�ally fous our study on more irregular appliations, showing how typialload balaning and data-partitioning tehniques lead to more regular strutures,feasible for SP-programming.4.2.1 Experiments designExperiments are onduted to ompare information obtained from programminglevel ost models with real implementations. Results are studied to extrat pa-rameters non-dependent on the appliation whih predit the mean performanee�ets of restruturing programs for SP programming frameworks.We �rst fous our study in appliations in the NDS lasses, where the stru-ture of the appliation is �xed for some simple parameters after mapping (mainlythe number of proessors).The experiments are designed as follows:1. Selet a representative appliation of a stati NSP SA lass.2. Implement the program in both NSP and SP versions, for di�erent mahinearhitetures and/or programming models.3. Run programs obtaining load and performane measurements.4. Derive programming level graph ost models.



4.2. REAL APPLICATIONS 1815. Estimate mean program behavior with syntheti workloads and statistialload measurements.6. Compare estimations with real performane measurements. If auray isnot enough, re�ne ost models at a lower implementation level and go bakto phase 5.7. Relate appliation behavior and SP-ization impat to struture parameters.For dynami lasses, struture is data-dependent and annot be easily derived.For these ases an exhaustive study is not always possible. Availability of simpleodes is limited, appliations trend to be muh more omplex, they typiallyinlude hard-wired optimizations based on the mahine arhiteture, and �nally,many alternatives of implementation exists for almost any algorithm. Input datamay have a great impat in an spei� struture, as dynami sheduling andmapping tehniques are used.Thus, our experiments are oriented to exploit available samples of runningtraes, obtained by exeution monitoring. Task graphs are built from the trainginformation. The stages of eah experiment are:1. Find examples of strutures (task graphs) generated by exeuting existingimplementations of an appliation, with di�erent real input data, on spei�mahines. If possible, we will gather detailed real workload information inrun-time.2. Apply the Algorithm2 transformation tehnique, presented in 3.5, to thesample strutures.3. Compute and ompare performane (pv) in the original and transformedstruture and relate it to strutural parameters.Appliations seletedAlong the lines presented in the appliations lassi�ation in setion 2.6, we seletthe following representative examples of relevant NSP lasses:1. Stati NSP appliations:Stati maro-pipeline: It is is a good representation of simple stru-tures reated by multiple iterations of a shifting memory aess pat-tern. Many parallel non-synhronized loops and data mappings reatestrutures similar to this one.This appliation also presents the minimum synhronization densityS parameter value possible for omplete regular appliations in whih



182 CHAPTER 4. EXPERIMENTAL STUDYall proessors exeute the same piee of ode with the same ommuni-ation pattern. Nevertheless, eah iteration provides a full hain NSPomposition (see 3.3.3), that needs full layering synhronization to betransformed into SP form.Moreover, the dependenes between proessors are not propagated inan homogeneous way, but in an spei� diretion of proessors num-bering after data partition. It leads to the biggest possible number ofdependenes added for any S = 2 struture after SP-ization, and itpresents the pathologial e�ets desribed in setion 4.1.3 for stru-tures with ! < 1.Thus, it is a extreme ase for SP-ization impat.1D Cellular automata: This appliation represents the neighbor syn-hronization strutures. Many regular and salable appliations aremapped to this strutures. Is is spei�ally representative of gridomputations and PDE solvers. Even more ompliated stenil basedappliations are mapped to this struture if a 1-dimensional data par-tition is used. In fat, we have hosen to implement a typial 2D gridomputation mapped by rows, to produe a 1D ellular automatastruture with real and representative omputation loads (see an ex-ample of modeling this mapping in Fig. 4.23).For this kind of neighbor synhronization and grid appliations, the1D ellular automata kernel present the minimum S parameter value(S � 3), being the appliation example most potentially a�eted whenit is transformed to SP form.FFT: It is an important kernel in many parallel appliations and has beenwidely studied. Its buttery ommuniation struture is the most typ-ial example of solving networks.After the loal omputation phase, FFT is an intensive ommuniationappliation, as all the loal data is sent in eah ommuniation. Ineah iteration the ommuniation phase interhanges data with furtherremote proessors in a linear numbering. However, the binary treepattern may be exploited with speial mappings and implementationsto improve loality in spei� network models (see e.g. [156℄).LU redution: Most matrix fatorization algorithms (e.g. QR or Cholesky)presents similar SA. It is a omplex appliation for graph ost modelderivation as disussed in setion 4.2.3. At program level it present atriangular synhronization struture that must be mapped at imple-mentation level to another di�erent form for regularity and salability.This mapping leads to dereasing task load values along iterations.2. Dynami appliation lasses:



4.2. REAL APPLICATIONS 183Simulations based on graphs: Most physial or hemistry simulationsare based on a PDE iterative sparse-matrix solver. The matrix stru-ture represents the adjaeny of the joint points of a 3D mesh whihmodels the studied objet. For these appliations, the synhronizationstruture generated is ompletely dependent on the data mapping,typially based on a graph partitioning algorithm.As example of the strutures produed by these appliations we gen-erate mapping level task graphs of a simple PDE solver style pro-gram running on graphs already partitioned with a free and state-of-the-art multi-level partitioning software for unstrutured graphs(METIS [117, 167℄). Example input 3D models are hosen from thestrutural engineering area, from a olletion of free test data intendedfor use in omparative studies of algorithms for numerial linear alge-bra (Matrix Market [146℄).Sparse-Matrix fatorization: This appliation is a good representativeof strutures generated by diret solver tehniques for sparse-matrixomputations. As an example of the performane impat of SP-izationin these lass of appliations, we have apply our transformation algo-rithm to some graphs generated by monitoring the exeution of adomain deomposition and unstrutured sparse-matrix fatorizationsoftware [55, 123, 124℄ for �nite-element problems. The automatiallyobtained graphs are provided with real workloads.These two problems overs the typial synhronization strutures generatedby parallel implementations of the main iterative and diret solvers forsparse-matrix omputations.Mahine arhiteturesAt implementation level a parallel program is ompiled and optimized for an spe-i� mahine. When exeuted, it uses ostly mehanisms to spawn, synhronizeand ommuniate tasks. Implementation details and the underlying arhitetureof the mahine beome important. For simple appliations and kernels we wantto study the main performane e�ets in di�erent programming models, and alsodi�erent mahine arhitetures. We have seleted available mahines to overdi�erent arhiteture models and typial on�gurations of them:Shared memory arhitetures: The programming tehniques used in thesemahines are straightforward, and the programmer is not normally faingthe data distribution or sheduling details diretly.Our study is foused on a leading edge tehnology shared-memory arhi-teture: CC-NUMA. Our available mahine is an Origin2000. CC-NUMA



184 CHAPTER 4. EXPERIMENTAL STUDYmahines have representative properties for performane evaluation of syn-hronization tehniques. The use of memory hierarhy improves perfor-mane, while ahe-oherene protools and automati proess migrationtry to hide mahine level details to the programmer. Nevertheless, theeÆient use of memory loality is not an easy task even with ompiler as-sistane. Delay times for data aess and synhronizations are less stablethan in other arhitetures, espeially for full olletive ommuniations,like barriers issued aross the whole system [102℄.Distributed memory arhitetures: The main parallel programming modelused for this kind of mahines is message-passing. The programmer faesproblems as data distribution or sheduling details inherently, inreasingthe developing e�ort.We use two key types of distributed memory mahines that have represen-tative properties for performane evaluation of synhronization tehniques.CrayT3E is a mesh-based omputer, with hardware and protool improve-ments to minimize the overhead of distant proessors ommuniation. Thespeial-purpose hardware is highly eÆient. A Beowulf system (a lusterof PC omputers linked by a high speed Ethernet swith [176, 177, 151℄)normally presents higher ommuniation osts. As the underlying message-passing tools are prepared to work in generi/all-purpose networks, theimplementation details an reate irregularities in the network traÆ orommuniation delays. Both mahines are at the budget extremes for highperformane omputing. CrayT3E is an expensive spei�ally designed ma-hine, while a Beowulf is an optimized way to reate a superomputer fromgeneri, all-purpose, and in omparison heap, omputer hardware.Programming models and ode generationAfter determining the appliations and mahines, we must selet a onvenientprogramming model to odify the NSP and SP versions of eah program. Theminimum requirement for a programming model to be seleted are:1. Codes must be portable with minimum or none modi�ations to everyarhiteture tested.2. A systemati ode transformation tehnique must be devised to derive SPversions from NSP versions of the �nal ode.3. A systemati tehnique to extrat programming or implementation levelgraph models from the ode must be devised.4. It must provide similar performane as ompared with other native or morespei� models.



