Tema 2. Introducción a la lógica

- 1. Introducción
- 2. Lógica de proposiciones
 - 1. Definiciones
 - 2. Sintaxis
 - 3. Semántica
- Bibliografía
 - Matemática discreta y lógica. Grassman y Tremblay. 1997.
 Prentice Hall.
 - Symbolic logic and mechanical theorem proving. Chang y Lee. Academic Press, 1987.
- Otras asignaturas relacionadas: Lógica, modelos y estructuras discretas (4º curso)

Objetivos

- Entender qué es la lógica y para qué sirve
- Familiarizarse con la lógica de proposiciones: principios, sintaxis y semántica
- Ser capaz de realizar manipulación sintáctica en lógica de proposiciones
- Entender el concepto de manipulación semántica
- Relación de la lógica con la programación

2.1. Introducción

- **Lógica**: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento.
- El razonamiento lógico es esencial para construir y probar programas.
- Mediante la lógica podemos formalizar y abordar el razonamiento lógico tanto en la informática, la matemática o la vida real.
- Utilizamos la lógica (tradicional) en nuestra vida.
 - El primero en dar una formalización fue Aristóteles: silogismos, sofismas,...
- Existen muchas ramas de la lógica ⇒ lógica simbólica
 - La lógica simbólica hace un uso extensivo de los símbolos

2.2. Lógica proposicional

2.2.1. Definiciones

- Campo de la lógica simbólica (usará símbolos) que se centra en el concepto de proposición
 - Proposición es cualquier afirmación, verdadera o falsa, que esté definida (enunciada) sin ambigüedad
 - P: Carlos va al cine
 - Q : Siete es un número primo
 - R: El ocho es un número primo
 - P, Q y R son proposiciones que en función del contexto pueden ser ciertas o falsas
- Esta definición excluye
 - Sentencia ambiguas: "Ni si ni no, sino todo lo contrario"
 - Sentencias sin sentido: "La vaca volaba bajo el mar"
 - Sentencias "difusas": "Juan puede que haya ido al cine"
 - Sentencias modales: "Algunas veces Juan va al cine"

2.2.1. Definiciones (cont.)

- Distinguimos:
 - Constantes proposicionales: valores/atributos asociados a una proposición y que pueden ser CIERTO o FALSO
 - Variables proposicionales (pueden tener valor cierto o falso) e identifican una proposición: P, Q, R
 - Constantes y variables pueden combinarse: p v FALSO

· El lenguaje de la lógica proposicional

- Lenguaje más sencillo de la lógica (sin variables)
- Como cualquier lenguaje tiene léxico, sintaxis y semántica
- Léxico
 - Alfabeto A, utilizaremos A = $\{\alpha, \beta, \chi, \delta, ...\}$ ó $\{p, q, r, s, ...\}$ – B = A $\cup \{\neg, \land, \lor, \supset, \Leftrightarrow, (,)\}$
- Lenguaje:

 $L \subset B^*$ (no es lo mismo que $L = B^*$).

Por lo tanto habrá combinaciones de léxico no admitidas, igual que en cualquier otro idioma, como el español.

2.2.2. Sintaxis

- x ∈ A: la parte más sencilla del lenguaje son los átomos o fórmulas atómicas (proposiciones, variables o constantes proposicionales)
- Se puede obtener mayor expresividad mediante fórmulas más complejas: combinando átomos y conectores lógicos
 - Juan fue al cine : $\boldsymbol{\alpha}$
 - Juan comió palomitas: β
 - **Negación**: Juan no fue al cine: $\neg \alpha$
 - Conjunción: Juan fue al cine y comió palomitas: $\alpha \wedge \beta$
 - **Disyunción**: Juan fue al cine o comió palomitas: $\alpha \vee \beta$
 - Implicación: Si Juan fue al cine, comió palomitas: $\alpha \supset \beta$
 - Doble implicación: Juan comió palomitas si y solo si fue al cine: $\beta \Leftrightarrow \alpha$
- ¿Es correcta cualquier combinación?
 - No (L ⊂ B*)
 - Sólo deben construirse: fórmulas bien formadas (FBF)

