

Guía docente de la asignatura

Asignatura	INGENIERÍA DEL CO	INGENIERÍA DEL CONOCIMIENTO			
Materia	SISTEMAS INTELIGENTES				
Módulo					
Titulación	GRADO EN INGENIER	RÍA INFORMÁT	TICA		
Plan	463	Código			
Periodo de impartición	S1 Tipo/Carácter OB				
Nivel/Ciclo	GRADO Curso CURSO PUENTE				
Créditos ECTS	6				
Lengua en que se imparte	ESPAÑOL				
Profesor/es responsable/s	CARLOS J. ALONSO GONZA	ÁLEZ			
Datos de contacto (E-mail, teléfono)	calonso@infor.uva.es 983 185602				
Horario de tutorías	LUNES 4-6, MARTES 9-11, JUEVES 4-6,				
Departamento	INFORMATICA (ATC, CCIA,	LSI)	1/ 1/2		

- - 1. Situación / Sentido de la Asignatura
 - 1.1 Contextualización
 - 1.2 Relación con otras materias
 - 1.3 Prerrequisitos

Indicar si se trata de requisitos previos que han de cumplirse para poder acceder a dicha asignatura (sólo si éstos están contemplados en la memoria de verificación en el apartado de planificación de las enseñanzas) o si sencillamente se trata de recomendaciones.

2. Competencias

2.1 Generales

Código	Descripción
G1.b	Capacidad de tomar decisiones basadas en criterios objetivos (datos experimentales, científicos o de simulación disponibles).
G1.c	Capacidad para encontrar, relacionar y estructurar información proveniente de diversas fuentes y de Integrar ideas y conocimientos.
G1.d	Poseer las habilidades de aprendizaje necesarias para emprender estudios posteriores o mejorar su formación con un cierto grado de autonomía.
G1.e	Capacidad de trabajar en situaciones de falta de información y/o con restricciones temporales y/o de recursos.
G1.f	Tener iniciativa y ser resolutivo para aportar y/o evaluar soluciones a los problemas, demostrando flexibilidad y profesionalidad a la hora de considerar distintos criterios de evaluación.
G1.g	Capacidad de análisis y síntesis, desde una perspectiva sistémica.
G2.c	Capacidad para argumentar y justificar lógicamente las decisiones tomadas y las opiniones.
G2.d	Capacidad de integrarse rápidamente y trabajar en grupo.
G3.c	Tener motivación por la calidad y la mejora continua y actuar con rigor en el desarrollo profesional.

2.2 Específicas

E4.e	Determinar el método de representación del conocimiento y de resolución más adecuado para obtener soluciones computacionales viables a problemas complejos y costosos
E4.f	Formulación y resolución eficiente mediante técnicas heurísticas de aquellos problemas que no admiten una solución algorítmica o cuya solución algorítmica no es eficiente
E4.g	Definir, evaluar y seleccionar plataformas hardware y software para el desarrollo de aplicaciones y servicios informáticos de diversa complejidad

3. Objetivos

Código	Descripción
	Resolver problemas mediante técnicas de búsqueda.
SI-2.a	
	Conocer y comprender el concepto de Ontología.
SI-2.b	
	Representar problemas en los distintos lenguajes de representación.
SI-2.c	
	Comprender y manejar los métodos básicos de representación y solución de problemas
SI-2.d	basados en conocimiento.
	Analizar y seleccionar plataformas de desarrollo software para sistemas basados en
SI-2.g	conocimiento.
	Concebir, desarrollar y mantener soluciones informáticas basadas en IA: sistemas basados
SI-2.h	en conocimiento.

4. Tabla de dedicación del estudiante a la asignatura

ACTIVIDADES PRESENCIALES	HORAS	ACTIVIDADES NO PRESENCIALES	HORAS
Clases teórico-prácticas (T/M)	30	Estudio y trabajo autónomo individual	57
Clases prácticas de aula (A)		Estudio y trabajo autónomo grupal	34
Laboratorios (L)	12		
Prácticas externas, clínicas o de campo			
Seminarios (S)	4		
Tutorías grupales (TG)	7		
Evaluación	6		
Total presencial	59	Total no presencial	91

5. Bloques temáticos¹

Bloque 1: Búsqueda e inferencia lógica.

Carga de trabajo en créditos ECTS: 1.08

a. Contextualización y justificación

b. Objetivos de aprendizaje

SI-2.a: Resolver problemas mediante técnicas de búsqueda:

- Conocer y comprender los métodos de búsqueda básicos de los procesos de inferencia lógica.
- Conocer y comprender los métodos de búsqueda de los procesos de inferencia en los programas lógicos.

