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Mario Corrales-Astorgano1, César González-Ferreras1, David Escudero-Mancebo1, Lourdes
Aguilar2, Valle Flores-Lucas1, Valentı́n Cardeñoso-Payo1, Carlos Vivaracho-Pascual1

1Universidad de Valladolid, Spain 2Universitat Autònoma de Barcelona, Spain
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Abstract
In this study, we analyze the potential use of an annotated cor-
pus to identify various dimensions of speech quality, including
phonetics and fluency, in individuals with Down syndrome, en-
abling the development of automated assessment systems. Two
experiments were conducted: for phonetic evaluation, we used
the Goodness of Pronunciation (GoP) metric with an automatic
segmentation system and correlated results with a speech thera-
pist’s evaluations, showing a positive trend despite not notably
high correlation values. For fluency assessment, deep learning
models like wav2vec were used to extract audio features, and
an SVM classifier trained on a fluency-focused corpus catego-
rized the samples. The outcomes highlight the complexities of
evaluating such phenomena, with variability depending on the
specific type of disfluency detected.
Index Terms: speech disorders, pronunciation assessment, dis-
fluency detection, Down syndrome

1. Introduction
Identifying elements of pathological speech is crucial for diag-
nosing and treating various speech disorders. Accurate identifi-
cation of the specific problem that the speaker has (from a long
list of potential issues, such as dysarthria, stuttering, cluttering
. . . ) and the symptoms that indicates a possible pathology (e.g.
speech blocks, changes in pronunciation, repetitions . . . ) helps
develop targeted intervention strategies that improve the quality
of life for people with language disorders. However, annotating
audio to identify these problems is not a common practice in
speech therapy. This has led to a shortage of linguistic resources
needed to train automatic evaluation systems or automatic iden-
tification of language pathology.

The are some studies that annotated corpora of patholog-
ical speech. The authors in [1] use the GRBAS scale to an-
notate a speech corpora and correlate the scores with acoustic
parameters – global Grade of dysphonia (G), Roughness (R),
Breathiness (B), Asthenicity (A), and Strain (S) and the study
described in [2] uses this scale for training automatic evaluation
systems. There are some corpora focused on fluency disorders
[3, 4, 5]. In [6] stuttering is cross-analyzed with the perception
of good communication skills. In [7] the quality of oral produc-
tions of individuals with Down syndrome (DS) was annotated,
and a comprehensive review of the currently available corpora
was presented.

Although the Goodness of Pronunciation (GoP) method is
commonly used to assess the pronunciation of non-native (L2)
speech [8], several studies have also demonstrated its effec-
tiveness in evaluating speech disorders. For example, the GoP
measure has been applied to disordered speech from speakers
with unilateral facial palsy [9], children with apraxia of speech

[10, 11], and children with cleft lip/palate [12]. Additionally,
GoP scores have been utilized to predict comprehensibility rat-
ings in patients with neurological and anatomic speech disor-
ders [13], as well as for the automatic speech intelligibility as-
sessment of dysarthric speech [14].

Related with automatic stuttering detection, there are some
reviews focused on applying machine learning approaches to
build automatic stuttering identification systems (ASIS) [15,
16]. Statistical methods (HMM, SVM, KNN) as well as neu-
ral networks (ANNs, RNNs, LSTMs, CNNs) have been used,
obtaining different results depending on the corpus and the
methodology applied in each study. However, the study of stut-
tering in people with Down syndrome using these methodolo-
gies is limited, taking into account that a high rate of stuttering
occurrence in individuals with Down syndrome, independent of
assessors, has been detected compared to typically developing
individuals [17].

Since people with DS have unique characteristics that make
training automatic systems challenging, an annotated corpus
with enriched information is necessary. We present the anno-
tation rubric and the initial results of this effort on a speech cor-
pus called PRAUTOCAL [7], which consists of a large number
of utterances from Spanish speakers with Down syndrome. The
corpus was recorded using an educational game.