2.2.2. Sintaxis (cont.)

Fórmulas bien Formadas, FBF:

Son aquellas fórmulas que se construyen de acuerdo con las siguientes reglas:

- Si $\alpha \in A$, entonces α es una FBF
- Si α es una FBF, entonces ¬ α es una FBF
- Si α y β son FBF, entonces $\alpha \land \beta, \alpha \lor \beta, \alpha \supset \beta, \alpha \Leftrightarrow \beta$ son FBF
- Ningún otro elemento de B* es una FBF
- Estos patrones de FBF se denominan **esquemas**, ya que cada uno de ellos (α, β) se puede sustituir por una FBF y siguen siendo válidos.
- Ejemplo: Identifica las proposiciones correctas de las siguientes expresiones:
 - Existe vida en el planeta Venus
 - El dos es un número primo
 - ¿Existe algún número primo divisible por dos?
 - i Los números primos son sólo divisibles por sí mismos y la unidad!
 - José y Elena son primos
 - Valladolid es una capital europea

2.2.3. Semántica

- Asignación del valor cierto o falso a una proposición (simple o compuesta), con independencia de los significados que para nosotros tengan las proposiciones.
- Asignación de verdad a fórmulas atómicas o interpretación:

<u>V</u>: A →{falso, cierto}

Asocia a los átomos un valor de verdad (cierto o falso).

 Esto nos permite conocer el valor de las fórmulas atómicas, pero para conocer el valor de la expresión son necesarias más reglas para aplicarlas sobre las FBFs.

2.2.3.1. Asignación de verdad a FBF

Dada una asignación \underline{V} para fórmulas atómicas, definimos $V: \{\alpha \mid \alpha \text{ es FBF}\} \rightarrow \{\text{falso, cierto}\}\$ como sigue:

- 1. Si α es un átomo, entonces $V(\alpha) = \underline{V}(\alpha)$
- 2. Si α , β son FBF, entonces:
 - a) $\alpha = \neg \beta$, $V(\alpha) = \text{cierto si } V(\beta) = \text{falso y falso si } V(\beta) = \text{cierto}$
 - b) $V(\alpha \wedge \beta) = \text{cierto si } V(\alpha) = V(\beta) = \text{cierto};$ $V(\alpha \wedge \beta) = \text{falso en otro caso}$
 - c) $V(\alpha \vee \beta) = \text{falso si } V(\alpha) = V(\beta) = \text{falso};$ $V(\alpha \vee \beta) = \text{cierto en otro caso}$
 - d) $V(\alpha \supset \beta) = \text{falso si } V(\alpha) = \text{cierto y } V(\beta) = \text{falso};$ $V(\alpha \supset \beta) = \text{cierto en otro caso}$
 - e) $V(\alpha \Leftrightarrow \beta) = \text{cierto si } V(\alpha) = V(\beta) \text{ y } V(\alpha \Leftrightarrow \beta) = \text{falso en otro caso}$

- En el caso en que se conozcan los valores de verdad (<u>V</u>) de un conjunto de proposiciones es inmediato determinar el valor de verdad de las FBFs aplicando estas reglas.
- Deben respetarse los paréntesis, resolviendo primero los más internos.
- Si no se ponen paréntesis es necesario resolver las fórmulas respetando las prioridades entre conectores que son, de mayor a menor:

$$\neg$$
, \land , \lor , \Rightarrow , \Leftrightarrow

 Si dos conectores tienen la misma prioridad, se evalúan de izquierda a derecha

2.2.3.2. Interpretación y validez

Ejemplo:

Evalúese la fórmula $(P \land Q) \Rightarrow (R \Leftrightarrow (\neg S))$ con los valores de verdad $\{P, Q, R, S\} = \{T, F, T, T\}$

En el caso en el que no se conozcan los valores de verdad, <u>V</u>,
 existen 2ⁿ posibles interpretaciones. La única forma de conocer
 todos los valores de la fórmula G es construir una tabla de
 verdad.

Def. Una **tabla de verdad** muestra los valores de verdad de una fórmula G para todas las posibles interpretaciones de la misma.