4.2. REAL APPLICATIONS 185Aording to the previous requirements, we onsider the MPI message passinginterfae as the best andidate for our experimental framework for the followingreasons:1. It is a portable API. Programs implemented in MPI an be ompiled andexeuted in almost any parallel mahine due to standard MPI implemen-tations.2. As MPI is a full standard interfae of the well-known message-passingmodel, many appliations are already studied and implemented on thismodel (see e.g. [189℄). Real odes for some of the seleted appliations areavailable.3. It is a performane eÆient and reliable tool. Most vendors provide theirspei�ally optimized implementations. Generi but eÆient implementa-tions (e.g. mpih) are also available.4. Message-passing model fores expliit ommuniation. Sheduling, data-partition and any other mapping transformations must be hard-wired inthe ode. Thus, a omplete monitoring of ommuniation ativities at highlevel is possible. In setion 4.2.2 and setion 4.2.3 we introdue systematiways to extrat task graph models from odes in di�erent programmingparadigms. We espeially study the message-passing problems and solu-tions, inluding an example for MPI. Message-passing interfaes simplifytask and ommuniation identi�ation beause ommuniation is alwaysexpliit.5. Transforming NSP MPI odes to SP form is easy beause of the expliitommuniation. Communiation phases are formed by grouping onseu-tive ommuniation primitives, with no omputation ode in-between (seesetion 4.2.2). Synhronizing the programs to simulate the added depen-denes needed for SP-ization may be as simple as adding barrier synhro-nizations after ommuniation phases. Probably, there exist other and bet-ter methods to transform the original ode to SP form, but this approahis simple, systemati, and a typial worst ase, where no ode manipula-tion is done exept to add dependenes through barriers. The tehniqueis suitable to exhibit an appliation potential degradation of performanedue to the extra synhronizations when programmed in an SP PPM.6. Message-passing libraries as MPI allow very �ne tuning of the odes forperformane. The library implementations, spei�ally for MPI, are fastand eÆient.In shared memory mahines, there are other interesting and widely knownprogramming models as OpenMP, direted to portable and eÆient devel-
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Figure 4.21: OpenMP vs. MPI implementations in Origin2000opment. We have tested di�erent implementations of several appliationswith OpenMP and MPI to ompare their relative eÆieny or detet dif-ferenes in the e�et of SP-ization for so di�erent programming models.In Fig. 4.21 we show the performane obtained in an Origin2000 mahinefor a simple ellular automata program, implemented in several di�erentways. The plots orrespond to the same odes ompiled with no om-piler optimization (-O0), and with aggressive ompiler optimization (-O3)respetively.The odes inlude: (1) OpenMP SP ode that exeutes the iteration loopinside a parallel region, with full synhronization barriers before and af-ter opying of frontier shared data; (2) OpenMP SP ode whih spawns



4.2. REAL APPLICATIONS 187and ollapses a parallel region inside eah iteration, with only one expliitbarrier needed for synhronization; (3) OpenMP NSP ode based on on-trol variables ushed aross the memory system, with ative waitings; (4)OpenMP NSP ode synhronized through lok variables; (5) MPI NSPode based on simple point to point ommuniations; (6) MPI SP odewith a barrier added before ommuniation; (7) MPI SP ode with a bar-rier added between send and reeive parts of the ommuniation; (8) MPISP ode with a barrier added after ommuniation, before omputationphase. Data sizes are saled up with the number of proessors to keep thetasks load independent of the number of proessors. Task loads are highlyregular for this problem, thus SP-ization impat should be negligible. Ourresults indiate that OpenMP and MPI implementations are similar in per-formane, for both: NSP and SP versions. Results are independently ofode restruturing, hange of primitives or synhronization system, or eventhe barrier plaement. MPI shows a more stable behavior than OpenMPversions when we do not allow ompiler optimizations, whih is interestingfor our study (as we disuss below). Code versions using native OpenMPperform better than MPI when aggressive ompiler optimization is used.However, the performane degradation is a onstant delay due to extra pro-ess reation and manipulation in MPI, ompared with the eÆient nativethread reation system used by the OpenMP implementation. MPI resultsare still eÆient and ompletely similar regarding the performane trends,and the NSP to SP ode restruturing.One the programming model is seleted, we disuss other implementationdetails. We must be areful about ode or ompiler optimizations. Fine tuningsthat are not portable aross mahines must be avoided. We are mostly inter-ested in simple diret odes that implement the basi ommuniation sheme foreah appliation. For eÆient software development we must rely in ompileroptimizations and eÆient run-time environments tuned to the spei� targetmahine. However, we do not yet have a programming framework that reallyexploits all SP properties for optimization. Moreover, our study is foused to de-tet the potential performane loss due to transformations at programming level.Advantages obtained during implementation phase are impossible to be fairlyevaluated nowadays, as they an be produed by SP ompiler transformations,run-time sheduling, or even by other non-related ompiler optimizations, likebetter sequential ode manipulation, ahe trashing redution or internal bu�er-ing optimization (partial studies of SP optimization advantages exist, and theypoint to good performane advantages obtained due to implementation transfor-mations when restrited SAs are used, see e.g. [57℄).Thus, we must avoid aggressive optimizations. Compiler ode manipulation(loop reordering, unrolls, bu�ering optimizations), may hange the synhroniza-



188 CHAPTER 4. EXPERIMENTAL STUDYtion patterns in suh a way that: (1) implementation model of the resultingtransformed ode is impossible to be known or derive even at run-time; (2) thelow level programs resulting from NSP and SP strutures are so struturallydi�erent that they are not omparable anymore. For these reasons, for our ex-periments we have seleted no ompiler optimization at all (we inlude the -O0ag in all ompilation jobs).For eah appliation onsidered we generate an NSP and a related SP versionbased on the same original ode:1. MPI, NSP version: Based in point to point or basi olletive ommunia-tions.2. MPI, SP version: The former version with added barriers after ommuni-ation phases.First we program a basi NSP version of the appliation using simple MPI pointto point ommuniations. This referene version may be re�ned to a seondNSP version using olletive operations1. We ompare the NSP ode with anSP version reated by adding barrier synhronizations after the ommuniationphase of eah stage or loop iteration.In the experiments with syntheti graphs we made the assumption of i.i.d.task loads for any degree of parallelism. To be able to ompare results andtrends obtained from syntheti graphs, with results obtained with these new realappliation experiments, we use saled up problem sizes in order to keep themean of the task loads as independent as possible of the number of proessors.Problem sizes are also loosely adapted to the relative hardware speed arossmahines to obtain performane results in the same order of magnitude, andsimilar ommuniation to omputation ratios.Measures inlude the total exeution time of the parallel setion of eah ode,as well as the mean and deviation of task and ommuniation times. We onsidera task to be a ontinuous sequential omputation, from the point after a wait forsynhronization has been performed (one or more ommuniations or a barrier)to the next one (see following setions for more details). The experiments areonduted up to all the available proessors (2 to 8 in the Origin2000, 16 to 128in the CrayT3E, and 2 to 16 in the Beowulf system).4.2.2 Appliation ost models at programming levelAppliations may be modeled with di�erent detail level (reall disussion aboutimplementation trajetory represented in Fig. 3.25, setion 3.6.1). An appli-ation synhronization struture is transformed from its original programming1MPI standard states that olletive operations may or may not be synhronized. It isimplementation dependent [140℄.



4.2. REAL APPLICATIONS 189shape during mapping and implementation phases. At programming level, withno resoure restrition, all possible parallelism an be exploited. In the mappingto resoures phase, data partition may a�et the task struture of the applia-tion. The implementation of the ommuniation/synhronization mehanismsmay also reate new low level strutures. Thus, di�erent task graphs modelswill be used at di�erent implementation levels. From simpler ones at the higherabstration levels, to more omplex and detailed ones at lower levels.In this setion we introdue proedures to model real appliations with taskgraphs at programming or mapping level. These graphs are ost models whenprovided with syntheti or real workloads. Our ost models will be as simplistias possible while they will provide at least asymptotially aurate performanepreditions.At the programming abstration level, the spei�ation of an algorithm isadapted to the synhronization strutures available in the programming lan-guage and/or model used. Mapping onstraints are not onsidered. Thus, theprogram ould express all the parallelism available in the appliation in a very�ne grain. The synhronization struture is derived manually from the algorithmspei�ation or program. A graph representing tasks and dependenes an begenerated to represent it. In the ase of MPI model, some mapping deisions(like data-partitioning among proessors and other ode adaptations to use a�xed number of proessors) are taken by the programmer and hard-wired inthe ode. The mapping level graphs an be derived from MPI odes using themehanisms desribed in this setion.For dynami appliations where the ommuniation/synhronization stru-ture is data dependent, the exat task graph an only be generated at run-time,and will be di�erent for di�erent exeutions. Moreover, even the simplest andmost regular odes are usually parameterized with, at least, the degree of par-allelism or the number of iterations of a parallel repetitive omputation. Thus,task graphs are representations of a lass; they represent the overall struture pro-dued at programming level for a given appliation (for any number of proessorsor iterations). Simpler stati and high regular appliations will be modeled by avery small amount of graphs that will have the same synhronization patterns,even if depth level and degree of parallelism hange. More dynami appliationsshould be modeled with a higher number of graphs, enough to represent thetypial strutures that an be generated for di�erent data.Graph derivation mehanismsAt programming or mapping level, osts for ommuniation or synhronizationmehanisms are not an issue to onsider. Their struture or ost annot be eval-uated until lower implementation details are onsidered. Thus, a very simplistitask graph model will be perfetly aurate to represent the struture of the



190 CHAPTER 4. EXPERIMENTAL STUDYappliation.Nodes (Tasks): Eah node of the graph represents a task. We onsider a taskto be an atomi ativity whih an be exeuted independently of the loalstate of other ativities (tasks).Edges (Dependenes): Edges will represent only preedene of tasks imposedby the program semantis (data dependenes or other synhronization needs).Mutual exlusion: Graph edges represent ordered preedene onstraints be-tween tasks. Thus, they are only appropriate for CS. At programming orhigh abstrat mapping level, there is not a way to translate ME synhro-nizations to direted task graph edges. The ME synhronization meha-nism is solved in sheduling time, thus, it is an implementation dependentor run-time matter. In these lower levels, when ME is solved, an exeutionorder will be fored between mutual exlusive tasks, but we annot preditit at high abstration levels.To represent non-ordered synhronization (ME) in our programming levelmodel we propose to use a di�erent label or olor for mutual exlusivenodes. Formally, we use a funtion that maps subsets of nodes to mutualexlusion identi�ers. Nodes assoiated to the same identi�er must be mu-tual exlusive. A node mapped to the empty set represents a node that isnot mutual exlusive with any other one. No expliit ordered dependenewill be added with edges between nodes due to mutual exlusion.ME = fm1;m2; :::;mng� : V !M � MEIdentifying tasks and dependenes must be done manually from program spe-i�ations, and using the appropriate information assoiated with the program-ming model. In some models, espeially those whih use impliit ommuniationthrough shared-memory, we must have enough information about the low levelsemantis and of suh tools to determine whih memory aesses or primitives ofthe language are loal and whih others imply a synhronization and thereforethe end of a task and the beginning of another one. In expliit synhronizationmodels as message-passing, it is easy to determine the start and end points of atask. The exeution of piees of ode between ommuniation diretives is a task.In the ase of MPI, that exhibits expliit ommuniation and synhronizationprimitives, the identi�ation of tasks and dependenes is diret. We onsider agroup of ommuniation primitives with no omputation ode in-between a om-muniation phase. A task (graph node) is a sequential omputation, beginningat the end of a omputation phase, and ending before the next ommuniation