The structure of the paper is as follows. We begin by de-
scribing the annotation of the corpus, which encompasses pho-
netic and fluency dimensions. Following this, we present the
phonetic experiments using the GoP metric. Next, we detail the
stuttering experiments aimed at identifying five types of disflu-
encies. Finally, we conclude with a discussion, conclusions, and
suggestions for future work.

2. Corpus annotation
The PRAUTOCAL corpus is a corpus of Spanish speakers with
Down syndrome from the northern/central Iberian Peninsula,
which allows the analysis of specific aspects of the speech of
individuals with Down syndrome. It also includes compara-
ble recordings of typically developing (TD) users for reference.
So far, the corpus has been used for prosodic studies. In the
work described in this paper we aim to also use the corpus to
evaluate phonetic pronunciation and fluency. The corpus was
collected in six recording campaigns and contains 90 speakers,
with 4,175 audio files and a total audio duration of approxi-
mately 3 hours and 47 minutes. The corpus is balanced in terms
of gender (49 men and 41 women) and speaker type (50 indi-
viduals with intellectual disabilities and 40 typically developing
speakers). The age range for both speaker types is also similar,
between 13 and 42 years for speakers with DS and between 6
and 68 years for TD speakers. The corpus also includes the tran-
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scription of the utterances, which has been used for automatic
phonetic segmentation of the recordings. A detailed description
of the PRAUTOCAL corpus can be found in [7].

2.1. Annotation process

The annotation process was made using a rubric, that was elab-
orated in a three steps designing approach. First, a draft was
elaborated by the authors and validated by expert linguists and
therapists. Then, it was used to conduct a controlled evaluation
campaign in which a reduced number of samples and experts
participated. Finally, from the conclusions in this step and after
analyzing the main sources for inter-rater disagreement, a final
version was delivered and used by an evaluator which had not
participated in previous steps. We have formulated the evalua-
tion rubric that encompasses three dimensions: phonetics, flu-
ency, and prosody. In the experiments described in this paper
the prosody dimension is not used.

A speech therapist with several years of experience has an-
notated the corpus. A total of 2,084 utterances (12,303 words
in the phonetic part) have been annotated, all of them produced
by people with Down syndrome. The annotation was made us-
ing a web page in which the speech therapist could listen to the
phrase to be tagged as many times as she wanted and in which
the errors and the assessment had to be indicated.

2.2. Phonetics

Regarding phonetics, the evaluator marked articulation errors at
the segmental level in words, including substitution, omission,
distortion, and addition (SODA) [18, 19, 20]:
• Substitution: one phoneme is substituted by another.
• Omission: a phoneme is deleted.
• Distortion: a phoneme is not replaced by another, but is not

articulated according to what is expected.
• Addition: a phoneme is added to the word.

In addition, the evaluator must assess the overall phonetics
quality of the sentence using the following three levels:

1. Speech with frequent errors or distortions of sounds.
2. Errors are sporadic, appearing in some situations but not in

others.
3. Pronunciation is correct without obvious pronunciation er-

rors.
“Sporadic” errors occur in 25% or less of the words within

the utterance, while “frequent” errors appear in more than 25%
of the words.

Figure 1 shows the distribution of the phonetic and fluency
assessment. The distribution of the phonetic scores is quite bal-
anced. The number of words with errors and the percentages
out of the total number of words are shown in Table 1.

2.3. Fluency

Concerning fluency, for each category of fluency errors, the
evaluator must indicate whether each deviation occurs once,
more than once, or not at all:
• Block: an involuntary pause before a word or within a word,

due to physiological reasons. Sometimes, a breath can be per-
ceived, but in most cases, there is no breath or it is inaudible.
These pauses are not linguistically motivated.

• Prolongation: an involuntary lengthening or prolongation of
a syllable or sound.

• Repetition of sounds/syllables.

Figure 1: Distribution of scores for phonetic and fluency quality
(1: frequent errors; 2: sporadic errors; 3: without errors).