.SI-2.g: Analizar y seleccionar plataformas de desarrollo software para sistemas basados en conocimiento, aprendizaje:

- Conocer algún software que de soporte computacional a problemas formulados en lenguaje lógico.
- Comprender el coste computacional de las soluciones software basadas en sistemas lógicos.

c. Contenidos

Estrategias de resolución.

Procedimiento de extracción de respuesta y demostradores de teoremas.

Programación lógica y Prolog.

d. Métodos docentes

Clase magistral para impartir los contenidos básicos de la materia.

Case magistral participativa para discutir los contenidos básicos de la asignatura.

Tutoría grupal para la resolución de cuestiones y problemas.

Laboratorios para la experimentación con las ideas básicas del bloque temático.

e. Plan de trabajo

Ver cronograma apartado 8.

f. Evaluación

Ver apartado 7.

Añada tantas páginas como bloques temáticos considere realizar.

g. Bibliografía básica

Chin-Liang Chang, Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, 1973.

Leon Sterling, Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. Second Edition. The MIT Press, 1994.

h. Bibliografía complementaria

Ivan Bratko. Prolog programming for artificial intelligence. Third Edition. Addison-Wesley, 2001.

Leon Sterling, Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. Second Edition. The MIT Press, 1994.

David Poole, Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010

i. Recursos necesarios

Notas de la asignatura. http://www.swi-prolog.org/

Bloque 2: Representación del conocimiento.

Carga de trabajo en créditos ECTS:

a. Contextualización y justificación

b. Objetivos de aprendizaje

SI-2.a Resolver problemas mediante técnicas de búsqueda:

- Conocer y comprender los métodos de búsqueda básicos soportados por los distintos métodos de representación del conocimiento.
- SI-2.b Conocer y comprender el concepto de Ontología.
- SI-2.c Representar problemas en los distintos lenguajes de representación.
- SI-2.d Comprender y manejar los métodos básicos de representación y solución de problemas basados en conocimiento:
 - Comprender y manejar los métodos básicos de representación y solución de problemas basados en conocimiento simbólico.
- SI-2.h Concebir, desarrollar y mantener soluciones informáticas basadas en IA: sistemas basados en conocimiento, aprendizaje automático y minería de datos.
 - Concebir soluciones informáticas basadas en conocimiento simbólico.

c. Contenidos

Lógica y representación del conocimiento. Ontologías.

Sistemas basados en reglas.

Redes semánticas y marcos.

Incertidumbre.

d. Métodos docentes

Clase magistral para impartir los contenidos básicos de la materia.

Case magistral participativa para discutir los contenidos básicos de la asignatura.

Tutoría grupal para la resolución de cuestiones y problemas.

Trabajo grupal en seminarios.

Laboratorios para la experimentación con las ideas básicas del bloque temático.

e. Plan de trabajo

Ver cronograma apartado 8.

f. Evaluación

Ver apartado 7.

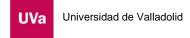
g. Bibliografía básica

Stuart Russell, Peter Norvig. Inteligencia Artificial: Un Enfoque Moderno. 2ª Edición. Prentice Hall, 2004.

J.T. Palma y R. Marín (Coordinadores). Inteligencia Artificial: técnicas, métodos y aplicaciones, McGrawHill, 2008. ISBN: 978-84-481-5618-3.

David Poole, Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010

h. Bibliografía complementaria


Joseph Giarratano, Gary Riley. Expert Systems: principles and programming. Third Edition. PWS, 1998.

Peter Jackson. Introduction to Expert Systems. Addison Wesley, Reading., 1999.

David Poole, Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010

i. Recursos necesarios

Notas de la asignatura. Laboratorio de informática. http://clipsrules.sourceforge.net/

Bloque 3: Modelos y métodos de resolución de problemas basados en conocimiento.

Carga de trabajo en créditos ECTS: 0.48

a. Contextualización y justificación

b. Objetivos de aprendizaje

SI-2.d Comprender y manejar los métodos básicos de representación y solución de problemas basados en conocimiento:

- Conocer y comprender la aproximación de los sistemas expertos a la solución de problemas.
- Conocer y comprender el catálogo de tareas basadas en conocimiento.
- Caracterizar problemas del mundo real en base a tareas basadas en conocimiento.
- Conocer y comprender la tarea de clasificación.
- Analizar tareas de clasificación.
- Diseñar soluciones a problemas de aplicación mediante tareas de clasificación.

c. Contenidos

Introducción a los sistemas expertos: sistemas expertos de primera generación.

Tareas basadas en conocimiento.