4.2. REAL APPLICATIONS 191phase. Dependenes (graph edges) may be extrated from the parameters ofommuniation primitives that indiate the soure and target tasks. When data-dependent parameters are used, the appliation is dynami, and several graphsmust be derived for typial data values.Workload informationAfter identifying the tasks, we must lassify them regarding their exeution timeharateristis. The graph an inlude as many types of task nodes as nees-sary (Vt1; Vt2; :::; Vtn). Nodes with the same type will share the same statistialworkload model. However, for simpliity it is interesting to redue the number ofdi�erent task types. Most of the times, espeially for highly parallel and salableappliations, the kernel of the appliation an be modeled with only one type oftasks whih exeutes similar odes.Formally, we split the tasks set V into di�erent subsets. Nodes in eah sub-set will be of a di�erent type. Random workload distributions with di�erentparameters are assoiated to the load of eah node type.T = PV = fT1; T2; :::; Tng;Ti = fv 2 V : �(v); D(�i; �i)gIn omplete absene of workload information we will assume all tasks to be i.i.d.(independent identially distributed). Thus, if no information about workloaddistribution is available, only one node type will be used.Stati regular appliations modelingWe desribe here examples and notations for modeling stati regular strutures.We introdued in [183℄ a simple language and an assoiated tool that allowseasy syntheti graph reonstrution, based on the expression of regularities byparameterizable synhronization funtions. This language may be used to easilyonstrut the graphs assoiated with regular appliation strutures disussed inthis setion.Many typial salable appliation strutures are reated by repliating thesame loal synhronization pattern for every task in eah iteration. This applia-tions may be modeled by meshes with a speial synhronization funtion appliedto eah node in a layer (see mesh de�nitions and notations in setion 4.1.3). Forthese repliative interlayer onnetion systems, the synhronization funtion maybe de�ned as a stenil or loal pattern of ommuniation (see e.g. [162℄).De�nition 4.2.1 Let M = (V;E) be a mesh. Let � be a synhronization fun-tion. � is a Stenil i� exists R(�) � Z, alled Signature of the Stenil, suhthat: R(�) = fri; i = 1; :::; a � Pg :



192 CHAPTER 4. EXPERIMENTAL STUDYE = f(v; w) : v 2 Li; w 2 Li+1; �(w) = �(v) + r 2 R(�)gIn other words, the ardinality of layers P , and the stenil signature R(�), de�nea olletion of number pairs A, in the range [1; P ℄, that de�ne the numbers ofsoure and target nodes of edges between two onseutive layers:A = f(a; b) : a; b 2 [1; P ℄; b = a+ r 2 R(�)gE = f(v; w) : v 2 Li; w 2 Li+1; (�(v); �(w)) 2 AgDe�nition 4.2.2 A Stenil Mesh is a triplet M 0 = (P;D;R(�)), that de�nes amesh graph M = (V;E) with jLj = D; jLij = P and E de�ned by the stenilsignature R(�).Stenils de�ne synhronization funtions based on loal synhronization pat-terns. For example, the signature R(�) = f�1; 0;�1g de�nes the synhronizationpattern of meshes representing 1D ellular automates or neighbor synhroniza-tion strutures. Fig. 4.22 shows the stenil mesh M = (4; 3; f�1; 0; 1g). Theedges between layers are de�ned by the following A set, where the number pairsare de�ned by P = 4 and R(�):A = f(1; 1); (1; 2); (2; 1); (2; 2); (2; 3); (3; 2); (3; 3); (3; 4); (4; 3); (4; 4)g
1 2 43

1 2 43

1 2 43

D=3

P=4
R(  ) = { -1, 0, 1 }ρFigure 4.22: 1D Cellular Automata mesh de�ned by a stenilThe numbering of meshes nodes may be extended to Nn , to more onve-niently represent synhronization strutures ommonly found in appliationsbased on 2D,3D ellular automates, quad- and ot-trees, et. In those ases,the parameter P is represented by an n-tuple of natural numbers (P 2 Nn) andthe signature of the stenil will be a olletion of Zn tuples. The A set will



4.2. REAL APPLICATIONS 193be formed by pairs of n-tuples. For example, onsider the following 2D mesh:M = ((4; 4); 3; f(�1; 0); (0; 1); (0;�1); (0; 1); (0; 0)g). This mesh represents 3 it-erations of a 5-star stenil 2D ellular automata with 4� 4 nodes in eah layer.The nodes and the synhronization pattern are shown in Fig. 4.23.
1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

5-star stencilLayer Numbering

Layer interconectionFigure 4.23: 2D Cellular Automata mesh de�ned by a stenilFor stenil funtions, S is related to the number of elements in the stenilsignature: S � jR(�)j. Boundary nodes may have less leaving edges than sig-nature elements beause the target numbers may be outside of the numberingrange: (�(v)+ r 2 R(�)) 62 [1; P ℄. However, for large sizes of P , S beomes loserto the signature ardinality: limP!1 S = jR(�)j. Thus, we onsider S � jR(�)jas a good approximation.We present now the stenil mesh models for the two highly regular statiappliations seleted for our experimental framework in setion 4.2.1:Stati maro-pipeline: This simple struture is reated by a 2 elements stenilsignature (S � 2): M = (P;D;R(�)) : R(�) = f0; 1g1D Cellular automata: This appliation has been used as example previously.The signature has 3 elements (S � 3):M = (P;D;R(�)) : R(�) = f�1; 0; 1gIn both ases, the omputation to exeute in eah task is the same. Thus, allnodes will be of the same type for workload modeling. At programming level,



194 CHAPTER 4. EXPERIMENTAL STUDYeah task omputes one data element with the loal data and the remote datareeived (one or two elements depending on the appliation). At mapping level,a big amount of data is partitioned among P proessors. If the input data size isn, let k = n=P be the number of data elements to be proessed loally for eahproessor. Let  be the omputation time needed to proess one data element:8v 2 V : �(v) � k � Other typial appliation strutures are represented by graphs de�ned bysynhronization funtions that are hanging with the number of layer i or node�(v), or where the P parameter is also variable along the layers. We desribehere the graph models of other stati appliations seleted for our experimentsin setion 4.2.1. They present regularities that allows to express them withparameterizable and more omplex synhronization funtions:Buttery networks (FFT): For this kind of strutures, D parameter is de-pendent on P , beause the number of iterations needed to omplete anFFT algorithm depend on the data size: D = 1+ log2 P . The synhroniza-tion funtion for this struture is dependent on the number of the layer.Let Li; Li+1; i = 1; :::;D � 1 be two onseutive layers of the mesh. Wede�ne the buttery funtion fi : [1; P ℄! f�1;+1g as:fi(a) = 1� 2� b(((a� 1) mod 2i)=2i+1)The synhronization funtion may be de�ned as:�i(�(v)) = f�(v); �(v) + fi(�(v)) � 2i�1gAn example of this struture for P = 4 is shown in Fig. 4.24. The loal FFTfuntion always uses one element of loal data and one element of remotedata. For this struture the synhronization density value is exatly S = 2.At programming level, eah node represents the exeution of the FFT fun-tion for two data elements, and all nodes are of the same type for workloadmodeling. However, at mapping level, when data is partitioned among a�xed number of proessors, the nodes in the �rst layer exeute the full FFTalgorithm for the loal piee of data. If data piees have k elements, theloal omputation omplexity is k � log2 k. The nodes in following layersexeute only one FFT iteration, with loal and reeived data as input. Theomputation omplexity is only k. Thus, at mapping level, in this kind ofappliation we must distinguish two types of nodes for workload modeling.For n data elements, let k = n=P and let  be the omputation time toproess one data element:8v 2 L1 : �(v) = k � log2 k � 8v 62 L1 : �(v) = k � 
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(a) = { a, f(a) x 2     }i-1ρ

L1

L2

L3

D=3

P=4Figure 4.24: FFT buttery networkMatrix fatorization (LU redution): We study the struture of a LU for-ward redution algorithm without pivoting (see e.g. [79℄). The strutureof this appliation represents most fatorization methods for dense matri-es, like Cholesky or QR fatorizations. A triangular shaped synhroniza-tion struture is generated. The ode, parallelized by rows, is presentedin Fig. 4.25. Given the sizes of the input matrix (n� n), at programming(1) // LU ALGORITHM(2) DO k=1,n-1(3) PARALLEL DO i=k+1,n(4) li;k = ai;k=ak;k(5) DO j=k+1,n(6) ai;j = ai;j � li;kak;j(7) END-DO(8) END-DO(9) END-DOFigure 4.25: LU forward redution algorithmlevel P = n�1 and D = n. The struture presents layers with a dereasingnumber of nodes (olumn elements to be updated) along iterations (rowupdatings). In eah iteration, a node omputes the row that is needed forall the nodes in next iteration to update their rows. Synhronization pat-terns are: one to all from �rst node in a layer to all nodes in the next layer;and one to one for the rest of nodes. Thus, the synhronization funtion isdi�erent for di�erent nodes in a layer.The graph model of matrix fatorizations is de�ned by the following de-



196 CHAPTER 4. EXPERIMENTAL STUDYlarations (let n be the dimensions of the input matrix Mn�n):D = n;P = n� 1Pi = � 1 if i = 1n� i+ 1 if i 6= 1�(�(v)) = � fa : a 2 [1; Pi+1℄g if �(v) = 1f�(v) � 1g if �(v) 6= 1
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(b)

Programming level

(a)

Mapping level (P=4)

Figure 4.26: LU redution: Programming level and mapping level graphsAn example of the struture generated is shown in Fig. 4.26(a). The greynodes represent the tasks that ompute the row that must be made aes-sible to all other nodes in next iteration. For this appliations S parametermay be analytially determined from the synhronization desriptions. The



