2.7

54 CHAFTER 2. SPARC ARCHITECTURE

If the program is then executed:

Hexpr
%

The Debugger gdb

Having written a program, which apparently executed, we have no way of knowing
what it did, as it produced no output. In fact, we do not even know if the program
was correct. The technique of inserting printf statements into a program to verify
correctness and to find bugs is a rather cumbersome process in assembly language,
as arguments have to be placed in registers and _printf ecalled. If we are trying
to debug a program that has other variables stored into the registers needed to call
printf, real problems start to develop. The debugger gdb provides a way of printing
out values without having to change the program in any way. The debugger gdb
may also be used to execute a program, to stop execution at any point, and to
single-step execution. A detailed description of gdb is to be found in [20], however,
the discussion relates mostly to C language debugging,

In order to use gdb, it is necessary to run the compiler with the “-g" switch.
Having assembled the program, placing the output into expr as we did in the above
example, gdb may be entered by typing:

¥edb expr
gdb prints a disclaimer and waits for commands:

GDB 3.2, Copyright (C) 1988 Free Software Foundation, Inc.
There is ABSOLUTELY NO WARRANTY for GDB; type "info warranty"
for details. GDB is free scftware and you are welcome to
distribute copies of it wunder certain conditions; type

"info copying" to see the conditions.

Reading symbol data from /home2/loufexpr...done.

Type "help" for a list of commands.

{gdb)

To run the program in gdhb, type “r":
(gdb) r
Starting program: /home2/lou/book/ch2/sparc

Program exited with code 0345,
(gdb)

Apparently the program executed, but we are not much further ahead than we were
when we executed the program within the shell. We need to set a “breakpoint” in
the program. A breakpoint may be set at any address and whenever the computer

2.7. THE DEBUGGER GDB

o
(3}

is about to execute the instruction at which the breakpoint was set, it stops and
returns to gdb, whereupon the program and its state of execution may be examined,
Typing "c" will tell gdb to continue execution from the breakpoint. In order to set
a breakpoint at a memory address we need to type:

(gdb)b *addr

where addr is the machine memory address. A good place to break our program
would be at the first instruction after the save instruction has been executed. To
do this in gdb we type:

(gdb) b main
Breakpoint 1, 0x2290 in main ()
(gdbl

Why did we type only main and not _main? The C compiler prepends an _ to
all identifiers so that the symbol main in C becomes _main in assembly language.
As this happens all the time, gdb always tries prepending an _ to any symbol
typed in case the _ version is present. The command “b" followed by a label sets
a breakpoint at the instruction following the labeled instruction; gdb assumes the
labeled instruction to be a save instruction.

If we then run the program:

(gdb) r
Starting program: /home2/leu/book/ch2/sparc

Breakpoint 1, 0x2290 in main ()
(gdbl

gdb tells us that we are at Breakpoint 1, which should be the first instruction in
our program. The program counter, Ype, will have the address of the instruction
2204.

We can examing memory by typing “x" followed by an address. In this case we
would like to use the contents of the ¥pc as the address. To do this, we type:

(gdb) =/i $pc
0x2294 <main+d>: mov 8, %10

(gdb)

The examining command “x" has to be followed by a format specified to tell gdb
how to print out the value stored in the memory location. The “i" format specifier
states that the contents of the memory location should be interpreted as a machine
instruction. In pdb all machine registers are referred to by a § in place of the %
used in as.

By typing a return we repeat the last command but with the address incre-
mented by the size of the last data element typed out:

e A O A e S o P oW e SRy

il CHAPTER 2. SPARC ARCHITECTURE

(gdb)
0x2298 <main+B>: sub %10, 1, %o

(gdb)

We may print the entire program by typing disassemble!. This command
prints all the instructions of the current function:
(gdb) disassemble gfhh' M

Dump of assembler code from 0x2290 to 0x22b8:
0x2260 <pain>: save Ysp, -64, ¥Y=p

0x2284 <main+d>: mov 9, %10

0x2298 <main+8>: sub %10, 1, %oO

0x229c <main+12>: sub %10, T, %ol

0x22a0 <main+16>: call 0x40%c <_DYNAMIC+166>
0x22a4 <main+20>: nop

0x22a8 <main+24>: sub %10, Oxb, %ol

0x22ac <main+28>: call Ox4090 <_DYNAMIC+144>
0x22b0 <main+32>: nop

0x22b4 <main+36>: mov %oO, %11

0x22b8 <main+40>: mov 1, Ygl

Dx22bc <main+44>: t 0

End of assembler dump.

(gdb)

If we want to see whether the program ran correctly we can set another break-
point at the trap instruction located at main+44. To obtain an address, given a
label, we prepend an & much as we would do in C. Thus, to set a breakpoint at
-main + 44, we would type:

{gdb) b =k main + 44
Breakpoint 2 at 0x22bc
(gdb)

While *& is an identity operation in C, it is not in gdb.
We would then command gdb to continue execution by typing “c” (remember
we are currently stopped at the first location in our program):

(gdb) ¢
Continuing.

Breakpoint 2, 0x22bc in main ()
{gdb)

The program executes and stops at the last breakpoint we set. At this point the
value should be stored in register %11, To print the contents of a register we use
the print command "p:"

Yin some versions of gdb the disassemble command is: asdump.