• Repetition of words/phrases.
• Interjection: filler words, which are used to buy time to find

the right words to continue speaking. They are usually em-
ployed when the speaker has difficulties to pronounce a spe-
cific word, and fillers provide time to think of an alternative
word that is easier to pronounce.

Moreover, the evaluator should determine the overall qual-
ity of the fluency of the sentence using the following three lev-
els:

1. Speech with frequent fluency errors.
2. Speech with sporadic fluency errors.
3. Speech without fluency errors.

“Sporadic” means that the number of errors is 25% or less
of the number of words in the utterance, while “frequent” means
that the number of errors is more than 25% of the number of
words in the utterance.

As shown in Figure 1, the distribution of fluency scores is
clearly unbalanced. Table 2 shows the number of utterances
without errors, one error, or more than one error for each type
of fluency error.

Table 1: Errors found in the phonetic part of the analysis. The
errors are marked at word level.

Substitution 526 (4.3%)
Omission 1,108 (9.0%)
Distortion 3,056 (24.8%)
Addition 318 (2.6%)

Table 2: Errors in the fluency part.

None One Multiple
Blocks 1,599 356 129
Prolongations 1,922 106 56
Sound repetitions 1,797 225 62
Word repetitions 1,843 162 79
Interjections 2,003 69 12

3. Experiments
In this section, we describe the preliminary experiments con-
ducted to compute the baseline classification results. These ex-
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periments use common techniques for phonetic and fluency as-
sessment.

3.1. Phonetic experiments

In this experiment we have used Goodness of Pronunciation
(GoP) [8] for automatic assessment of phonetic quality. GoP
is a measure of the degree of similarity between produced and
canonical pronunciation of phonemes.

There are several GoP methods described in the bibliogra-
phy. The first method described was GMM-GoP [8], which, for
a phone p is defined as an averaged log probability across the
phone duration:

GMM-GoP(p) =
1

|F |
∑
f∈F

log
eL

f (p|f)∑
q∈Q eLf (q|f)

(1)

where the duration of phone p in frames is F ; P f (p|f) is the
frame-wise phone probability and Lf (p|f) its logits; Q is the
total phone set.

With the development of neural networks (NNs), variants of
GoP which employ probabilities from the state-of-the-art neural
networks have been suggested [21]:

NN-GoP(p) = log P̄ (p|F )−max
q∈Q

log P̄ (q|F ) (2)

P̄ (p|F ) =
1

|F |
∑
f∈F

P f (p|f) (3)

Finally, DNN-GoP [21] normalizes the phone probability
with the phone prior:

DNN-GoP(p) =
P̄ (p|F )

P (p)
(4)

In order to calculate the GoP measures, we employ a self-
supervised learning approach to extract posterior probabilities
from the widely adopted cross-lingual wav2vec 2.0 XLS-R
model [22], in line with recent research [23, 14]. The fine-
tuning process uses the Common Phone dataset [24] to train a
linear phone prediction head on top of the wav2vec model. No-
tably, this linear phone prediction head is incorporated above
the convolutional layer rather than the transformer layer. This
design choice serves to reduce the computational complexity of
the model while preserving important phonetic characteristics
in the convolutional features. The optimization is performed
using the AdamW optimizer [25], employing a default learning
rate of 0.001, and this process is repeated for four epochs.

The acoustic model has been trained on a collection of
speech samples of typical healthy speakers drawn from the
Common Phone dataset. This dataset was specifically chosen
for its comprehensive coverage of phonemes and detailed pho-
netic annotations, making it a prime choice for encompassing
a broad spectrum of Spanish phonemes. The Common Phone
dataset is noteworthy for its gender balance and multilingual
content, spanning six different languages. With over 11,000
speakers contributing to it, the dataset boasts approximately 116
hours of recorded speech.