4.2. REAL APPLICATIONS 197S value is dependent on the P value:jV j = (n2 � n)=2jEj = n2 � 2n+ 1S = 2n2�2n+1n2�nS < 2; limn!1 S = 2Matrix fatorizations present synhronization strutures with a very low Sparameter values.Although this struture is similar to other fatorization algorithms (as e.g.Cholesky fatorization), the workload distribution will be di�erent for eahfatorization algorithm. In fat, grey nodes in Cholesky fatorization domore omputation operations than the rest in the same layer. For our LUforward redution algorithm eah node in the same layer does the samenumber of element updates, but the number of updates is dereasing alongiterations. Let be  the omputation ost of one data element update:�(v 2 Li) = � 0 if i = 1� (n� i+ 2) if i 6= 1LU redution is a problem with many di�erent possible mappings and im-plementations that heavily hange the synhronization pattern of the orig-inal program model shown in Fig. 4.26(a). For example, a typial imple-mentation ahieves load and ommuniation balaning by distributing rowsof the matrix to proessors, with a stride equal to the number of proessors.Thus, for P proessors, proessor i will store the following set of matrixrows: Ri = fri; r(P+i); r(2P+i); r(3P+i); :::gCommuniation balaning is reated beause in eah iteration a di�erentproessor omputes and sends the row that all of them need to updatethe rest of their data in the following iteration. Cyling the proessorsthat send one row to the others, hanges the graph topology. Now, it isdetermined by n and P parameters:D = n;Pi = 8<: 1 if i = 1P if 1 < i � n� P + 1n� i+ 1 if i > n� P + 1



198 CHAPTER 4. EXPERIMENTAL STUDY�(�(v)) = 8<: fa : a 2 [1; P ℄g if �(v)� 1 = (i� 1) mod Pf�(v)g if �(v)� 1 6= (i� 1) mod P ; i < n� P + 1f�(v) � 1g if �(v)� 1 6= (i� 1) mod P ; i � n� P + 1An example of the resulting mapping level graph for P = 4 is shownin Fig. 4.26(b). For these mapping level graphs, the load is not so regularfor nodes in the same layer, due to the di�erent number of rows that eahnode may be proessing. Thus, the workload model is more ompliate.Let us assume (n mod P ) = 0 for simpliity:�(v 2 Li) = 8<: 0 if i = 1b(n� i+ 1)=P  � row if i 6= 1; �(v) � 1 < (i� 1) mod Pd(n� i+ 1)=P e � row if i 6= 1; �(v) � 1 � (i� 1) mod Prow = � (n� i+ 2)We onlude that extrating graph models from programming level spei�-ations is a simple task for typial stati programs, where the synhronizationpatterns are regularly repeated for salability. Mapping level graphs may memore ompliate and highly di�erent from the orresponding programming levelgraphs. As the data is spread aross proessors in di�erent patterns, the synhro-nization strutures are adapted to these new patterns. Nevertheless, it is stillan a�ordable task. The graph models obtained learly represent the task andsynhronization strutures of the appliations, and may be used with automatiSP-ization tehniques to obtain equivalent SP versions of the original appliation.4.2.3 Appliation ost models at implementation levelWhen implementing an appliation for an spei� mahine model, new on-straints appear. The ommuniation/synhronization strutures must be adaptedto the low level mehanisms of the seleted target mahine model. ME may betransformed to stati dependenes through sheduling in some models, while oth-ers will relay this task to run-time ontention in ommuniation systems. Thus,the implementation of ommuniation/synhronization mehanisms may trans-form the task graph, adding new details. Communiation struture and om-muniation delays are now an important issue. They are introdued as nodes oftheir own spei� type. We will distinguish as many node types as needed (tasks,point to point ommuniations, barriers,...). Nodes of the same type will sharea ommon workload distribution.The ommuniation graph struture is dependent on the implementation ofthe underlying ommuniation layer and parallelization tools seleted. For ex-ample, di�erent implementations of a message passing library (as MPI) mayimplement the ommuniation struture of a broadast olletive operation in



4.2. REAL APPLICATIONS 199di�erent ways (synhronized vs. non-synhronized, one to all point to point om-muniations vs. a tree). Programming tools may also inlude spei� shedulingalgorithms that produe di�erent transformations to the graph struture. Thus,knowledge of all the low level details of the programming model hosen for im-plementation is needed to derive aurate graph ost models.Deriving implementation level graphsWe desribe a general approah to derive task graphs from a program desriptionin a given mahine and implementation model. This approah may be done au-tomatially for some models and programs. We spei�ally omment foundationfor automati onstrution of task graphs in message passing systems.Tasks identi�ation: Tasks are identi�ed in the same way as it was done atprogramming level (see setion 4.2.2). The exeution of sequential odebetween two ommuniation or synhronization operation (or olletion ofoperations without omputation in-between) is onsidered a task.Communiation model: For our graph models we must use a very simplistiommuniation representation. Otherwise, the graph will be too omplexto derive or handle. The details of ommuniation an be di�erent inany parallel programming tool and even in eah implementations of it. Ingeneral we must simplify as muh as possible but with enough detail to geta trustful approximation.We present here a simple modelization of ommon operations in the om-muniation layer of the MPI interfae. We onsider two di�erent imple-mentations. One for CrayT3E and other for a Beowulf system (mpih).Both implementations share ommon harateristis that let us model oursimple ommuniation shemes in the same way. A graphi representationof eah ommuniation form disussed is shown in Fig. 4.27.� Four types of ommuniation nodes will be used (V1; V2; V3; Vb)� When a point to point ommuniation appears alone, it an be on-sidered as a whole in only one node (V1).� In the situation where a program is issuing several point to pointommuniations one after the other, all of them should be divided intwo nodes:1. The �rst phase node (V2) will orrespond to bu�ering the messageand initiating the real ommuniation. This phase will also delaythe beginning of the next ommuniation.2. The seond phase node (V3) will orrespond to real ommunia-tion and reeption for the message, and it will delay only the startof the reeiving task.
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Figure 4.27: Communiation models for MPI� A broadast ommuniation will be represented by p (the number ofproessors) simultaneous point to point ommuniations (V1). Thiswill omply with the MPI interfae that states that the implemen-tation of a broadast operation an or annot be synhronized. Im-plementations of the broadast operations an distribute the messagespawning it through proessors in di�erent ways, being typial a vir-tual tree struture. Nevertheless, for simpliity we will onsider allthe nodes to have the same workload distribution. Measures in realmahines support the auray of this simpli�ation. A ommunia-tion node will also onnet the ommuniation initiating task with thenext task in the same proessor, to represent the ost of issuing thebroadast.� Barrier synhronizations will be modeled with a new type of nodes(Vb). In message-passing interfaes the barriers are typially imple-mented with a tree like ommuniation struture. The ost is variablewith the number of nodes involved in the barrier. Thus, a di�erenttype of node should be use for barriers with di�erent number of pro-essors. However, the tree-like strutures have a logarithmi e�eton the ost when the number of proessors is inreased. For simpli-�ation, only one type of node will be introdued for eah range ofproessors number between powers of 2 (Vb2; Vb4; Vb8; Vb16; :::). Bar-rier times are easily predited by diret measurement for any givennumber of proessors.Our model is simple enough to easily derive the implementation level task graphs,and aurate enough to get asymptoti preditions of the appliation behavior ifproper workload models are provided for both, tasks and ommuniations.



4.2. REAL APPLICATIONS 201ExampleIn this setion we show an example of how to use these simpli�ed ost models topredit important information about the e�ets of SP-ization tehniques whendi�erent MPI implementations of an algorithm are onsidered.We have hosen the LU redution appliation beause it shows di�erent per-formane e�ets when SP-ization is applied to di�erent implementations of thesame algorithm. These e�ets are not deteted when using a programming levelmodel, but they are predited and explained with our simple implementationlevel graph ost models.We disuss implementations of the forward redution algorithm, mapped byrows interleaving as presented in setion 4.2.2. Two implementations for theommuniation stage have been onsidered (See algorithms in Fig. 4.28):IMP-1: A simple loop of point to point ommuniations.IMP-2: A broadast operation.SP versions of both implementations are easily onstruted adding a full barriersynhronization after the ommuniation stage of eah iteration.(1) // LU IMP-1(2) DO iteration=0,n(3) // COMMUNICATION(4) IF mod(iteration,p) = myself THEN(5) DO pro=1,p(6) IF p 6= myself THEN(7) Send(pro,row)(8) END-IF(9) END-DO(10) ELSE(11) Reeive(row)(12) END-IF(13)(14) Barrier (ONLY SP VERSION)(15)(16) // COMPUTING: UPDATE ROWS(17) ...(18) END-DO

(1) // LU IMP-2(2) DO iteration=0,n(3) // COMMUNICATION(4) IF mod(iteration,p) = myself THEN(5) Copy row in sending position(6) END-IF(7) Broadast(row,mod(iteration,p))(8)(9) Barrier (ONLY SP VERSION)(10)(11) // COMPUTING: UPDATE ROWS(12) ...(13) END-DO
Figure 4.28: LU redution message-passing algorithmsThe orresponding graph models for a mapping in 4 proessors are shownin Fig. 4.29 The key to distinguish the types of nodes follows:



