Diagnosis & Artificial Intelligence

The diagnosis Task: different approaches

What's diagnosis?

- R. Davies, 1982
 - Process of reasoning and acting
 - To identify the cause of a wrong behaviour
 - To restore the desire functionality
- L. Console, 2000
 - Task that given a system and a set of observations from an abnormal behaviour determines what's wrong in the system in order to recover its working order

Computer based diagnosis

- Fundamental area for AI from 70's
 - Area of experimentation of several methodologies
 - Meeting point for several methodologies
 - Good mixture of theoretical and practical issues
 - Several methodologies and techniques developed for diagnosis spread to other AI fields

First attempts: expert systems

- 70's: diagnosis was the main application for expert systems
- Assumptions: diagnosis = heuristic process
 - Expert codes his heuristic knowledge in association rules:
 - IF set of symptoms THEN Malfunction
 - Knowledge comes from experience
 - Knowledge may be extracted form expert and coded using a Knowledge Representation Language

Diagnosis through Heuristic Classification

"heuristic classification" [Clancey, Chandrasekaran, 83 85]

The diagnosis Task: different approaches

Diagnosis expert systems

- Different knowledge representations
 - Rules, frames, rules + frames
- Different fields
 - Medicine, Mechanics, Electronics, Process Control, Aeronautics, ...
- Some paradigmatic systems
 - MYCIN, Stanford, 71-79
 - DELTA-CATS1, General Electric, 84
 - INTERNIST, Carnegie Mellow, 77

Mycin Example

- Diagnosis and therapy for bacterial infections
- Knowledge Base: production rules
 - if (1) the stain of the organism is gram-negative
 - (2) the morphology of the organisms is coccus
 - (3) the growth configuration of the organism is chains
 - then there is a suggestive evidence (0.7) that the identity of the organisms is streptococcus
- Backward chaining, meta-rule for additional control
- Approximated reasoning: certainty factors

Diagnosis of physical devices

Physical device (i.e. electronic device)

- Heuristic Knowledge: associations between symptoms and faults
- Rules:

if inpi1=x1 and ... and inpik= xk and outj1=Y1 and ... and outj1=Y1 then (0.75) fault=P

Advantages of expert system approach

- Consolidate approach
 - Methodologies, working systems
- Suitable when
 - Enough experience available
 - No other knowledge available
 - Enough sensors
 - The system remains stable

Disadvantages of expert systems approach

- Related to experience
 - Knowledge acquisition is a complex task
 - Availability of experts/experience
 - Device dependence
- Related to classification method
 - New faults
 - Combination (multiple) faults
 - Brittleness
- Software engineering
 - Knowledge reuse: different devices, task
 - Maintenance of (the consistency of) the knowledge base

Model based approach to diagnosis

Diagnosis through Model Based Reasoning (DX community)

- Knowledge: model (task independent) of the device
- Diagnosis: process of reasoning with model to identify cause of deviation of expected behaviour
- History
 - Second generation expert systems (deep knowledge, Davies, 82)
 - First work USA, Standford, MIT, first 80`s (constrain suspension)
 - General Diagnostic Engine: computational paradigm, de Kleer, Williams,87
 - Sound theoretical foundations, Reiter, 87

Basic Assumptions (de Kleer 03)

- Physical system
 - Set of interconnected components
 - Known desired function
 - Design achieves function
 - System is correct instance of design
- All malfunctions caused by faulty component(s)
- Behavioural information
 - Only indirect evidence
 - The diagnosis Task: different approaches

Automotive industry

- On board diagnosis
- Workshop diagnosis
- **FMEA**
- Preventive diagnosis

- Of great interest because of
 - Security
 - Environmental
 - Economical
- Why model based?
 - Variant problem (several component, several manufacturers, different models!)
- Several projects

Modeling a Xerographic Copier (de Kleer 2003)

BAD		
on't care)		
BAD		
out none		
AD		
lt 👘		
BAD		
ut		

Why model based diagnosis ? (DX community)

- Experience independence
 - Works with new devices
- Device independence
 - Variant problem
- Multiple faults
- Soundness and completeness
 - Respect to the models
- Knowledge maintenance and reuse
 - Library of models, available from design

Other diagnosis approaches (I)

- No universally accepted taxonomy
- Balakrishnan y Honavar, 1998
 - How are given the relations between symptoms and causes?
 - How is this knowledge represented?
 - How is this representation used to obtained the diagnosis?

Other diagnosis approaches (II)

Balakrishnan y Honavar, 1998

- Knowledge based
 - Tzafestas 87, Guida y Tasso 94, Stefik 95, Jackson 98, Schreiber et al. 99
- Case Based Reasoning
 - Schank 82, Kolodner 93, Watson 97
- Machine learning:
 - Goldberg 89, Quinlan 93, Venkatusugramanian and Chan 97, Mitchell 97, Muggelton 99
- Model based
 - DX: Hamscher, Console and de Kleer 92, DX proceedings, IEEE special number 04
 - FDI: Patton and Chen 1991, Isermann 93, Gertler 98