We evaluated the efficacy of the model using the PRAUTO-
CAL corpus. First, in order to obtain the segmentation, Montreal
Forced Aligner (MFA) [26] is employed to extract phoneme-
level alignments in the PRAUTOCAL corpus. Then, we calcu-
lated the average GoP score for each utterance and determined

Figure 2: Distribution of the GMM-GoP for the four different
score levels.

its correlation with the intelligibility score. We used the Kendall
Rank Coefficient τ to measure the correlation between the av-
erage GoP scores and the phonetic quality assessments. Two
different configurations were used:
• 3-level: we used 2,084 utterances from people with DS, eval-

uated with the 3-level assessment (1, 2 or 3) as described in
section 2.

• 4-level: we added 700 randomly chosen utterances of typi-
cally developing speakers from the PRAUTOCAL corpus. As
they are supposed to be correctly pronounced utterances, the
assessment was set to 4.

Results are shown in Table 3, highlighting the performance
of different configurations. In the 3-level setup, the best out-
come is achieved by GMM-GoP, with a score of 0.1983. How-
ever, when employing the 4-level configuration, the best result
is obtained by DNN-GoP, attaining a score of 0.3667. Notably,
the 4-level configuration consistently outperforms the 3-level
counterpart in all scenarios. Figure 2 offers an insight into the
distribution of GMM-GoP measurements for scores 4, 3, 2 and 1
(similar graphics are observed for NN-GoP and for DNN-GoP).
The highest GoP values are obtained for score 4 (TD speakers),
as their speech is expected to be very similar to the canonical
pronunciation of phonemes, while the lowest values are associ-
ated with score 1. Scores 2 and 3 exhibit intermediate values
between score 1 and score 4. In summary, the results align with
anticipated trends, despite the somewhat modest correlation val-
ues.

Table 3: Kendall’s rank coefficient between GoP measures and
phonetic evaluation scores of the rubric.

3-level 4-level
GMM-GoP 0.1983 0.3345
NN-GoP 0.1635 0.3176
DNN-GoP 0.1410 0.3667

3.2. Stuttering experiments

In the stuttering experiments, we employed an approach sim-
ilar to the one used in [27]. As a reference corpus, we uti-
lized the KSoF corpus [5], which is a corpus containing 5,597
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3-second recordings obtained from stuttering therapy sessions.
These recordings were labeled by three annotators for five types
of disfluencies: blocks, prolongations, sound repetitions, word
repetitions, and interjections, in addition to other additional la-
bels that we have not considered in this study. The distribution
of labels in this corpus is highly unbalanced.

As feature extractor, we used the base model of wav2vec
[28], which is a model trained in an unsupervised manner with
960 hours of unlabeled speech data from the LibriSpeech cor-
pus [29]. This model was adapted for automatic speech recog-
nition using transcriptions of the same audio. For each labeled
audio, we extracted 768-dimensional speech representations ev-
ery 20ms, and the mean was calculated to obtain representa-
tions for the entire audio. We used SVMs as classifiers because
they have demonstrated effectiveness in delivering robust re-
sults even when working with a limited set of samples. The
classification is a binary tasks of one specific disfluency against
all other samples.

To obtain the optimal hyper-parameters of the classifier for
each type of disfluency, we conducted classification using the
embedding extracted from each of the layers provided by the
model, employing principal component analysis (PCA) to ob-
tain features that explain a minimum of 0.9 variance. The ker-
nel parameters were selected from {0.1, 0.01, 0.001, 0.0001,
0.00001}, and the penalty parameter of error C was chosen from
{1, 10, 100, 1000}. From the results obtained, we selected the
parameters and layer that achieved the best results (F1 score) for
each type of disfluency. Finally, an SVM classifier was trained
using all the samples with the parameters obtained in the previ-
ous phase.