202 CHAPTER 4. EXPERIMENTAL STUDYTasks Vt White nodesFull ommuniation V1 Blak nodesFirst phase ommuniation V2 Big dark grey nodesSeond phase ommuniation V3 Small dark grey nodesBarriers Vbp Light grey nodes with dashed lineTasks are exeuting updates on less data as iterations pass by. The meanload time of tasks is dereasing with the layer depth. In the mapping modelwe presented a workload model that was quite ompliate; dependent on thenumber of layer (iteration) and number of node inside the layer (proessor). Wehave tested other simpli�ed workload models. For our example we have hosento derive a very simplisti task graph with only one type of node for all tasks.We will use the same Gaussian random distribution to alulate the load in eahnode. Modeling any task load with the same random distribution is a very roughapproximation. However, we �nd that using statistial information from sampleexeutions, for mean and deviation parameters, the auray is enough for ourpurposes. It is the ommuniation pattern the one whih plays the importantrole in the results.The statistial workload information an be obtained from sample exeutionsor by any known predition method. The results obtained will be highly sensibleto the workload information auray, espeially beause we are using suh arough approximation of the real workload model. The mean and deviations usedfor task and ommuniation nodes have been statistially obtained, from diretmeasures when exeuting odes of the MPI implementations disussed here. Fortasks we use the overall mean and deviation when all tasks are onsidered to-gether. Two mahines with di�erent ommuniation times and harateristisare onsidered; a CrayT3E and a Beowulf system.The graph models obtained are used to simulate performane behavior of theSP and NSP versions of eah implementation. The results obtained from themodels an be used to determine whih implementation may be safely translatedto SP (asymptoti behavior is not modi�ed).We present �rst an auray study, omparing preditions obtained from thegraph models with exeution times of real implementations in a CrayT3E and aBeowulf system. To supply graph models with workloads, we gather statistialinformation about mean and deviation values for the load on di�erent types ofnodes, from experiments with real odes. The size of the problem is saled upwith the number of proessors, using matries of double data size when doublingthe number of proessors. The initial matrix size has been empirially alulatedfor eah mahine to obtain similar task times. Table 4.1 shows the estimated pa-rameters in the two mahines onsidered, for the number of proessors available.The load values have been rounded up before using them for graph simulations.CrayT3E has faster mean ommuniation times with lower deviations, even
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IMP-2 SP versionIMP-2 NSP versionIMP-1 NSP version IMP-1 SP version

Figure 4.29: Implementation models of LU redution with distributed rows



204 CHAPTER 4. EXPERIMENTAL STUDYCrayT3EVt V1 V2 V3 VbpPro. � �2 � �2 � �2 � �2 � �216 19 0.28 0.66 0.00001 0.22 0.00001 0.44 0.00001 0.104 0.00000132 19 0.28 0.88 0.00001 0.22 0.00001 0.66 0.00001 0.143 0.00000164 19 0.28 1.32 0.00001 0.22 0.00001 1.10 0.00001 0.175 0.000001128 19 0.28 2.22 0.00001 0.22 0.00001 1.98 0.00001 0.224 0.000001BeowulfVt V1 V2 V3 VbpPro. � �2 � �2 � �2 � �2 � �22 19 0.31 1.00 0.0001 1.00 0.0001 0.00 0.0001 0.50 0.000014 19 0.31 2.00 0.0005 1.00 0.0001 1.00 0.0001 1.00 0.000108 19 0.31 6.00 0.0007 1.00 0.0001 5.00 0.0001 3.00 0.0010016 19 0.31 9.00 0.0010 1.00 0.0001 8.00 0.0001 6.0 / 2.0� 0.00100Table 4.1: Load estimated times (milliseonds)for a large number of proessors. Thus, the results of the simulations will be morereliable. The barrier synhronization system is also more eÆient when salingup. It is noteworthy the strange e�et of barrier times for 16 proessors in theBeowulf system. After a group of point to point ommuniations, full barriertime still grows up (6.00ms). However, after a broadast operation, the time iseven smaller than with less proessors (2.00ms). It seems that an optimizationof either the MPI implementation or the hardware is arried out when a barrieris issued after a broadast with all the proessors in the system. Communiationmean times in the Beowulf are in general not so muh reliable, as unexpetedpeaks are ommonly found.Comparative results from real exeution times and preditions with the graphsare shown in Fig. 4.30. In all ases the performane predited times are similarto the real measures, and they show the same slope tendenies.The �rst e�et observed is that IMP-2 sales better than IMP-1. The graphmodel an be used to explain the e�et. IMP-1 reates a strange ommuniationpattern, that is not well balaned. The loop is always sending messages toproessors in strit numbering order while the origin of ommuniations is yling.In Fig. 4.28 (NSP IMP-1), we an see that the �rst phase of eah point to pointommuniation, aumulated for all send primitives, is not evenly distributed toother proessors. Depending on how signi�ant is the mean load of the V2 nodesompared to V3, the overall performane an be badly a�eted. Moreover, asmore proessors get involved, the delay grows higher. The relative importane ofV2 vs. V3 loads is higher in the Beowulf system than in the CrayT3E, as shownin Table 4.1. However, we use many more proessors in the CrayT3E. Thus,the �nal e�et is even more notieable in CrayT3E. The broadast primitive ofIMP-2 sales learly better than the IMP-1 for both NSP and SP version.Changing the loop indexes to yle with the proessor initiating the om-
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Figure 4.31:  omparison: Real times  vs. predited times muniations will alleviate part of the problem. However, the SP version thatadds a barrier after the ommuniation stage is always delaying all proessesup to the aumulation of all ommuniations �rst phase. When the number ofproessors grows, the problem gets linearly worse. Fig. 4.31 shows the valuesof  (performane loss due to SP-ization) for real and predited results. It anbe seen that IMP-2 is perfetly suitable for SP programming, as the  valueskeep almost onstant when the appliation is saled up. The loss of performanein SP version of IMP-2, learly seen in the Beowulf ase, is generated by thetimes needed for barrier synhronizations when the number of proessors growup. Better barrier synhronization mehanisms will diminish this loss. The peeksin ommuniation/synhronization times in the Beowulf also helps this grow.We must also point out the urve slope di�erenes between measured and



4.2. REAL APPLICATIONS 207predited  values. Sine we used simpli�ed graph models in our simulations,some irregularities appear, espeially in the entral part of the number of pro-essors axis. In general, predited results are higher than real measures, whih isa onsequene of the rounded up approximations we have used. As the numberof proessors (and thus the exeution time) grows, the relative importane of a-umulated rounding errors is smaller. All this ould perfetly explain the shapedi�erenes of the  predition urves.With the preditions obtained with our simpli�ed graph models we an re-ognize that IMP-2 is in general better than IMP-1 due to the implementation onthe underlying message-passing library. IMP-1 is espeially not well suited forSP-ization with full barrier synhronization. On the other hand, IMP-2 behavesorretly in SP version, providing a very small loss of performane.ConlusionThe previous study shows how very simple graph models an be used to asymp-totially predit performane e�ets produed by synhronization struture mod-i�ations. For simpler appliations, graph ost models derived at programminglevel will be aurate enough. When more omplex mappings are used, moredetailed models must be derived, at mapping or even implementation abstra-tion levels. However, very simple graph modelation tehniques, that an be evenautomated to extrat struture from odes, turn up to be aurate enough.4.2.4 Stati appliations resultsIn this setion we disuss the results of our study of  and � for stati applia-tions. The experimental framework design was disussed in setion 4.2.1. First,we obtain experimental measures of � from the exeution times obtained withreal MPI implementations of the NSP and SP versions of the seleted applia-tions for di�erent mahines. We extrat workload information by monitoring theappliations exeution. Using statistial information about the real workload, weexperimentally estimate  with the ost models disussed in previous setions,to validate the simple graph modeling tehniques for eah appliation sublass.We ompare our � results with  preditions and general trends obtained forsyntheti graphs, presented in setion 4.1.We more preisely de�ne here the relative performane indiator we use for�. Our referene programming model will be the MPI with point to point (orbasi olletive) ommuniations implementation.De�nition 4.2.3 Let TMPI be the exeution time of the NSP version with pointto point (or basi olletive) ommuniations. Let TMPI+Barriers be the exeu-tion time of the SP version generated adding barrier synhronizations after eah