Ejemplo:

<u>α β</u>	$\neg \alpha$	α∧β	$\alpha \vee \beta$	$\alpha \Rightarrow \beta$	$\alpha \Leftrightarrow \beta$
FF	T	F	F	T	T
FT	T	F	T	T	F
ΤF	F	F	Т	F	F
ΤT	F	T	T	Т	T

2.2.3.2. Interpretación y validez (cont.)

A la vista de los resultados de una tabla de verdad, por ejemplo $G \equiv (P \land Q) \Rightarrow (R \Leftrightarrow \neg S)$,

¿Cómo se deben interpretar los resultados de la evaluación de G?

Consistencia o validez.

Una FBF α se dice consistente o válida sii \exists V \mid V(α) = T

Tautología.

Una FBF α se dice que es una tautología sii \forall V | V(α) = T Contradicción.

Una FBF α se dice que es una contradicción sii $\neg \exists \ V \mid V(\alpha) = T$

Los conceptos de tautología y contradicción son muy importantes a la hora de razonar y programar.

2.2.3.3. Manipulaciones sintácticas

Equivalencia.

Dadas α , β dos FBF, se dicen equivalentes: $\alpha \equiv \beta$ sii $V(\alpha) = V(\beta) \ \forall V$

Definición alternativa:

 $\alpha \equiv \beta \text{ sii } \alpha \Leftrightarrow \beta \text{ es una tautología.}$

Si 2 FBFs son equivalentes, se pueden intercambiar, sin alterar su valor semántico.

¿Cómo saber si dos FBF son equivalentes?

Realizando la tabla de verdad de ambas FBFs (analizan todas las interpretaciones) y comprueban que los valores de verdad de ambas son iguales para todas sus posibles interpretaciones.

Pero, ¿es necesario construir todas las tablas de verdad en el ejercicio anterior?

2.2.3.3. Manipulaciones sintácticas (cont.)

Ejemplos de fórmulas equivalentes

Identidad	$\alpha \vee Falso \equiv \alpha$	$\alpha \wedge Cierto \equiv \alpha$
Dominación	α ∨ Cierto ≡ Cierto	$\alpha \wedge Falso = Falso$
Idempotencia	$\alpha \vee \alpha \equiv \alpha$	$\alpha \wedge \alpha \equiv \alpha$
Doble negación	$\neg (\neg \alpha) \equiv \alpha$	
Conmutativa	$\alpha \vee \beta \equiv \beta \vee \alpha$	$\alpha \wedge \beta \equiv \beta \wedge \alpha$
	$\alpha \Leftrightarrow \beta \equiv \beta \Leftrightarrow \alpha$	
Asociativa	$(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$	$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$
Distributiva	$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$
Eliminación ⇒	$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$	
Eliminación ⇔	$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$	
Leyes de Morgan	$\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$	$\neg (\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta$

2.2.3.4. Manipulaciones semánticas

- Ahora sabes que se pueden intercambiar unas fórmulas por otras equivalentes, sin alterar su semántica, ni añadir nuevas fórmulas ciertas.
- Existe otra forma de realizar razonamientos: obtener o derivar expresiones ciertas a partir de otras expresiones ciertas.
 Esto se conoce como derivación lógica.

Además, a las expresiones resultantes se las conoce como consecuencias lógicas.

- Obtenemos nuevos hechos (conclusiones) a partir de otros hechos ya existentes (axiomas o premisas).
- Existen distintas reglas de inferencia: abducción, adición, simplificación, silogismo disyuntivo, silogismo hipotético, modus ponens, modus tolens, combinación, ley de casos, eliminación de la equivalencia, introducción de la equivalencia

2.2.3.4. Manipulaciones semánticas (cont.)

- Por ejemplo, podemos aplicar los siguientes razonamientos:
 - Premisa 1: Si el semáforo está en verde, los coches pueden avanzar
 - Premisa 2: Observamos que el semáforo está en verde
 - Concluimos: Los coches pueden avanzar
 Hemos razonado mediante Modus Ponens
 - Premisa 1: Si se produce un robo, desaparecerán objetos
 - Premisa 2: Observamos que no han desaparecido objetos
 - Concluimos: No se ha producido un robo
 Hemos razonado mediante Modus Tollens