Tarea de clasificación.

d. Métodos docentes

Clase magistral para impartir los contenidos básicos de la materia.

Case magistral participativa para discutir los contenidos básicos de la asignatura.

Tutoría grupal para la resolución de cuestiones y problemas.

Laboratorios para la experimentación con las ideas básicas del bloque temático.

e. Plan de trabajo

Ver cronograma apartado 8.

f. Evaluación

Ver apartado 7.

g. Bibliografía básica

J.T. Palma y R. Marín (Coordinadores). Inteligencia Artificial: técnicas, métodos y aplicaciones, McGrawHill, 2008. ISBN: 978-84-481-5618-3

Mark Stefik. Introduction to Knowledge Systems. Morgan-Kaufmann Pub., San Mateo, 1995.

h. Bibliografía complementaria

Joseph Giarratano, Gary Riley. Expert Systems: principles and programming. Third Edition. PWS, 1998.

Peter Jackson. Introduction to Expert Systems. Addison Wesley, Reading., 1999.

i. Recursos necesarios

Notas de la asignatura.

Laboratorio de informática.

http://clipsrules.sourceforge.net/

Bloque 4: Otros paradigmas de razonamiento: basado en casos y basado en modelos.

Carga de trabajo en créditos ECTS: 0.6

a. Contextualización y justificación

b. Objetivos de aprendizaje

- . SI-2.d Comprender y manejar los métodos básicos de representación y solución de problemas basados en conocimiento:
 - Conocer y comprender los fundamentos de los sistemas de Razonamiento Basado en Casos.
 - Conocer y comprender los fundamentos de los sistemas de Razonamiento Basado en Modelos.

c. Contenidos

Introducción al Razonamiento basado en casos

Introducción al Razonamiento basado en modelos

d. Métodos docentes

Clase magistral para impartir los contenidos básicos de la materia.

Case magistral participativa para discutir los contenidos básicos de la asignatura.

Tutoría grupal para la resolución de cuestiones y problemas.

Trabajo grupal en seminarios.

e. Plan de trabajo

Ver cronograma apartado 8.

f. Evaluación

Ver apartado 7.

g. Bibliografía básica

Mark Stefik. Introduction to Knowledge Systems. Morgan-Kaufmann Pub., San Mateo, 1995.

Janet Kolodner. Case-Based Reasoning. San Mateo: Morgan Kaufmann, 1993.

Chris Price. Computer-based diagnostic systems. Springer Verlag, Nueva York, 1999.

h. Bibliografía complementaria

i. Recursos necesarios

Notas de la asignatura.

Bloque 5: Metodologías y herramientas de desarrollo.

Carga de trabajo en créditos ECTS: 1.44

a. Contextualización y justificación

b. Objetivos de aprendizaje

.SI-2.d Comprender y manejar los métodos básicos de representación y solución de problemas basados en conocimiento:

- Conocer las aproximaciones básicas de la ingeniería de conocimiento para el desarrollo de sistemas basados en conocimiento.
- SI-2.g Analizar y seleccionar plataformas de desarrollo software para sistemas basados en conocimiento.
- SI-2.h Concebir, desarrollar y mantener soluciones informáticas basadas en IA: sistemas basados en conocimiento.

c. Contenidos

Herramientas básicas para la Ingeniería de Conocimiento.

- Prolog y representación del conocimiento.
- CLIPS.

d. Métodos docentes

Laboratorio, prácticas guiadas.

Laboratorio, prácticas abiertas.

e. Plan de trabajo

Ver cronograma apartado 8.

f. Evaluación

Var apartado 7.

g. Bibliografía básica

Ivan Bratko. Prolog programming for artificial intelligence. Third Edition. Addison-Wesley, 2001.

David Poole, Alan Mackworth. *Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press*, 2010

Joseph Giarratano, Gary Riley. Expert Systems: principles and programming. Third Edition. PWS, 1998.

h. Bibliografía complementaria

J.T. Palma y R. Marín (Coordinadores). Inteligencia Artificial: técnicas, métodos y aplicaciones, McGrawHill, 2008. ISBN: 978-84-481-5618-3.

Peter Jackson. Introduction to Expert Systems. Addison Wesley, Reading., 1999.

Leon Sterling, Ehud Shapiro. The Art of Prolog: Advanced Programming Techniques. Second Edition. The MIT Press, 1994.

i. Recursos necesarios

Notas asignatura.

Guiones de prácticas.