208 CHAPTER 4. EXPERIMENTAL STUDYommuniation phase. Then: � = TMPI+BarriersTMPIThe following results are exposed:1. Performane e�ets predited with the graph models are similar to thoseobtained with syntheti graphs:In the ase of Maro-Pipeline and 1D Cellular automata, the graph modelsare inside the syntheti meshes graph lasses studied in setion 4.1.3. Infat, Maro-Pipeline was used as foundation for the unbalaned synhro-nization meshes experiments. The 1D Cellular automata is also similarto the random graph meshes generated with S = 3. However, in ran-dom meshes, the edges were not propagating dependenes only to neighbornodes, but to further nodes with the same probability. In neighbor sten-il based graphs, the dependenes are spread aross layers slower than forrandom synhronization funtions, and the SP-ization should produe alittle higher impat. In Fig. 4.32 we show that using random distributedworkloads with the 1D Cellular automata graph model, we obtain verysimilar preditions as for S = 3 syntheti meshes. However, the  resultsare slightly higher (ompare with plot slopes in Fig. 4.10 and Fig. 4.11).The FFT appliation graph model present a low synhronization densityparameter S = 2, and a number of layers dependent on the degree ofparallelism D = log2 P . Thus, the number of layers is always low, and theritial parameter is the layers size P . In Fig. 4.33 we show the resultsof experiments with FFT graph models supplied with random workloads.The results on�rm the same logarithmi like e�et of parameter P on ,for buttery network strutures.The LU redution graph model derived at programming level, present inter-esting features. The S; P;D parameter values are dependent on the inputmatrix size n. Thus, the topology has always a similar triangular shape,more di�erent from the syntheti meshes than the previous appliationsstudied. Moreover, the workload model is dependent on the number oflayer. For experiments with random workloads we propose a random work-load model where �i is determined as a funtion of the layer index by theworkload model proposed in setion 4.2.2 for LU, and � is omputed as afuntion of �i and a hosen variability:�i = �i � & : & 2 f0:1; 0:2; 0:5; 1gIn Fig. 4.34 we show the e�et produed on  when we sale up the pro-gramming level struture. For this graph model, P;D parameters are equal
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Figure 4.32:  results for random workloads in 1D Cellular automata modeland determined by the input matrix size n. The S parameter is very low(below 2) and the full barrier synhronization annot be avoided by theSP-ization tehniques. Thus, as expeted, worse results than for other ap-pliations are obtained. Although the plot slopes are higher than for otherappliations, the same logarithmi tendenies are observed.The mapping level graph model has been also supplied with random work-loads. In this ase, n determines D but P is only restrition by P � D.Thus, we have onduted experiments to test the e�et of both parametersseparately with huge graphs (up to half million nodes). In Fig. 4.35 weshow the  plots for both experiments. As the minimum value of D is thesame as P , the limited e�et of this parameter, found in syntheti meshes,
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Figure 4.33:  results for random workloads in FFT graph modelappears immediately, even in the lower possible values. However, we ob-serve some irregularities and a very small inreasing of  when the inputmatrix size inrease. The reason is the presene of a very small pathologialbehavior due to some unbalaning in the synhronization patterns, as dis-ussed in setion 4.1.3. The e�et of P parameter is following the generallogarithmi tendeny, exept for the irregularities produed by both: thesmall unbalaning in the synhronization patterns (as found in synthetimeshes) and the hange of shape experimented by the graph with the Pvalues. The pathologial e�et due to unbalaned synhronization patternis produing the slope irregularity around D=4, but the triangular part ofthe graph dominates the behavior after P = D=2, produing another slopehange.It is interesting to notie that, onsidering the full range of results, theworkload balane is muh more important than the type of appliationor S parameter value. The big di�erenes on  among all the appliationsstudied, are produed for big values of &. For & = 0:1 the  values are small,and the slopes are very similar (with less than 20% of di�erene among allappliations and syntheti meshes), even for the biggest P values tested.2. Task workload balane in stati appliations:A priniple design of parallel appliations is to distribute load aross pro-essors. For all stati appliations tested, the workloads are very well bal-aned. All task in these examples are exeuting the same piee of odefor the same amount of data. As disussed in setion 4.2.2, FFT or LU
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Figure 4.34:  results for random workloads in LU programming level modelappliations present this harateristi only layer by layer, that is perfetlyenough to talk about a well-balaned omputation.Thus, as predited at programming level when modeling the workloads (seesetion 4.2.2), the task loads are highly regular, showing in most ases a neg-ligible deviation (see Table 4.2). In the table we an appreiate performanee�ets introdued in a very low level by the mahine arhiteture. The ex-eution times of tasks (sequential odes) beome unstable only when theuser task is sharing the proessor time with operative system tasks. Thise�et never happens in the CrayT3E, as the operative system launhes theuser jobs in other free proessors. In the Origin2000 (a -NUMA mahine)it is notied only when the number of proessors used is equal to the max-imum installed in the mahine. The operative system is typially runningin only one proessor. Hene, only when this last proessor must be sharedwith user proesses, awful e�ets that degrades the user tasks performaneappear (ahe trashing, proesses migration aross proessors, et.). TheBeowulf, representative of NOWs and low oupled systems, is the worstase. In these mahines, most of the operative system tasks, and the MPIdaemon operations, are exeuted loally in eah node. Thus, the user tasksmust share time with them. As the amount of proessors inreases, moreommuniation and synhronization operations share the limited networkbandwidth. Thus, their times inrease. Moreover, the omplexity of lowlevel ommuniation tasks also inreases (olletive operations, as barriersare a good example). Thus, the time of exeuting the same piee of odewith the same data inreases and beomes less preditable. This e�et, typ-
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Figure 4.35:  results for random workloads in LU programming level modelial in low oupled systems (for whih Grid omputing is the extreme ase),enfores an idea related to SP SA: potential bene�ial e�ets an be ob-tained using hierarhial division of omputations, in loally synhronizedsubparts (see e.g. [119, 118℄).However, the real workload variability, statistially measured, is really smalleven for the worst ases (saturated Beowulf):& < 0:024; & � 0:005This leads to extremely low performane losses for the SP versions.
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214 CHAPTER 4. EXPERIMENTAL STUDYOrigin2000Maro-Pipeline Cellular automataPro. � �2 � �22 23 <0.001 28 <0.0014 23 <0.001 28 <0.0016 23 <0.001 28 0.0018 23 0.002 29 0.003CrayT3EMaro-Pipeline Cellular automataPro. � �2 � �216 52 <0.001 27 <0.00132 52 <0.001 27 <0.00164 52 <0.001 27 <0.001128 52 <0.001 27 <0.001BeowulfMaro-Pipeline Cellular automataPro. � �2 � �22 21 0.003 27 <0.0014 22 0.105 27 <0.0018 23 0.136 28 0.00216 23 0.288 28 0.002Table 4.2: Statistial workload information for highly regular appliations (ms.)3. Very low performane degradation:In Fig. 4.36 we show the � plots that summarize the results obtained withreal appliation odes in di�erent mahine arhitetures. We observe thegeneral logarithmi tendenies when the appliations sale up, preditedwith the programming level models. However, with extremely low slopesdue to the small relative deviation of the task loads. Irregularities in theplots are produed by di�erent low level mahine e�ets desribed below.4. Mahine arhiteture independene, and side e�ets:Di�erent irregularities and strange e�ets in � plots are observed arossmahines (see e.g. the performane upgrading of LU redution appliationsin CrayT3E and Origin2000 for some spei� number of proessors). All ofthem are easily explained by the di�erent nature of mahine arhitetureand operating system ativities, that a�et every appliation run.We observe that the most regular results are obtained in the CrayT3E,where the task loads are more stable and the ommuniation osts arelower. The performane loss is less than 2% in the worst ase for 128proessors. In the Origin2000, the barrier osts are omparatively higher,and it a�ets the performane. We also see the high impat of runningthe appliations with the maximum number of proessors available in themahine (8 proessors in this ase), when the user tasks share resoures



4.2. REAL APPLICATIONS 215(as CPU) with the operative system tasks, that are typially running inonly one proessor. In the Beowulf system we appreiate the inreasingosts that appear due to irregularities produed by task, operative system,and ommuniation overlapping in every node. However, the performanedegradation is still very low (less than 5% for the worst ases).A remarkable ase previously disussed is the LU redution appliation.Reall the implementation onsiderations exposed in setion 4.2.3. Even ifno ompiler optimization is used, the ommuniation layer performs run-time optimizations when a olletive ommuniation primitive is followedby a barrier. This e�et is observed for spei� numbers of proessors in theCrayT3E and Origin2000. In these mahines, the MPI implementations areoptimized by the vendor for the arhiteture and low-level hardware details.An improvement of performane, around 2%, is obtained in some ases.Apart from this preditable irregularities, the performane degradation dueto added dependenes is proportional to hardware speed aross mahines.Spei� mahine e�ets with high impat in performane, a�et in the sameway to the NSP and the SP versions. For example, in the Beowulf system,we observe ompletely di�erent ommuniation time response when appli-ations sale up from 6 to 8 proessors (see Fig. 4.37). Nevertheless, theydo not modify, or even improve, � results (the relative performane impatis dereased when a onstant is added to both: NPS and SP exeutiontimes).Thus, di�erent arhiteture models do not reate unexpeted di�erenes inthe � tendenies. The general onlusions obtained from the results arethe same in all ases. The real performane e�ets produed by hangingthe programming style or model to a restrited PPM, is independent of themahine arhiteture.We onlude that: (1) General tendenies (e.g. logarithmi e�et when salingup) observed with syntheti graphs are found in real appliations; (2) stati, sal-able appliations are, in general, well balaned appliations. Thus, as preditedwith syntheti graphs, and the appliation spei� graph models, the potentialperformane e�et when programming these appliations in SP programmingmodels is extremely low; even when no SP spei� optimization or run-time en-vironment is exploited. For some appliations (as LU redution implementedwith broadast), highly strutured synhronization is exploited by implementa-tions at run-time level, even by non-spei� NSP programming models as MPI.4.2.5 Dynami appliations resultsIn this setion we disuss the results of our study of  and � for dynami ap-pliations. Reall the experimental framework design disussed in setion 4.2.1.
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Figure 4.37: Exeution times of some appliations in the Beowulf systemDue to the data-dependent nature of these appliations, we an only explore as a funtion of strutures generated by spei� appliations for a given inputdata. Hene, we use example strutures, representative of the typial struturesgenerated by a given appliation. These example strutures an be obtained atrun-time by monitoring existing appliations, or an be derived manually fromthe data struture and the ode. The seond method is lumsy, una�ordablefor omplex appliations, and impossible when run-time deisions (as some MEor sheduling solutions) are inherent to the original ode. For our experimentswe have seleted several available examples of task graphs generated manuallyor during run-time for two typial appliations, representative of important andlarge appliation lasses deteted in the lassi�ation presented in setion 2.6.Both are based on �nite element solvers, and they represent the strutures gen-



4.2. REAL APPLICATIONS 217erated by typial iterative and diret solvers for sparse-matrix omputations.Iterative solvers and graph partitioningMany �nite element and PDE problems are solved by iterative methods appliedto the sparse adjaeny matrix that represents the problem graph. Struturalengineering, hemial and physial phenomena simulations, and many other prob-lems use these methods. The problem graph is distributed among the availableproessors by a partitioning algorithm that try to balane the load and minimizethe ommuniation due to links between graph nodes alloated in di�erent pro-essors. The solver algorithms apply the same omputation for eah iterationon the loal nodes, and ommuniate the omputed values that other proessorsneed before the next iteration. Hene, for these problems, the omputational loadof a task is proportional to the number of nodes alloated in a given proessor.Given example input graphs and a partitioning algorithm, we an omputethe data distribution for any number of proessors. Thus, we an reonstrut themapping level graph assoiated with the omputation, inluding load estimations.The graphs an be used to estimate  values for this lass of appliations.We have seleted six example graphs from the strutural engineering �eldas study ases. The graphs are obtained from the Everstine's olletion2, to befound inside the Harwell-Boeing olletion of sparse-matries [58℄. This publiolletion is available on the Matrix Market home page [146℄. We have seletedsix graphs that present di�erent struture patterns, and over a wide range ofnodes number, from the available in the full set (87,209,607,1005,1242,2680).From now on, we add the number of nodes after the name of eah example forlarity. In Fig. 4.38 we show 3D models of the objets from whih the matriesare obtained, and in Fig. 4.39 we show the sparse-matries strutures.The graph partitioning algorithm seleted is METIS (see e.g. [167℄), that is afree and state-of-the-art multi-level partitioning software for unstrutured graphs,that an be found in the METIS/ParMETIS home page [117℄. We have used thissoftware to partition the input graphs for 4,8,16,32,64 number of proessors. Theobtained data is proessed to reonstrut the mapping level graphs, and to obtainthe statistial information needed.From the olleted data we observe the following results:1. Good load-balane:As the omputational load is typially proportional to the number of nodesalloated in the loal proessor we an estimate the mean load and deviationwith the number of nodes in eah part. In Table 1 we show the workload2These patterns were olleted from various US military and NASA users of NASA's stru-tural engineering pakage NASTRAN for use as a benhmark olletion for variable bandwidthreordering heuristis. They have been widely used in benhmarks.
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Figure 4.38: 3D models of the strutural engineering examples
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Figure 4.39: Sparse-matries struture of the strutural engineering examples