The classifier trained on the KSoF corpus was used to clas-
sify samples from our corpus and the results are shown in Table
4. As can be seen in Table 2, the labels used for the fluency eval-
uation are similar to those used in the KSoF corpus for the pur-
pose of comparison. However, it is important to note that both
the evaluators and their interpretation of the evaluation criteria
may differ. As a result, we cannot establish an exact correspon-
dence between the labels in both corpora, even if the disfluency
to be detected is the same. This variation can impact on the
classification results. Additionally, just like in the KSoF cor-
pus, the labels for different disfluencies are highly unbalanced.
In the PRAUTOCAL corpus, the identification of disfluencies is
not binary, as the evaluator has three levels of assessment for
each type of disfluency: no disfluency, one disfluency, or two or
more disfluencies. To convert this assessment into a binary for-
mat, it is considered that there is disfluency if the label indicates
one or more disfluencies.

The results in Table 4 are obtained by using the features of
each layer of wav2vec and selecting the maximum F1 score for
each label in disfluency detection/no disfluency detection. For
blocks, an F1 score of 0.42/0.46 is obtained; for prolongations,
an F1 score of 0.16/0.48; for sound repetitions, an F1 score of
0.28/0.66; for word repetitions, an F1 score of 0.13/0.74; and
for interjections, an F1 score of 0.07/0.52 is obtained.

4. Discussion
We performed a series of experiments using the annotations ob-
tained from the rubric. Regarding phonetic experimentation, we
conducted baseline machine learning trials, which yielded re-
sults indicating a moderate correlation between the GoP values
and assessment scores. This outcome was achieved through a
straightforward approach of averaging GoP across all phonemes
within an utterance. While this serves as an initial step for fu-

Table 4: F1 score of each disfluency label. KSoF column shows
the best result in the optimization process (disfluency detection).
PRAUTOCAL column shows the results obtained with the classi-
fier trained with the KSoF samples and tested with the PRAUTO-
CAL corpus. Id means disfluency detection and nId means no
disfluency detection.

KSoF PRAUTOCAL (id/nid)
Blocks 0.56 0.42 / 0.46
Prolongations 0.58 0.16 / 0.48
Sound repetitions 0.36 0.28 / 0.66
Word repetitions 0.44 0.13 / 0.74
Interjections 0.16 0.07 / 0.52

ture research, there is potential to enhance results through the
implementation of novel classification techniques. Moreover, it
is imperative to conduct an in-depth examination of GoP values
for each individual phoneme. Individuals with Down syndrome
often face greater challenges in articulating specific phonemes
while displaying relative proficiency in others. For instance,
in the context of the Spanish language, individuals with DS
may find it especially challenging to master the /rr/, /r/, and /z/
phonemes [30].

The results in Table 4 highlight the challenge of evalu-
ating different disfluencies using automatic classifiers. The
best results are obtained for blocks and prolongations, although
they are still far from the results achieved in the KSoF cor-
pus. Nonetheless, F1 values for the absence of disfluency are
higher for all types of disfluencies. This is particularly impor-
tant during therapy sessions, as an inaccurate classification of
disfluency can lead to patient frustration. Labeling the corpus
remains a complex task, even when the same disfluencies are in-
cluded, because different evaluators may interpret disfluencies
differently. In the KSoF corpus used to train the classifier, there
is not a high level of agreement among evaluators [5], which
demonstrates the challenge of applying consistent criteria when
evaluating speech disfluencies.

5. Conclusions

This paper outlines the phonetic and fluency annotation of the
PRAUTOCAL corpus, which includes speech data from Spanish
speakers with Down syndrome. To evaluate the effectiveness of
these annotations in automatic classification systems, two ex-
ploratory experiments are presented. Although the initial results
can be improved upon, having a corpus annotated for individu-
als with Down syndrome in various aspects of speech holds the
potential to enhance these outcomes. This paves the way for
developing automatic systems that could benefit speech therapy
for individuals with Down syndrome.

As future work, it is crucial to incorporate new evaluators
to improve the labeling process. Additionally, fine-tuning the
models used and implementing other deep learning techniques
could further enhance the results.
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