Laboratorio de informática.

http://www.swi-prolog.org/

http://clipsrules.sourceforge.net/

6. Temporalización (por bloques temáticos)

BLOQUE TEMÁTICO	CARGA ECTS	PERIODO PREVISTO DE DESARROLLO*
Búsqueda e inferencia lógica.	1.08	Semanas 1-4.
Representación del conocimiento.	2.40	Semanas 5-12.
Modelos y métodos de resolución de problemas basados en conocimiento.	0.48	Semanas 13-14.
Otros paradigmas de razonamiento: basado en casos y basado en modelos.	0.60	Semana 15.
Metodologías y herramientas de desarrollo.	1.44	A lo largo del curso. Ver cronograma apartado 8.

^{*}La alternancia de tutorías, laboratorios y seminarios hace que el periodo previsto de desarrollo se proporcione de forma aproximada. Una previsión más detallada la proporciona el cronograma del apartado 8.

7. Tabla resumen de los instrumentos, procedimientos y sistemas de evaluación/calificación

INSTRUMENTO/PROCEDIMIENTO	PESO EN LA NOTA FINAL	OBSERVACIONES
Problemas y cuestiones. Entregas opcionales y dos evaluaciones.	25%	Es necesario obtener un mínimo de 3 puntos sobre 10 en este apartado.
Prácticas de laboratorio. Entregas opcionales y dos evaluaciones.	25%	Es necesario obtener un mínimo de 3 puntos sobre 10 en este apartado.
Seminarios. Documentación y cuestionario.	10%	Es necesario obtener un mínimo de 3 puntos sobre 10 en este apartado.
Participación en clases, seminarios y tutorías.	10%	4% Asistencia habitual. 6% Participación.
Examen final	30%	Es necesario obtener un mínimo de 3 puntos sobre 10 en este apartado.

8. Consideraciones finales

Convocatoria extraordinaria: Se conservaran las calificaciones de Problemas, Prácticas y Seminarios de la última convocatoria ordinaria. Se realizará un examen final.

Cronograma de actividades:

Semana	Contenido	Actividades previstas	Entrega Trabajos	Presenciales	No Presenciales
--------	-----------	-----------------------	------------------	--------------	--------------------

	Presentación de la asignatura.	I		I	
1	Estrategias de resolución (I).	Tutoría 1: Estrategias de resolución		3	4
2	Estrategias de resolución (II). Procedimiento de extracción de respuesta y demostradores de teoremas.	Práctica I: Prolog	Problemas	4	6
3	Introducción a la programación lógica. Programas definidos: sintaxis de Edimburgo. Resolución SLD. Interprete abstracto de un Programa Lógico	Práctica II: Prolog	Práctica	4	6
4	Concepto de respuesta. Programación Lógica y Negación.	Tutoría 2: Programación Lógica	Práctica	3	5
5	Introducción a la representación del conocimiento. Lógica y representación de conocimiento. Concepto de Ontología. Ontologías específicas I.	Practica III Prolog: Evaluación Prolog.	Problemas	4	5
6	Ontologías específicas II.	Tutoría 3: Ontologías		3	5
7	Sistemas basados en reglas: Introducción y componentes. Lenguajes. Inferencia en un sistema de producción.	Seminario ONTOLOGÍAS		4	7
8	Encadenamiento hacia adelante. Encadenamiento hacia atrás.	Evaluación tutorías 1.	Documentación Seminario	4	4

		1	1	1	,
9	Lenguajes con variables. Algoritmo de Rete.	Tutoría 4: Sistemas Basados en Reglas.		3	5
10	Introducción a las redes semánticas. Introducción a los sistemas de marcos. Elementos de los sistemas de marcos y modelo básico.	Practiva IV Clips	Problemas	4	6
11	Herencia simple. Facetas. Herencia multiple. Reglas y Marcos.	Tutoría 5: Sistemas de Marcos.	Práctica	3	5
12	Razonamiento e incertidumbre. Modelo de factores de certeza.	Práctica V CLIPS.	Problemas	4	6
13	Introducción a los sistemas expertos: sistemas expertos de primera generación. Tareas basadas en conocimiento Tarea de clasificación: modelo básico	Práctica VI: CLIPS. Evaluación CLIPS.	Práctica	4	6
14	Tarea de clasificación: métodos básicos. Clasificación Jerárquica.	SEMINARIO: Razonamiento basado en casos.	1	4	7
15	Razonamiento basado en casos. Razonamiento basado en modelos. Recapitulación.	Tutoría 6: Sistemas basados en conocimiento Tutoría 7. Razonamiento basado en modelos.	Documentación Seminario	4	9
16		Evaluación tutorías 2		2	2

17	Examen asignatura	2	3
		59	91