220 CHAPTER 4. EXPERIMENTAL STUDYvariability obtained for eah example with a given number of proessors.The graph partitioning methods are designed to reate a well-balaned dataExample # Pros.4 8 16 32 64Tower - 87 .0199 .1747 .2053 .1658 .5723Console - 209 .0249 .0127 .1469 .1875 .1457Wankel rotor - 607 .0505 .0267 .0422 .0466 .3334Baseplate - 1005 .0183 .0199 .0212 .0442 .0663Sea hest - 1242 .0204 .0190 .0176 .0176 .0680Destroyer - 2680 .0155 .0172 .0241 .0243 .0306Table 4.3: Estimated & for partitioned iterative solver task graphspartition. We observe very low variabilities, as the partitioning method isperforming quite well. The only ases where the values are higher thana very small bound & > 0:1, are found when the number of nodes perproessor is very low, and the parallelism exploitable is very poor (see e.g.the smaller example, Tower-87). For normal real omputational problems,the load will be well distributed, leading to minimum performane e�etwhen SP-ization is applied.2. Regular strutures:In Fig. 4.40 we present an example of a small mapping level graph gen-erated for some iterations with the Sea hest-1242 example, mapped for 8proessors. Reall that reduing the number and load of ommuniationsamong proessors, and promoting some neighborhood, is an objetive of thepartitioning algorithms. Hene, we �nd that the strutures obtained arevery similar to the syntheti meshes studied in setion 4.1.3. The shape ofthese mapping level task graphs is highly regular. They have a �xed num-ber of nodes per layer (the number of proessors for whih the partition isomputed) and eah layer represents an iteration of the solver. The numberof edges per node is determined by the partition omputed. In Fig. 4.41we show the S parameter measured for the generated graphs. Its valuesare found in a narrow range, and the general trend is that S inreases log-arithmially with the number of proessors. When the number of nodesper proessor is very low, we �nd again a ase where there is not enoughparallelism available and the number of ommuniations derease (see e.g.the Tower-87 example plot). Thus, the inrease of P values is somehowompensated by the inrease of S. This e�et together with the small loadvariability observed, predit very low  values for this appliations type.3. Load distribution orrelation:There exists an important orrelation in how the loads are distributed
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Figure 4.40: Example task graph: Sea Chest-1242, 8 proessors, 8 iterationsaross the graph. Di�erent layers represent di�erent iterations of the sameomputations. Thus, when the partition assigns di�erent number of modelnodes to di�erent proessors, the load distribution has a vertial orrelationwith the topology. If an implementation level graph is onsidered, whereommuniation osts are aounted, the orrelation an be even more no-tieable. This orrelation may produe a bene�ial  redution, espeiallyin these ases of low workload variability along several iterations (see se-tion 4.1.3).4. Negligible performane degradation:In our set of experiments with these graphs, using the loads estimated withthe number of nodes alloated to eah task in the partition, with havefound no ritial path value inrease due to SP-ization exept in ases ofassuming high load variabilities for nodes. This will not be the ase forthis kind of appliations, where a proessor is repliating exatly the sametask in eah iteration. The real loads have extremely low variabilities indi�erent instanes of the same node. In this ase, the SP-ization e�et istypially negleted.The onlusion is that if the partitioning algorithm is produing a good par-tition and no other run-time or mahine details severely a�et the load balane,
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Figure 4.41: S parameter for partitioned iterative solver task graphsiterative solvers for this kind of sparse-matries an be programmed in nestedparallelism programming models with negligible loss of performane. The ex-tra synhronizations and barrier osts are not aounted, but SP programmingadvantages are also not onsidered. For example, the knowledge of the globalommuniation struture may still be exploited to improve ommuniation per-formane (see e.g. [57℄).Domain deomposition and sparse-matrix fatorizationThe DIANA software [55℄ is oriented to the strutural engineering �eld. It in-ludes several methods, based on diret solvers for sparse-matries, to omputesolutions to �nite-element problems. The software inlude domain deompositionand sparse-matrix fatorization modules [123℄. Our example task graphs were ob-tained during the researh onduted to parallelize the DIANA software pakage.They represent examples of domain deomposition and sparse-matrix fatoriza-tions of real data with di�erent input sizes. The fatorizations were implementedusing a tool for parallel exeution of unstrutured problems (Tgex [124℄).For eah of these graphs we apply the Algorithm2 SP-ization tehnique, andwe measure  omparing the pv of both graphs. First, we apply di�erent syn-theti random workloads to the nodes. Then, we ompare the results, with �estimations obtained when real workloads (measured at run-time) are onsideredin the nodes.The number of nodes in our example graphs are: 59, 113, 212, 528, 773and 2015. In Fig. 4.42 we showed the 113 nodes graph before and after thetransformation. The �rst part of the graph, before it ahieves its maximum



4.2. REAL APPLICATIONS 223width, is the domain deomposition phase. The rest of the graph represents thesparse-matrix fatorization. An indiation of the real workload distribution isshown; darker and bigger nodes represent more loaded nodes.After experiments with these graphs the following results are exposed:1. Topology regularities:Due to the nature of the appliation, the topologies present some regu-larities. Fig. 4.43(a) shows  measures for the six example graphs whenusing modeled workloads with Gaussian distributions, as a funtion of therelative synhronization density (Rs) parameter. They approximately fol-low the expeted tendeny deteted with syntheti random topologies insetion 4.1.2;  dereases with Rs. However, if we ompare these plotswith the equivalent plots for syntheti random topologies (see Fig. 4.5), wefound that the points are below the expeted mean values for ompletelyrandom samples. The topologies of these sparse-matrix omputations arenot ompletely irregular, and they are not in the worst ase topologies.2. Workload distribution regularities:In Table 4.4 we show statistial information about the real task loads. We�nd that the workload is highly deviated. Few nodes onentrates thebiggest part of the overall load. Nevertheless, we an see in the graphial# nodes &59 2.1113 3.0213 1.4528 2.0773 7.12015 2.6Table 4.4: Statistial information of real workloads for sparse diret solver.representation of the graphs that the highly loaded nodes are not randomlydistributed (see e.g. the position of darker nodes in the example graph pre-sented in Fig. 4.42). We �nd some of them distributed among the beginningnodes of the domain deomposition phase, and some other ones at the �rstlayers of the fatorization phase. In Fig. 4.43(b) we show � estimationsfor the graphs onsidered with real workloads measured during exeution.Information about the number of nodes n and the relative deviation (&) isadded to eah point.Measured real workloads showed higher deviations than any of the Gaus-sian models used for eah topology. However, � values are very low, andmuh better than expeted. The reason for this is that real workloadsare not ompletely distributed at random aross the task nodes. They are
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Figure 4.42: Example of a dynami appliation graph and its SP version.
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Figure 4.43: Results for sparse diret solver example graphs.highly unbalaned, but there still exists a high orrelation between topologystruture (layers and loal synhronization patterns) and workloads. Thisorrelation produes a bene�ial impat on , similar to the one presentedfor orrelated workload meshes in setion 4.1.2.Workload parameters �; � are not enough to get an aurate estimationof the impat of SP-ization on a given unstrutured topology. In general,the orrelation between highly loaded nodes and layers will produe an im-provement in performane when mapping to nested parallelism strutures.For this set of experiments we �nd that sparse-matrix solvers generate taskgraphs with enough topology and workload regularities to minimize the perfor-mane impat of SP-ization. However, workload parameters are not enough to



226 CHAPTER 4. EXPERIMENTAL STUDYget an aurate estimation of the impat of SP-ization on a given unstruturedtopology. In general, the orrelation between highly loaded nodes and layers willprodue an improvement in performane when mapping to nested parallelismstrutures.4.2.6 Conlusions about real appliation resultsIn this setion we have tested several types of real appliations, omparing thereal performane � in di�erent mahine arhitetures with tendenies observedduring the  study of their strutures. A �rst onlusion is that the main  ef-fets deteted with syntheti graphs (e.g. logarithmi e�et when saling up) arepresent in real appliations. At the same time we �nd that they are propagatedto the run-time level. However, the real appliations present high regularitiesthat minimize the performane impat of programming them in an SP parallelprogramming model. Even typial irregular appliations use load-balaning ormapping tehniques that reate important topologial and workload regularities.The small performane e�ets introdued at the programming level are indepen-dent of the underlying arhiteture. In many ases, implementation details andlow-level mahine e�ets appear to have more impat on the �nal performanethan the hoie of a restrited SP parallel programming model.4.3 SummaryIn this hapter we have presented an experimental framework to determine em-pirially the potential and real impat of using a nested-parallel SP program-ming model. First, we have disussed how to build syntheti workload distri-butions, based on i.i.d. random workloads, that an be used with any synthetior real topology generated along the experimental study. We have introduedthe methodology to onstrut random graphs in order to test a sample of thegraph spae, and syntheti meshes of nodes that represent regular appliations.The graph meshes are used to systematially test the  e�ets related to sim-ple graph parameters that represent harateristis inherent to the appliation(synhronization density) or typial mapping variables (degree of parallelism ornumber of iterations). The study of the graph meshes inludes the identi�ationand analysis of other impat fators (as synhronization unbalane or workloadto topology orrelation).For real appliations, we have presented a riteria to selet representativestudy ases, and to selet mahine models for a real performane study; alongwith the implementation tehniques and tools to allow the NSP to SP strutureomparisons. We have disussed the modeling tehniques to: (1) extrat taskgraphs from real appliations at di�erent levels of detail, and (2) onstrut graphsrepresenting irregular or dynami appliations from the input-data strutures.