2.7, THE DEBUGGER GDB a7

(gdb) p $11
$2 = -8
(gdb)

This tells us that the contents of register %11 is —8, the correct value. The $2 =
is part of gdb’s history feature. The value —8 has been saved in a history variable
$2 and may be used at any time by typing §2.

What would happen if our program were incorrect and did not compute the
correct value? We could single-step the program starting at the beginning by
typing “ni” for next machine instruction. To do this at this point we would need
to run the program again:

(gdb) r

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home2/lou/book/sparc/ch02/a.out

Breakpoint 1, 0x2294 in main ()
1: x/i $pe 0x2294 <mained>: mov 9, %10

(gdb)

We are executing the program, but it would be helpful to know what instructions
were being executed. We can discover this by examining the memory loeation the
Yope is pointing to:

(gdb) x/i $pc
0x2294 <main+d>: mov 9, %10
{gdb)

and indeed we have just executed the first instruction and are about to execute the
second. 1f we execute the second instruction, then %510 should contain the value 9:

(gdb) p %10
$2 =29
{gdbl

and indeed it does.

Az we single-step our program we would probably like to have the Instruction to
which the program counter is pointing printed out every time without our having
to type p $pc. We can do this with the “display” command, which prints its value
every time a command is executed:

(gdb) display/i $pe

1: z/i $pc 0x2298 <main+B>: sub ¥10, 1, %el
(gdb) ni

0x229c in main ()

1: x/1i $pe 0x229¢ <main+12>: sub 310, 7, Yol
(gdb)

2.8

e T e S T Ty R T e O

58 CHAPTER 2. SPARC ARCHITECTURE

Then when we execute the next command, the instruction about to be executed
is automatically printed out. We are now about to execute the call to .mul:

(gdb) mdi

0x22a0 in main ()

1: xfi $pc Ox22a0 <main+l16>:
(gdb)

0x22a4 in main ()

1: x/i $pc 0x22ad <main+20>: nop
{gdb)

0x22aB in main ()

1: x/i 8pc Ox22a8 <main+24>:

(gdb)

Mote that the “delay slot™ instruction is executed before the call to mul. We have
been typing “ni” for next instruction. We could have typed “si” but this would have
stepped us through the .mul routine, a thing we probably don't want to do. Both
“ni® and “si" execute single instruetions, but “ni" does not single-step through any
{unctions that are called. Note also that after typing “ni” the first time, we then
typed only a carriage return; in gdb a carriage return repeats the last command,
These commands are not all the commands available to gdb but are enough to
begin with and will enable you to write and to debug simple programs. One final
command you must know is “q," to quit gdb and to return to the operating system:

(gdb} q
The program is running. Quit anyway? (y or n) ¥
>

call O0x409c <.mul>

sub %10, Oxb, %ol

Filling Delay Slots

The call instruction is called a “delayed control transfer” instruction. A delayed
transfer instruction changes the address from which future instructions will be
fetched after the instruction following the delaved transfer instruction has been ex-
ecuted. The instruction following the delayed control transfer instruction iz called
the “delayed instruction™ and it is located in the delay “slot.” Whenever a branch
ar call instruction is executed it changes the contents of %inpe, not the %pe. The in-
struction that follows the branching instruction will be executed before the branch
or call happens. By flling the delay slot with a nop instruction we have not ac-
complished very much; the pipeling machine wastes an instruction execution every
time it branches. However, as the delay instruction is executed before the first
instruction at the branch address was executed, we may move the instruction prior
to the branch instruction into the delay slot.

In the following version of the program we have moved the sub instructions,
which compute the final argument to Jmul and .div into the delay slots thereby

2.9

29, BRANCHING a0

eliminating the nop instructions. The resulting code does not lose any cycles at
all.

.global _main
_main:
save ¥=p, -64, Ysp
mow 9, %10
sub $10, 1, Ko

linitialize x
1{x - 1} inte %ol

call Lmul
sub I T o i{x - 7) into ¥eol
call Jdiv

sub ¥o, 11, %ol
maw Hol, H11

t{x = 11) inte %eol, the divisor
Istore it in ¥y

mo 1, Mgl
ta o

Itrap dispatch
ltrap to system

Filling the delay slots in this manner makes reading the program more difficult,
bt by ﬁiling the delay slots the resulting execution is faster and the size of the
program smaller. Care must be taken in flling delay slots in order to ensure that the
algorithm Is not changed. In general, when we write assembly language programs
we will be expected to fill all possible delay slots.

Branching

We can now add, subtract, multiply, divide, and move data around. What we
cannot yet do is to test and to branch. Without these capabilities we will not be
able to write very intercsting programs. Branching is used in conjunction with
testing, which we will discuss first.

2.9.1 Testing

In the HP Caleulator, the last number computed could be tested. For example,
there was an instruction ifeq. which would skip the next instruction in line if the
result last computed was zero. A similar technique is used in many computers, in
which the state of the execution of each instruction may be tested. In order to do
this, only information about the result need be kept, not the result itself. The state
of execution is saved in terms of four variables:

Z whether the result was zero
N whether the result was negative

V whether execution resulted in a number too large to store in the register