4.3. SUMMARY 227Finally, we have introdued the framework to arry out a pv study on all thegenerated or extrated graphs to obtain  results and ompare them with real �measures.The results obtained in this study point out that the expeted values of , usedas an indiator of the potential performane impat of using an SP PPM, followpreditable tendenies. Indeed, these tendenies are determined by simple andeasily measurable graph parameters. The inrease of the degree of parallelism,measured with P , produes a general under-logarithmi inrease on . The graphdepth level, measured with D, has a ompletely limited e�et on , exept inpathologial strutures, for whih we present a formal desription and a possibleindiator of the potential pathology fator (!). The synhronization densityrepresented by S (or Rs) is the topologial parameter with the higher impat on. For the very small values found in sparse random or highly irregular graphs(S < 2), SP-ization tehniques that exploit loal synhronization tehniques, asAlgorithm2, may produe SP-forms with small pv inrement. Values of S > 2have a quik negative exponential limiting e�et on . However, around valuesof S = 2, the SP-ization tehniques studied present the worst results, and thelower preditability for random topologies. As disussed in setion 3.3.1, theseould be the strutures more suitable for other mixed transformation tehniquesbased on both, added dependenes and dupliation of nodes. Nevertheless, theworkload distribution is the ritial fator for SP-ization performane impat.Its variability and possible orrelation with topology highly determine the main tendenies. A well-balaned workload distribution immediately redues oreven neglets the potential inrease of the pv after an SP-ization. Moreover,most of the tendenies previously disussed are only fully appreiated for highlydeviated workloads. Fortunately, real appliations present very good workloadonditions for SP-ization. In other ase, the salability and exibility of theparallel appliation would be ompromised. The experimentation shows that realworkloads are usually well balaned and orrelated with the graph topology. Thevalues found present better harateristis than the syntheti workload modelsused during the �rst phase of our study, leading to negligible performane impatwhen using SP form synhronization strutures to program real appliations.All these tendenies are propagated to the run-time low level. Even somelasses of important irregular appliations use data-partition and load-balaningtehniques to produe salable odes. These tehniques reate enough topologyor workload regularities to neglet the potential performane degradation whenprogrammed with a nested-parallel, SP, programming model. Indeed, some ma-hine e�ets derivated from di�erent hardware or parallel tools implementationsappear to have more impat on the performane than using SP-restrited syn-hronization strutures. We onlude that our experimental study learly pointsout that using an SP parallel programming framework is a safe hoie for mostparallel appliations, and potentially bad study-ases an be easily predited.
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Chapter 5Conlusion The line it is drawnThe urse it is astThe slow one nowWill later be fastAs the present nowWill later be pastThe order isRapidly fadin'.And the �rst one nowWill later be lastFor the times they are a-hangin'.The Times They Are a-Changin', 1963Bob DylanThe �eld of parallel programming appears to be not yet mature enough toprodue a onsistent and established software development methodology. Par-allel arhitetures and programming models still lak a ommon developmentdiretion based on a standard mahine and programming model (like Von Neu-mann's in sequential programming). While mahines and low level programminginterfaes are oriented to exploit the maximum parallelism and performane inan appliation, more abstrat programming models aept restritions of expres-sive power, in terms of their SA, to obtain those analyzability haraterististhat help in the design, programming, mapping, implementation and debuggingtasks. This expressiveness vs. analizability trade-o� needs to be arefully ana-lyzed in order to establish whih harateristis of a model are responsible for itsgood and bad properties of it, in terms of software development, implementationportability, and performane.Being the determining fator of a programming model that haraterizes theabove trade-o�, in this dissertation we have studied the SA onept and its rela-tion to the properties of PCMs at di�erent abstration levels. We have lassi�ed229



230 CHAPTER 5. CONCLUSIONthe SA of well-known models and appliations, and we have proposed and studiedan important lass: the SP, also known as Series-Parallel, or Nested-ParallelismSA. We have found that in the design of a PCM, the deision to restrit or notto restrit SA to SP lass, is a ritial one. SP vs. Non-SP is the SA barrierwhere important analyzability properties appear or disappear. Consequently, wehave presented an in-depth study on the impat of the expressive restritionsassoiated to SP programming models to support our thesis that SP restritedmodels are the best hoie to obtain both: highly bene�ial software developmentharateristis, and a good level of expressive power for general-purpose parallelprogramming.We have used a three-way approah to study the relevany of the SA oneptand the SP restrition for parallel programming models: (1) A oneptual studyof SA, where existing programming models and appliations are studied; (2) atheoretial approah, where the SP vs. NSP strutures are deeply studied with theaid of graph theory; and (3) an experimental study, where empirial results arepresented to validate our hypothesis about the potentially negative performaneimpat of using restrited SP models. In our study of SAs from these three pointsof view, we have made several ontributions and we have produed signi�antresults, obtaining relevant onlusions in support our thesis.5.1 ContributionsIn partiular, the following ontributions are made in this dissertation:� SA desription and lassi�ation.We have introdued the SA onept, and we have shown how it is relatedwith the expressive power (EP), software engineering (SEC) and analyzabil-ity (AC) harateristis of a PCM/PPM, through a oneptual review andlassi�ation of well-known existing models at di�erent abstration levels.� Appliations lassi�ation in terms of SA.We have lassi�ed parallel appliations in terms of the SA they naturallymap to. The lassi�ation is useful for deteting appliation types thatdo not map diretly to restrited synhronization PPMs, and to hooseexample appliations, representing their SA lasses, for further study ofthe appliation to PPM mapping tehniques. Some mapping strategies arealso disussed for the relevant lasses.� NSP vs. SP graph theoretial study.In order to assess the performane loss assoiated with the hoie of anSP-restrited PPM for an inherently NSP problem, we have performed agraph theoretial study of the SP and NSP strutures. We have presented



5.2. CONCLUSIONS 231a number of tehniques to transform NSP strutures to SP approximationsthat introdue minimum hanges in topology or performane, inludingnew full graph algorithms. Methods and metris to measure the impat ofsuh transformations in topology and potential inrease of the ritial pathhave been proposed.� Analysis framework for performane impat of SA transformations.We have introdued an analysis framework to predit the performane lossat the programming abstrat level as a funtion of SA. Given the rela-tive importane of ondition synhronization, we have spei�ally appliedthe approah to predit the performane di�erenes of using NSP vs. SP-restrited programming models. The framework is based on the use ofgraph theory, topology lasses, and task workload metris. We have mea-sured performane di�erenes () in terms of ritial path.� Simple graph modeling tehniques for appliations.We have introdued methods to model appliations and workload withgraphs, at di�erent detail levels. The signi�ane of the ontribution is toshow that very simple graphs, easily derived from spei�ations or evenfrom real ode, are aurate enough to predit tendenies and behavior ofappliations when synhronization strutures are transformed to map themto di�erent SA lasses.� Full experimental study using real appliations.The study onsists on a omparison of using programming models or lan-guages in di�erent SA lasses to implement real appliations, inluding thee�ets of typial implementation trajetories. Here we do not restrit our-selves to the highest abstration levels (), but we use the above frameworkto disuss the performane e�ets of various mappings and implementationissues at lower level (�).5.2 ConlusionsThe ontributions presented strongly suggest the SP SA as the most promisingdesign onept for new portable, eÆient and easy-to-use parallel programmingmodels. PPMs in the SP SA lass o�er important advantages in terms of soft-ware engineering and analyzability harateristis, not available for less restritedmodels in the NSP lass, with a modest trade-o� regarding expressive power. Theonlusions of this thesis are:� SP SA leads to formal methods of software development and veri�ation.SP restrited models and strutures are assoiated with SP algebras and



232 CHAPTER 5. CONCLUSIONan extended automata theory. At the same time, more eÆient sheduling,ompiling and mapping tehniques exist for SP restrited strutures thanfor NSP strutures.� From the study of SA of existing parallel programming models we havefound that only PPMs/PCMs that restrit CS strutures inlude an easy-to-use and aurate ost model that may help in automati mapping deisions.This is ritial for portability of programs to di�erent arhiteture models.� Many appliation lasses and parallel programming paradigms diretly mapto SP strutures. For those appliation lasses that do not diretly mapto SP models, systemati transformation tehniques that minimize the po-tential performane impat have been proposed. Many examples of how touse them have been presented for syntheti and real appliation strutures.� Simple appliation parameters, like the maximum degree of parallelism, aswell as workload harateristis may be used to predit the impat of anNSP to SP transformation, at di�erent levels of detail with very simpleost models. Suh preditions are aurate enough to predit the perfor-mane asymptotial behavior of di�erent mappings of an appliation to SPprogramming strutures.� The performane degradation assoiated with SP programming is mainlyrelated to poorly balaned and unstrutured omputations, that are dif-�ult to program, verify and debug. In our appliation lassi�ation andexperiments we �nd that these strutures are far from typial or even in-appropriate for parallel programming in general. High performane un-strutured omputations are programmed with hard-wired sheduling andload-balaning tehniques that transform them in more strutured and well-balaned omputations, more suitable for SP programming.The Synhronization arhiteture onept, and this study, validate some re-searh diretions previously introdued in restrited SA models (as e.g. BSP).Many previously intuitive ideas about the impat of SP programming have beenformally or empirially veri�ed in this study. This may help to fous the atten-tion of parallel programming languages and models designers to the SP onept.SP, or nested-parallelism may lead to a more foused researh diretion to �llthe gap between the two extreme points of the parallel programming world: ma-hine arhiteture vs. high-level programming. The development of new and moreabstrat languages for SP restrited models may inlude new ompiling and map-ping tehniques that exploit many bene�ial features nowadays sattered amongdi�erent programming models and their implementations.
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